JPH01313396A - Method and device for growing iii-v compound semiconductor in vapor phase - Google Patents
Method and device for growing iii-v compound semiconductor in vapor phaseInfo
- Publication number
- JPH01313396A JPH01313396A JP14300188A JP14300188A JPH01313396A JP H01313396 A JPH01313396 A JP H01313396A JP 14300188 A JP14300188 A JP 14300188A JP 14300188 A JP14300188 A JP 14300188A JP H01313396 A JPH01313396 A JP H01313396A
- Authority
- JP
- Japan
- Prior art keywords
- group
- gas
- vapor phase
- growth
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 150000001875 compounds Chemical class 0.000 title claims description 12
- 239000012808 vapor phase Substances 0.000 title abstract 2
- 239000007789 gas Substances 0.000 claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 claims abstract description 16
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000013078 crystal Substances 0.000 claims abstract description 6
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 claims abstract description 4
- 229910021617 Indium monochloride Inorganic materials 0.000 claims abstract 3
- APHGZSBLRQFRCA-UHFFFAOYSA-M indium(1+);chloride Chemical compound [In]Cl APHGZSBLRQFRCA-UHFFFAOYSA-M 0.000 claims abstract 3
- 238000001947 vapour-phase growth Methods 0.000 claims description 27
- 239000002994 raw material Substances 0.000 claims description 14
- 150000004678 hydrides Chemical class 0.000 claims description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 4
- 229910021478 group 5 element Inorganic materials 0.000 claims 1
- 230000032258 transport Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 5
- 125000005842 heteroatom Chemical group 0.000 abstract description 4
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 abstract description 3
- 229910000070 arsenic hydride Inorganic materials 0.000 abstract description 3
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 abstract description 3
- 239000002019 doping agent Substances 0.000 abstract description 3
- 238000011144 upstream manufacturing Methods 0.000 abstract description 3
- 239000012159 carrier gas Substances 0.000 abstract 1
- SPVXKVOXSXTJOY-UHFFFAOYSA-N selane Chemical compound [SeH2] SPVXKVOXSXTJOY-UHFFFAOYSA-N 0.000 abstract 1
- 229910000058 selane Inorganic materials 0.000 abstract 1
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000005253 cladding Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- KAXRWMOLNJZCEW-UHFFFAOYSA-N 2-amino-4-(2-aminophenyl)-4-oxobutanoic acid;sulfuric acid Chemical compound OS(O)(=O)=O.OC(=O)C(N)CC(=O)C1=CC=CC=C1N KAXRWMOLNJZCEW-UHFFFAOYSA-N 0.000 description 1
- 241000981595 Zoysia japonica Species 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はm−v族化合物半導体の気相成長方法および気
相成長装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth method and a vapor phase growth apparatus for m-v group compound semiconductors.
1■族原料として■族元素の塩化物を用い、■族原料と
して■族元素の水素化物を用いるIn −V族化合物半
導体の気相成長方法:いオ〕ゆるハイドライド気相成長
方法は1960年代に開発された。この成長方法は高温
において■族金属融液上にHClガスを供給し、高温で
安定な■族金属のモノクロライドガスを生成し、上記ガ
スを基板近傍でVmJM料ガスと混合して■−■族化合
物半導体結晶の気相成長を行うものである。A method for vapor phase growth of In-V group compound semiconductors using chlorides of group I elements as group I raw materials and hydrides of group III elements as group II raw materials: The so-called hydride vapor phase growth method was developed in the 1960s. was developed in. In this growth method, HCl gas is supplied onto the group Ⅰ metal melt at high temperature to generate a monochloride gas of the group Ⅰ metal that is stable at high temperatures, and the above gas is mixed with the VmJM source gas near the substrate. This method performs vapor phase growth of group compound semiconductor crystals.
ハイドライド気相成長方法は■族原料をガス状態で気相
成長反応管内に供給するのではなく、気相成長反応管内
部において■族金属ソースとH(4ガスとを反応させて
原料ガスを発生させるものである。このソース反応は液
体と気体との接触反応によるため、あまり高速化するこ
とができない。In the hydride vapor phase growth method, the group III source material is not supplied in a gaseous state into the vapor phase growth reaction tube, but the source gas is generated by reacting the group III metal source and H (4 gas) inside the vapor phase growth reaction tube. This source reaction is a contact reaction between a liquid and a gas, so it cannot be made very fast.
