[go: up one dir, main page]

JPH01312055A - Wear-resistant coating material - Google Patents

Wear-resistant coating material

Info

Publication number
JPH01312055A
JPH01312055A JP14551188A JP14551188A JPH01312055A JP H01312055 A JPH01312055 A JP H01312055A JP 14551188 A JP14551188 A JP 14551188A JP 14551188 A JP14551188 A JP 14551188A JP H01312055 A JPH01312055 A JP H01312055A
Authority
JP
Japan
Prior art keywords
wear
base
coating material
resistant coating
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14551188A
Other languages
Japanese (ja)
Inventor
Mikiyoshi Miyauchi
宮内 幹由
Haruhide Yagihashi
八木橋 春英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP14551188A priority Critical patent/JPH01312055A/en
Publication of JPH01312055A publication Critical patent/JPH01312055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a wear-resistant coating material excellent in wear resistance, capable of joining to inexpensive base materials, and free from cracking by specifying the ratio of CrB content to the content of Ni-base or Fe-base self-fluxing alloy. CONSTITUTION:This wear-resistant coating material has a composition consisting of 30-70vol.% CrB and the balance Ni-base and/or Fe-base self-fluxing alloy and also has wear resistance equal to that of WC-Ni-base sintered hard alloy. Further, the above coating material can be joined firmly to inexpensive base materials, such as carbon steel. Moreover, since this material has relatively high linear expansion coefficient of about 12.1X10<-6>/ deg.C, it is practically free from cracking due to thermal stress even if applied to mase materials with complicated shapes.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は機械部材に使用する耐摩耗性被覆材料に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to wear-resistant coating materials for use on mechanical parts.

〔従来技術とその課題〕[Conventional technology and its issues]

従来、被覆層の形成には、耐摩耗性材料の溶射を行なう
方法または耐摩耗性金属粉末とセラミツクスのスラ’J
−(r交互に積層して、その後焼結する方法等の数多く
の試みがなされてきたがいずれも性能的または製造上の
問題がありいまだ十分と言えるものはなかった。本願発
明者は、先に特願昭61.−196362号で炭化物ま
たは硼化物の粉末と有機バインダを混練して母材に被覆
し、同被覆層を機械加工した後、焼結炉内で被覆層中の
有機バインダを加熱して除去すると共に溶融した金属バ
インダを被覆層に浸透させかつ母材と接合させる耐摩耗
性材料の被覆方法を提案した。
Conventionally, the coating layer has been formed by thermal spraying a wear-resistant material or by using a slurry of wear-resistant metal powder and ceramics.
-(r) Many attempts have been made, such as a method of alternately laminating layers and then sintering, but all of them have had performance or manufacturing problems, and none of them can be said to be sufficient. In Japanese Patent Application No. 196362, carbide or boride powder and an organic binder are kneaded and coated on a base material, and after machining the coated layer, the organic binder in the coated layer is removed in a sintering furnace. A method for coating wear-resistant materials was proposed in which the metal binder was removed by heating and the molten metal binder was infiltrated into the coating layer and bonded to the base material.

ところでこの被覆層には炭化物としてWC1金属バイン
ダとしてN1を主として用いたが、WC−Ni基合金で
ある被覆層はWC粒子の線膨張率が6.2X10/℃と
小さい為、被覆層全体の線膨張率が8〜9X10 7℃
と小さかった。このため母材も線膨張率が小さい5US
420J2や高速工具鋼にしか直接被覆させることがで
きなかった。
By the way, in this coating layer, WC as a carbide and N1 as a metal binder were mainly used, but since the linear expansion coefficient of WC particles in the coating layer, which is a WC-Ni-based alloy, is as small as 6.2X10/℃, the linear expansion of the entire coating layer is Expansion rate is 8~9X107℃
It was small. Therefore, the base material is also made of 5US, which has a small coefficient of linear expansion.
It was only possible to directly coat 420J2 and high-speed tool steel.

また複雑な形状には、熱応力により被覆層に割れが発生
しやすかった。このため安価な母材(例:炭素鋼二線膨
張率12〜1.3X10 7℃)に被覆するさいは、被
覆層中のWC量を少な(して、線膨張率を調整する必要
があった。この結果、耐摩耗性が低下し十分な性能を得
られなかった。
Additionally, complex shapes tend to cause cracks in the coating layer due to thermal stress. Therefore, when coating an inexpensive base material (for example, carbon steel with a linear expansion coefficient of 12 to 1.3 x 107°C), it is necessary to adjust the linear expansion coefficient by reducing the amount of WC in the coating layer. As a result, wear resistance decreased and sufficient performance could not be obtained.