さらにHClガスが■族金属融液中に溶は込むため、原
料ガスの安定的供給及び停止には5〜10分程度程度で
あり、急峻なヘテロ界面を必要とするデバイスには上記
のような成長手法は適用できなかった。Furthermore, since HCl gas dissolves into the group II metal melt, it takes about 5 to 10 minutes to stably supply and stop the raw material gas. Growth methods could not be applied.
そこで成長室を2室以上備え、第1の成長室で成長中に
第2の成長室で次の成長準備をしておき、基板結晶のみ
を第2の成長室に移17するという多成長室法ハイドラ
イド気相成長装置が現実に用いられている。Therefore, a multi-growth chamber is equipped with two or more growth chambers, and while the first growth chamber is growing, preparations for the next growth are made in the second growth chamber, and only the substrate crystal is transferred to the second growth chamber. A chemical hydride vapor phase growth apparatus is actually used.
この成長手法は半導体レーザやLEI)、APD、P
I N等の各種デバイスの作成に適用して急峻なヘテロ
界面が実現されている(碓井等 ジャパニーズ ジャー
ナル オブ アプライド フィジックス(Jpn。This growth method uses semiconductor lasers, LEI), APD, P
A steep hetero-interface has been realized by applying it to the creation of various devices such as IN (Usui et al. Japanese Journal of Applied Physics (Jpn.
J、 Appl、 Phys、 )24 (3) L1
63(1985))。J, Appl, Phys, )24 (3) L1
63 (1985)).
しかしながら、ハイドライド気相成長方法は1室成長法
ではガスの切り替わりが極めて遅く、この方法をヘテロ
デバイスに用いることはできない。However, in the hydride vapor phase growth method, gas switching is extremely slow in a one-chamber growth method, and this method cannot be used for hetero devices.
そこでこの問題を解決するために一つの反応管の中に2
室以上の室を有する多成長室法ハイドライド装置が開発
された(水呑等 ジャパニーズ ジャーナル オブ ア
プライド フィジックス(Jpn。Therefore, in order to solve this problem, two
A multi-growth chamber method hydride device with more than one chamber was developed (Mizuno et al. Japanese Journal of Applied Physics (Jpn.
J、 Appl、 Phys、)19.(iり L11
3(1980))、 シかし多成長室法ハイドライド気
相成長装置は反応管、加熱装置が大型になり、また基板
回転機構部の構造が複雑になるという問題点がある。J, Appl, Phys,)19. (iri L11
3 (1980)), the multi-growth chamber method hydride vapor phase growth apparatus has problems in that the reaction tube and heating device are large, and the structure of the substrate rotation mechanism is complicated.
本発明の目的はこれらの問題点を解決し、簡単な構造の
成長装置にて急峻なヘテロ界面を形成することが可能な
m−v族化合物半導体の気相成長方法および気相成長装
置を提供することにある。The purpose of the present invention is to solve these problems and provide a vapor phase growth method and a vapor phase growth apparatus for m-v group compound semiconductors that can form a steep hetero interface using a growth apparatus with a simple structure. It's about doing.
上記目的を達成するため1本発明は■族原料として■族
元素の塩化物を用い、■族原料として■族元素の水素化
物を用いるm−v族化合物半導体の気相成長方法におい
て、■族原料としてInCQと有機ガリウムクロライド
MOGal、Qとの2種類のガスを同時に供給し、3元
又は3元以上の混晶を成長させるものである。In order to achieve the above objects, 1 the present invention provides a method for vapor phase growth of an m-v group compound semiconductor using a chloride of a group-■ element as a group-■ raw material and a hydride of a group-■ element as a group-■ raw material. Two types of gases, InCQ and organic gallium chloride MOGal, Q, are supplied simultaneously as raw materials to grow a ternary or more ternary mixed crystal.
また1本発明のUt −V族化合物半導体の気相成長装
置においては、Inをソースとするソース領域と、基板
の成長領域とを反応管内に有し、a反応管に、前記ソー
ス領域に供給してInを工nCQとして成長領域に輸送
するHClガスの導入管と前記ソース領域を越えて直接
成長領域に■族原料ガス及びMOGaClガスをそれぞ
れ別個に供給するバイパス管とを装備したものである。Further, in the vapor phase growth apparatus for a Ut-V group compound semiconductor of the present invention, a source region using In as a source and a substrate growth region are provided in a reaction tube, and the source region is supplied to the a reaction tube. The device is equipped with an inlet pipe for HCl gas to transport In as CQ to the growth region, and a bypass pipe to separately supply group (III) source gas and MOGaCl gas directly to the growth region beyond the source region. .
通常ハイドライド気相成長方法では1■族原料として高
温で安定な■族金属のモノクロライドが用いられる。こ
の場合の成長反応はInPの成長を例に取ると次式のよ
うに表わされる。Usually, in the hydride vapor phase growth method, a monochloride of a Group 1 metal, which is stable at high temperatures, is used as a Group 1 raw material. The growth reaction in this case is expressed by the following equation, taking the growth of InP as an example.
4 I n CQ+ P 4 + 2 )1z→4 I
n P + 2 HCm一方、本発明に用いるMOG
aCQは高音水素雰囲気中で容易にGaCQに分解する
。例えばジエチルガリウムクロライド(DEGaCQ)
の場合、DEGaCQ+H2→2C,Hs+GaCjl
となり、高温ではGaCQlよ十分に蒸気圧を有してい
るため、基板領域まで輸送されて成長に寄与する。4 I n CQ+ P 4 + 2 )1z→4 I
n P + 2 HCm On the other hand, MOG used in the present invention
aCQ easily decomposes into GaCQ in a high-pitched hydrogen atmosphere. For example, diethyl gallium chloride (DEGaCQ)
In the case of DEGaCQ+H2→2C, Hs+GaCjl
Since GaCQl has a sufficient vapor pressure at high temperatures, it is transported to the substrate region and contributes to growth.
また発生したC、 H,は安定で、かつ蒸気圧が高いた
めに成長には寄与せず、水素気流によって下流に流され
てしまう。この結果、DEGaCQを用いてもGa上に
lICI2ガスを供給してGa(jlを発生させた場合
と成長領域では全く同等である。Furthermore, the generated C and H are stable and have a high vapor pressure, so they do not contribute to growth and are swept downstream by the hydrogen stream. As a result, even if DEGaCQ is used, the growth region is completely equivalent to the case where Ga(jl is generated by supplying lICI2 gas onto Ga).
更にMOGaCQガスは一般にバブリングして供給する
ためにガスの供給、停止がバルブ操作により可能となり
、金属ソースを用いて接触反応利用する際に問題となる
ソースへの溶は込み、反応の遅れ等の問題がなくなり、
急峻なガス切り替えが可能となる。Furthermore, since MOGaCQ gas is generally supplied in a bubbling manner, the gas can be supplied and stopped by valve operation, which eliminates problems such as penetration into the source and reaction delay, which are problems when using a metal source for catalytic reactions. The problem is gone,
Allows for rapid gas switching.
さらにDEGaCΩを反応管最上流部より導入した場合
にはそのガスが金属Inソースに接触してしまい。Furthermore, when DEGaCΩ is introduced from the most upstream part of the reaction tube, the gas comes into contact with the metal In source.
ソース中に金属Gaが溶は込んで組成制御が困難になる
。しかし、原料MOGaC:QガスがInソースとに非
接触になるようなMOGaCQ用ガス導入管を用いれば
Inソースに影響をあたえることなくGa原料を供給す
ることができる。Metal Ga melts into the source, making composition control difficult. However, if a MOGaCQ gas introduction pipe is used that allows the raw material MOGaC:Q gas to come into non-contact with the In source, the Ga raw material can be supplied without affecting the In source.
以下に本発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.
本実施例ではMOGaCI2を用いたハイドライド気相
成長法にてn型InP基板上に1.3−帯半導体レーザ
に用いるダブルへテロ構造の作成について述べる。成長
装置の概略を第1図に示した6図において1反応管11
内のガス導入部に対する上流側のソース領域にInソー
ス12が設置されている。ガス導入管17より供給され
るHClガスをInソース12に接触させてInCQを
発生させ、このガスを下流側に設置されたInP基板1
3上の成長領域に導く、一方Ga原料はMOGaCQ容
器(図示路)上にキャリアH2を流し、バイパス管14
を通してIICIIIガス及び■族原料ガスとは独立に
またInソース12には非接触で成長領域に供給する。This example describes the creation of a double heterostructure for use in a 1.3-band semiconductor laser on an n-type InP substrate by hydride vapor phase epitaxy using MOGaCI2. The outline of the growth apparatus is shown in Figure 1. In Figure 6, 1 reaction tube 11
An In source 12 is installed in the source region on the upstream side with respect to the gas introduction section inside. HCl gas supplied from the gas introduction pipe 17 is brought into contact with the In source 12 to generate InCQ, and this gas is transferred to the InP substrate 1 installed on the downstream side.