〔発明の目的〕[Purpose of the invention]

本発明は、耐摩耗性被覆材料が従来の耐摩耗性材料であ
る超硬、WC−Ni基合金と同程度の耐摩耗性を有し、
かつ安価な母材(炭素鋼等)に強固に接合でき、又複雑
彦形状にも割れが発生しにくい耐摩耗性被覆材料を得る
In the present invention, the wear-resistant coating material has wear resistance comparable to that of conventional wear-resistant materials such as cemented carbide and WC-Ni-based alloys,
To obtain a wear-resistant coating material that can be firmly bonded to an inexpensive base material (carbon steel, etc.) and that is resistant to cracking even in complex shapes.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はホウ化クロムを有機バインダと混練して母材に
被覆し、同被覆層を機械加工後、焼結炉内で有機バイン
ダを加熱して除去すると共に溶融した金属バインダをホ
ウ化クロム層に浸透させかつ母材と接合せしめる。
In the present invention, chromium boride is kneaded with an organic binder to coat the base material, and after machining the coating layer, the organic binder is heated and removed in a sintering furnace, and the molten metal binder is added to the chromium boride layer. and bond to the base material.

〔実施例〕〔Example〕

以下、実施例について説明する。 Examples will be described below.

本発明では有機バインダとしてアクリル系樹脂を、有機
溶剤としてメチル・エチル・ケトンを金属バインダとし
てNi基自溶性合金粒子を使用した。平均粒径50μm
以下のホウ化クロム粒子を100重量部とし、アクリル
系樹脂’k O,5重量部、メチ・し・エチル・ケトン
を10重量部の混合比としてスラリーを作る。
In the present invention, an acrylic resin was used as an organic binder, methyl ethyl ketone was used as an organic solvent, and Ni-based self-soluble alloy particles were used as a metal binder. Average particle size 50μm
A slurry was prepared by mixing 100 parts by weight of the following chromium boride particles, 5 parts by weight of acrylic resin 'kO, and 10 parts by weight of methi-ethyl-ketone.

本実施例に使用するプラスチック加工機のスクリュー材
料ばSCM435で、スクリューは予じめ仕上り寸法よ
りもマイナス側の寸法に加工しておく。次に先に混練し
たスラリ全スプレー装置を用いてスクリュー表面に被覆
する。この被覆された成形体を旋盤によシ被覆層の厚さ
が約1mmに旋削する。
The screw material of the plastic processing machine used in this example is SCM435, and the screw is processed in advance to a dimension on the negative side of the finished dimension. The previously kneaded slurry is then coated onto the screw surface using a full spray device. This coated molded body is turned on a lathe until the thickness of the coating layer is about 1 mm.

次にマトリックス成分としてNi基自溶性合金粒子(成
分B : 2.30.、Si : 4.50、Fe :
 <1.0゜C: 0.15、Bal:Ni、その他帆
5%)ヲルッポ内に入れ、同ルツボ内にスクリューを直
立した姿勢で保持し、焼結炉内に収納し、焼結処理を行
なう。焼結条件は、真空度1×10〜I X 1O−1
torr、焼結温度0〜400℃(50℃/■1)、4
00〜1100℃(5”C/min )、1100℃(
30分保持)→炉冷とした。
Next, Ni-based self-fusing alloy particles (component B: 2.30, Si: 4.50, Fe:
<1.0°C: 0.15, Bal: Ni, 5% of other materials) Place it in the crucible, hold the screw in an upright position in the same crucible, store it in the sintering furnace, and perform the sintering process. Let's do it. The sintering conditions are a vacuum degree of 1×10 to I×1O−1.
torr, sintering temperature 0-400℃ (50℃/■1), 4
00~1100℃(5"C/min), 1100℃(
Hold for 30 minutes) → Furnace cooling.