On the other hand, the Ga raw material flows through the carrier H2 onto the MOGaCQ container (path shown) and passes through the bypass pipe 14.
It is supplied to the growth region through the In source 12 independently of the IICIII gas and the group II source gas and without contacting the In source 12.
なお、■族原料としてAsH3及び円1゜をH2キャリ
アと共に他のバイパス管15より導入して成長領域に供
給する。前記MOGaCI2容器は蒸気圧の関係で90
℃程度に加熱している。また反応管11の加熱はその周
囲に設置された抵抗加熱炉16により行い、ソース領域
の加熱温度を850°Cに設定し、成長領域の加熱温度
を700°Cに設定している。Incidentally, AsH3 and 1° as the group III raw materials are introduced together with the H2 carrier from another bypass pipe 15 and supplied to the growth region. The MOGaCI2 container has a vapor pressure of 90
It is heated to about ℃. Further, the reaction tube 11 is heated by a resistance heating furnace 16 installed around it, and the heating temperature of the source region is set to 850°C, and the heating temperature of the growth region is set to 700°C.
成長手順として反応管11内に基板導入後、PH。As a growth procedure, after introducing the substrate into the reaction tube 11, PH.
雰囲気中で昇湿し、IIcQガス及びn型ドーパントと
して11□Seを供給してn型InPクラッド層を約2
4成長させる。その後、MOGaCI2及び^sl(、
を同時に供給し、さらに同時にIttSeの供給を停止
する。ここで約0.24層PメのInGaAsP活性層
を成長させた後。The n-type InP cladding layer is heated by increasing the humidity in the atmosphere and supplying IIcQ gas and 11□Se as an n-type dopant to form an n-type InP cladding layer of about 2
4 Grow. After that, MOGaCI2 and ^sl (,
is supplied at the same time, and the supply of IttSe is stopped at the same time. After growing an InGaAsP active layer of about 0.24 Pm here.
再びMOGaCQ及びAsH3を同時に停止する。さら
にここでp型ドーパントとしてDMZ(ジメチル亜鉛)
を供給して約1.のp型InPクラッド層を成長させる
。MOGaCQ and AsH3 are stopped simultaneously again. Furthermore, DMZ (dimethylzinc) is used as a p-type dopant here.
Approximately 1. A p-type InP cladding layer is grown.
これらの一連のガス供給停止の操作は全てエアーバルブ
によって制御し、またすべてのエアーバルブはコンピュ
ータによって瞬時に切り替えることによってガス供給の
タイミングを0.1秒以下に制御している。このため得
られた結晶のへテロ急峻性は極めて良好で半導体レーザ
に用いるダブルへテロ構造としては十分であることが5
INSの分析の結果明らかとなった。またMOGaCQ
を用いて成長したI nGaAsP活性層の結晶性もX
線回折及びホトルミネッセンス測定の結果、 Ga金属
とMCI2ガスを用いた通常のハイドライド気相成長方
法によって成長したI nGaAsP層に遜色がないこ
とが明らかとなった。These series of gas supply stop operations are all controlled by air valves, and all air valves are instantaneously switched by a computer to control the gas supply timing to 0.1 seconds or less. Therefore, the heterosteepness of the obtained crystal is extremely good and is sufficient for a double heterostructure used in a semiconductor laser5.
This was revealed as a result of INS analysis. Also MOGaCQ
The crystallinity of the InGaAsP active layer grown using
As a result of line diffraction and photoluminescence measurements, it was revealed that the InGaAsP layer was comparable to the InGaAsP layer grown by the usual hydride vapor phase growth method using Ga metal and MCI2 gas.
また本気相成長装置は成長室によれば、−室のため、多
成長室法ハイドライド気相成長装置に比べて構造が極め
て簡単となり、また基板移動機構も必要ない。Furthermore, since the serious vapor phase growth apparatus has a negative growth chamber, the structure is extremely simple compared to a multi-growth chamber method hydride vapor phase growth apparatus, and there is no need for a substrate moving mechanism.