被覆後、この方法によりホウ化クロム粒子がスクリュー
表面にアクリル系樹脂を介して固着するが、昇温中にア
クリル系樹脂が蒸発分解するとホウ化クロム粒子の付着
力のみでスクリュー表面に固着する。焼結中ICNiC
Ni基台溶性合金層に浸透して耐摩耗性材料全形成し、
かつ母材と拡散接合する。耐摩耗性材料の線膨張率は1
.2.I X 10−6/℃で、SCM435ば12.
7 X 10 7℃である。
After coating, the chromium boride particles are fixed to the screw surface via the acrylic resin by this method, but when the acrylic resin evaporates and decomposes during temperature rise, the chromium boride particles are fixed to the screw surface only by the adhesive force of the chromium boride particles. ICNiC during sintering
Penetrates into the Ni-based soluble alloy layer to form a wear-resistant material,
and diffusion bonded to the base material. The coefficient of linear expansion of wear-resistant material is 1
.. 2. At I x 10-6/°C, SCM435 12.
The temperature is 7×107°C.

このため線膨張の差異による熱応力は少なく、スクリュ
ー表面に亀裂が発生せず良好な被覆層が得られた。また
この方法によるとホウ化クロム容積率は45%であった
。被覆層の硬度ばT−TV 700〜1000の範囲に
分布し、母材の硬度はHRCIOであった。
Therefore, there was little thermal stress due to the difference in linear expansion, and a good coating layer was obtained without cracks occurring on the screw surface. According to this method, the volume fraction of chromium boride was 45%. The hardness of the coating layer was distributed in the range of T-TV 700 to 1000, and the hardness of the base material was HRCIO.

第1図は上記方法で処置したスクリュ表面の金属組織の
顕微鏡写真を示す。]はスクIJ x−母材で、母材1
上に耐摩耗性被覆層2が良好に接合している。
FIG. 1 shows a microscopic photograph of the metallographic structure of the screw surface treated by the above method. ] is the square IJ x-base metal, and the base metal 1
A wear-resistant coating layer 2 is well bonded thereon.

第2図は比摩耗量と摩擦速度の関係を示し、従来からあ
るWC−Ni基合金と比較しても同等の結果を示してい
る。
FIG. 2 shows the relationship between specific wear amount and friction speed, and shows comparable results when compared with conventional WC-Ni-based alloys.

摩耗試験は大越式摩耗試験機により相手材5KI)11
、焼入れ硬度HR,c58e用いて、最終荷重18.9
Kp、摩擦距離600mの条件におけるものである。
The wear test was performed using the Okoshi type abrasion tester on the mating material 5KI) 11
, using quenched hardness HR, c58e, final load 18.9
This is under the conditions of Kp and friction distance of 600 m.

また第3図は摩擦速度帆3 m / secにおける比
摩耗量とホウ化クロム容積率の関係を示す。これによる
とホウ化クロム容積率が30%以上で良好な結果が得ら
れた。またホウ化クロム容積率の最大は70%である。
Further, FIG. 3 shows the relationship between the specific wear amount and the volume fraction of chromium boride at a friction speed of 3 m/sec. According to this, good results were obtained when the volume fraction of chromium boride was 30% or more. Further, the maximum volume fraction of chromium boride is 70%.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明による耐摩耗性被覆材料の
線膨張率は11〜13X]O/1:であるため、安価な
構造用鋼の表面に、超硬・WC−Ni基合金と同等の耐
摩耗性を有する被覆層を結合することができる。又熱応
力が少ないため、複雑な形状にも被覆が可能となる。
As detailed above, since the coefficient of linear expansion of the wear-resistant coating material according to the present invention is 11 to 13 Coating layers with equivalent abrasion resistance can be combined. Furthermore, since there is little thermal stress, it is possible to coat even complex shapes.

【図面の簡単な説明】 第1図はスクリュ表面の金属組織の顕微鏡写真(50倍
)、第2図は実施例および従来からあるWC−Ni基合
金の比摩耗量−摩擦速度の関係を示す図、第3図は実施
例の比摩耗量−ホウ化クロム容積率の関係を示す図であ
る。 1:スクリュー材料
[Brief explanation of the drawings] Figure 1 shows a micrograph (50x magnification) of the metallographic structure of the screw surface, and Figure 2 shows the relationship between specific wear amount and friction speed of the example and conventional WC-Ni-based alloys. FIG. 3 is a diagram showing the relationship between the specific wear amount and the volume ratio of chromium boride in Examples. 1: Screw material

Claims (1)

【特許請求の範囲】[Claims] ホウ化クロムの容積率が30〜70%、残部がNi基、
Fe基自溶性合金のうち少なくとも1種類以上からなる
耐摩耗性被覆材料。
The volume ratio of chromium boride is 30 to 70%, the remainder is Ni group,
A wear-resistant coating material comprising at least one type of Fe-based self-fusing alloy.
JP14551188A 1988-06-13 1988-06-13 Wear-resistant coating material Pending JPH01312055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14551188A JPH01312055A (en) 1988-06-13 1988-06-13 Wear-resistant coating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14551188A JPH01312055A (en) 1988-06-13 1988-06-13 Wear-resistant coating material

Publications (1)

Publication Number Publication Date
JPH01312055A true JPH01312055A (en) 1989-12-15

Family

ID=15386936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14551188A Pending JPH01312055A (en) 1988-06-13 1988-06-13 Wear-resistant coating material

Country Status (1)

Country Link
JP (1) JPH01312055A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131281A (en) * 2013-08-01 2014-11-05 天津大学 Simple iron-based laser cladding powder and preparation method for cladding layer
CN109622973A (en) * 2018-11-22 2019-04-16 淮北市菲美得环保科技有限公司 A kind of preparation process of wearability stainless steel alloy coating
CN110106429A (en) * 2019-06-06 2019-08-09 绵阳科奥表面涂层技术有限公司 A kind of graphene wear-resistant material preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810458A (en) * 1981-07-02 1983-01-21 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Method of film-coating base body
JPS5943543A (en) * 1982-09-06 1984-03-10 Hitachi Ltd Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810458A (en) * 1981-07-02 1983-01-21 アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ Method of film-coating base body
JPS5943543A (en) * 1982-09-06 1984-03-10 Hitachi Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131281A (en) * 2013-08-01 2014-11-05 天津大学 Simple iron-based laser cladding powder and preparation method for cladding layer
CN105603418A (en) * 2013-08-01 2016-05-25 天津大学 Method for improving microhardness of 42CrMo steel in laser cladding through fusion cladding powder
CN109622973A (en) * 2018-11-22 2019-04-16 淮北市菲美得环保科技有限公司 A kind of preparation process of wearability stainless steel alloy coating
CN110106429A (en) * 2019-06-06 2019-08-09 绵阳科奥表面涂层技术有限公司 A kind of graphene wear-resistant material preparation method

Similar Documents

Publication Publication Date Title
US4228214A (en) Flexible bilayered sheet, one layer of which contains abrasive particles in a volatilizable organic binder and the other layer of which contains alloy particles in a volatilizable binder, method for producing same and coating produced by heating same
US5236116A (en) Hardfaced article and process to provide porosity free hardfaced coating
US6123797A (en) Method for coating a non-wetting fluidizable and material onto a substrate
US8186565B1 (en) Method of bonding aluminum-boron-carbon composites
JPH04241938A (en) Composite item and manufacture thereof
EP1304185A4 (en) POROUS METAL ARTICLES, METAL COMPOSITE MATERIAL USE THEREOF AND METHOD FOR THE PRODUCTION THEREOF
DK152179B (en) CASTED ALUMINUM SUBSTANCE WITH INSTALLED PART OF AN AUSTENITIC PRE-ALOY.
JPH05318085A (en) Method for incorporating hard wear resisting surface layer in metal article and article produced by said method
JP2001505825A (en) Method for controlling the penetration of complex shaped ceramic-metal composite products and products made thereby
US4851267A (en) Method of forming wear-resistant material
JPH0756077B2 (en) Highly loadable coated structural member consisting of titanium-aluminide intermetallic phase
JPH08268799A (en) Preparation of tool insert brazable in air and insert prepared thereby
JP2988281B2 (en) Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating
JPH0249361B2 (en)
JPH01312055A (en) Wear-resistant coating material
CN108588628B (en) High-speed die cutting tool surface gradient coating and preparation process thereof
JPH0196084A (en) Surface-coated cubic boron nitride-based ultra-high pressure sintered material for cutting tools
CZ2007356A3 (en) Process for producing sputter targets
CA2358624A1 (en) Sprayable composition
US20130260172A1 (en) Coated titanium alloy surfaces
US3288623A (en) Method of flame spraying graphite to produce a low friction surface
US4306907A (en) Age hardened beryllium alloy and cermets
JPH1112758A (en) Cermet sintered body coated metal part and method of manufacturing the same
JP3438028B2 (en) Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same
JP4334812B2 (en) Corrosion-resistant wear-resistant member and manufacturing method thereof