以上述べたように本発明の■−■族化合物半導体の気相
成長方法によれば1通常のハイドライド気相成長方法に
比べ本質的にバルブ装置のみによって極めて急峻なヘテ
ロ界面を形成することが可能となり、また成長室を複数
構成することによってヘテロ急峻性を向上させる必要が
なく1本発明による成長装置はその構造が極めて簡単に
なる。As described above, according to the method of vapor phase growth of a ■-■ group compound semiconductor of the present invention, it is possible to form an extremely steep hetero interface essentially using only a valve device, compared to the conventional hydride vapor phase growth method. In addition, there is no need to improve the hetero-steepness by configuring a plurality of growth chambers, and the structure of the growth apparatus according to the present invention is extremely simple.
第1図は本発明の実施例に用いた気相成長装置の概略図
である。
】l・・・反応管 12・・・Inソース1
3・・・InP基板 14・・・MOGaC
Q用バイパス管15・・・■族原料用バイパス管 16
・・・抵抗加熱炉17・・・ガス導入管
手続補正書(自発)
平成 年 1□I°−9日
特許庁長官 殿 億′1、事件の表
示 昭和63年 特許類 第143001号2、発
明の名称
III −V族化合物半導体の気相成長方法および気相
成長装置3、補正をする者
事件との関係 出願人
東京都港区芝五丁目33番1号
(423) 日本電気株式会社
代表者 関本忠弘
4、代理人
(連絡先 日本電気株式会社特許部)
5、補正の対象
明細書の特許請求の範囲の欄
明細書の発明の詳細な説明の欄
明細書の図面の簡単な説明の欄
図面
6、補正の内容
(1)明細書の特許請求の範囲を別紙のとおり補正する
。
(2)明細書第2頁第11行目から第12行目にかけて
および第5頁第10行目に[モノクロライド]とあるの
を「クロライド」と補正する。
(3)明細書第4頁第17行目にr MOGaCI J
とあるのを削除する。
(4)明細書第5頁第6行目、第14行目、第6頁第5
行目、第14行目、第15行目、第20行目、第7頁第
9行目、第14行目、第8頁第2行目、第5行目、第1
6行目、第9頁第18行目にr MOGaCIとあるの
を[有機ガリウムクロライド]と補正する。
(5)明細書第5頁第14行目に「高音」とあるのを「
高温」と補正する。
(6)本願添付図面第1図を別紙のように補正する。FIG. 1 is a schematic diagram of a vapor phase growth apparatus used in an example of the present invention. ]l...Reaction tube 12...In source 1
3...InP substrate 14...MOGaC
Bypass pipe for Q 15... Bypass pipe for group ■ raw materials 16
...Resistance heating furnace 17... Gas inlet pipe procedural amendment (voluntary) 1□I°-9, 1998 Director General of the Patent Office Bill '1, Indication of the case 1988 Patent No. 1430012, Invention Name III - Vapor-phase growth method and vapor-phase growth apparatus 3 for group V compound semiconductors, relationship to the case of the person making the amendment Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) Representative of NEC Corporation Tadahiro Sekimoto 4, Agent (contact address: NEC Corporation Patent Department) 5. Claims column of the specification to be amended Detailed explanation of the invention in the specification column Brief explanation of drawings in the specification column Drawing 6, Contents of amendment (1) The claims of the specification are amended as shown in the attached sheet. (2) The words "monochloride" in lines 11 to 12 of page 2 and in line 10 of page 5 of the specification are corrected to "chloride." (3) r MOGaCI J on page 4, line 17 of the specification
Delete that. (4) Specification page 5, line 6, line 14, page 6, line 5
Line, 14th line, 15th line, 20th line, 7th page, 9th line, 14th line, 8th page, 2nd line, 5th line, 1st
In line 6, page 9, line 18, r MOGaCI is corrected to [organic gallium chloride]. (5) On page 5, line 14 of the specification, the word “treble” should be replaced with “
"High temperature" is corrected. (6) Figure 1 of the drawings attached to this application is amended as shown in the attached sheet.
Claims (2)
原料としてV族元素の水素化物を用いるIII−V族化合
物半導体の気相成長方法において、III族原料としてI
nClと有機ガリウムクロライドMOGaClとの2種
類のガスを同時に供給し、3元又は3元以上の混晶を成
長させることを特徴とするIII−V族化合物半導体の気
相成長方法。(1) In the vapor phase growth method of a III-V compound semiconductor using a chloride of a group III element as a group III raw material and a hydride of a group V element as a group V raw material, I
A method for vapor phase growth of a III-V compound semiconductor, characterized by simultaneously supplying two types of gases, nCl and organic gallium chloride MOGaCl, to grow a ternary or more ternary mixed crystal.
域とを反応管内に有し、該反応管に、前記ソース領域に
供給してInをInClとして成長領域に輸送するHC
lガスの導入管と前記ソース領域を越えて直接成長領域
にV族原料ガス及びMOGaClガスをそれぞれ別個に
供給するバイパス管とを装備したことを特徴とするIII
−V族化合物半導体の気相成長装置。(2) A source region containing In as a source and a growth region of the substrate are provided in a reaction tube, and HC is supplied to the source region and transports In as InCl to the growth region.
III, characterized in that it is equipped with an inlet pipe for l gas and a bypass pipe for separately supplying group V source gas and MOGaCl gas directly to the growth region beyond the source region.
-Vapor phase growth apparatus for V group compound semiconductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14300188A JPH01313396A (en) | 1988-06-09 | 1988-06-09 | Method and device for growing iii-v compound semiconductor in vapor phase |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14300188A JPH01313396A (en) | 1988-06-09 | 1988-06-09 | Method and device for growing iii-v compound semiconductor in vapor phase |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01313396A true JPH01313396A (en) | 1989-12-18 |
Family
ID=15328638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14300188A Pending JPH01313396A (en) | 1988-06-09 | 1988-06-09 | Method and device for growing iii-v compound semiconductor in vapor phase |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01313396A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306660A (en) * | 1991-02-19 | 1994-04-26 | Rockwell International Corporation | Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor |
-
1988
- 1988-06-09 JP JP14300188A patent/JPH01313396A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5306660A (en) * | 1991-02-19 | 1994-04-26 | Rockwell International Corporation | Technique for doping mercury cadmium telluride MOCVD grown crystalline materials using free radical transport of elemental indium and apparatus therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0620046B2 (en) | (III)-(V) Group compound semiconductor atomic layer epitaxial growth method | |
JPS6291495A (en) | Vapor growth method for thin semiconductor film | |
JPH04132681A (en) | Device for epitaxial growth of compound semiconductor | |
JPS634625A (en) | Low temperature chemical evaporation of metal organic material of group ii-vi | |
JPH01313396A (en) | Method and device for growing iii-v compound semiconductor in vapor phase | |
JPS59188118A (en) | Manufacture of vapor phase epitaxial crystal | |
JPH02230720A (en) | Vapor growth method and apparatus for compound semiconductor | |
JP2714824B2 (en) | Molecular beam epitaxial growth method and apparatus for implementing the method | |
JPS6385098A (en) | Vapor growth method for iii-v compound semiconductor | |
JPS62235300A (en) | Method for growing iii-v compound semiconductor in vapor phase | |
JP3101753B2 (en) | Vapor growth method | |
JPH01262618A (en) | Method and system for vapor growth of iii-v semiconductor | |
JPH11214316A (en) | Semiconductor manufacturing method | |
JPS58184721A (en) | Vapor phase epitaxial growth of p type 3-5 family compound semiconductor | |
JPS6386422A (en) | Vapor growth method for iii-v compound semiconductor | |
JP2982332B2 (en) | Vapor growth method | |
JPS5829615B2 (en) | How to get the job done right | |
Flemish et al. | Altering the Composition of InGaAsP Grown by the Hydride Technique by Introducing HCl Downstream | |
JPH03119721A (en) | Crystal growth | |
JPH0228314A (en) | Vapor phase growth method of high resistance AlGaAs mixed crystal | |
JPS62191499A (en) | Vapor growth method | |
JPS63316426A (en) | Compound semiconductor vapor phase growth equipment | |
JPS62139319A (en) | Compound semiconductor crystal growth method | |
JPH06172084A (en) | Method for epitaxial growth of compound semiconductor and apparatus therefor | |
Takahashi et al. | Vapor-solid distribution in In1− xGaxAs and In1− xGaxP alloys grown by atomic layer epitaxy |