JPH01312055A - Wear-resistant coating material - Google Patents
Wear-resistant coating materialInfo
- Publication number
- JPH01312055A JPH01312055A JP14551188A JP14551188A JPH01312055A JP H01312055 A JPH01312055 A JP H01312055A JP 14551188 A JP14551188 A JP 14551188A JP 14551188 A JP14551188 A JP 14551188A JP H01312055 A JPH01312055 A JP H01312055A
- Authority
- JP
- Japan
- Prior art keywords
- wear
- base
- coating material
- resistant coating
- materials
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000463 material Substances 0.000 title claims abstract description 31
- 239000011248 coating agent Substances 0.000 title claims abstract description 12
- 238000000576 coating method Methods 0.000 title claims abstract description 12
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 11
- 239000000956 alloy Substances 0.000 claims abstract description 11
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 12
- 229910052804 chromium Inorganic materials 0.000 claims description 12
- 239000011651 chromium Substances 0.000 claims description 12
- 230000008646 thermal stress Effects 0.000 abstract description 4
- 229910000975 Carbon steel Inorganic materials 0.000 abstract description 3
- 239000010962 carbon steel Substances 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract 1
- 239000011247 coating layer Substances 0.000 description 13
- 239000011230 binding agent Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 8
- 238000005245 sintering Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000010410 layer Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は機械部材に使用する耐摩耗性被覆材料に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to wear-resistant coating materials for use on mechanical parts.
従来、被覆層の形成には、耐摩耗性材料の溶射を行なう
方法または耐摩耗性金属粉末とセラミツクスのスラ’J
−(r交互に積層して、その後焼結する方法等の数多く
の試みがなされてきたがいずれも性能的または製造上の
問題がありいまだ十分と言えるものはなかった。本願発
明者は、先に特願昭61.−196362号で炭化物ま
たは硼化物の粉末と有機バインダを混練して母材に被覆
し、同被覆層を機械加工した後、焼結炉内で被覆層中の
有機バインダを加熱して除去すると共に溶融した金属バ
インダを被覆層に浸透させかつ母材と接合させる耐摩耗
性材料の被覆方法を提案した。Conventionally, the coating layer has been formed by thermal spraying a wear-resistant material or by using a slurry of wear-resistant metal powder and ceramics.
-(r) Many attempts have been made, such as a method of alternately laminating layers and then sintering, but all of them have had performance or manufacturing problems, and none of them can be said to be sufficient. In Japanese Patent Application No. 196362, carbide or boride powder and an organic binder are kneaded and coated on a base material, and after machining the coated layer, the organic binder in the coated layer is removed in a sintering furnace. A method for coating wear-resistant materials was proposed in which the metal binder was removed by heating and the molten metal binder was infiltrated into the coating layer and bonded to the base material.
ところでこの被覆層には炭化物としてWC1金属バイン
ダとしてN1を主として用いたが、WC−Ni基合金で
ある被覆層はWC粒子の線膨張率が6.2X10/℃と
小さい為、被覆層全体の線膨張率が8〜9X10 7℃
と小さかった。このため母材も線膨張率が小さい5US
420J2や高速工具鋼にしか直接被覆させることがで
きなかった。By the way, in this coating layer, WC as a carbide and N1 as a metal binder were mainly used, but since the linear expansion coefficient of WC particles in the coating layer, which is a WC-Ni-based alloy, is as small as 6.2X10/℃, the linear expansion of the entire coating layer is Expansion rate is 8~9X107℃
It was small. Therefore, the base material is also made of 5US, which has a small coefficient of linear expansion.
It was only possible to directly coat 420J2 and high-speed tool steel.
また複雑な形状には、熱応力により被覆層に割れが発生
しやすかった。このため安価な母材(例:炭素鋼二線膨
張率12〜1.3X10 7℃)に被覆するさいは、被
覆層中のWC量を少な(して、線膨張率を調整する必要
があった。この結果、耐摩耗性が低下し十分な性能を得
られなかった。Additionally, complex shapes tend to cause cracks in the coating layer due to thermal stress. Therefore, when coating an inexpensive base material (for example, carbon steel with a linear expansion coefficient of 12 to 1.3 x 107°C), it is necessary to adjust the linear expansion coefficient by reducing the amount of WC in the coating layer. As a result, wear resistance decreased and sufficient performance could not be obtained.
本発明は、耐摩耗性被覆材料が従来の耐摩耗性材料であ
る超硬、WC−Ni基合金と同程度の耐摩耗性を有し、
かつ安価な母材(炭素鋼等)に強固に接合でき、又複雑
彦形状にも割れが発生しにくい耐摩耗性被覆材料を得る
。In the present invention, the wear-resistant coating material has wear resistance comparable to that of conventional wear-resistant materials such as cemented carbide and WC-Ni-based alloys,
To obtain a wear-resistant coating material that can be firmly bonded to an inexpensive base material (carbon steel, etc.) and that is resistant to cracking even in complex shapes.
本発明はホウ化クロムを有機バインダと混練して母材に
被覆し、同被覆層を機械加工後、焼結炉内で有機バイン
ダを加熱して除去すると共に溶融した金属バインダをホ
ウ化クロム層に浸透させかつ母材と接合せしめる。In the present invention, chromium boride is kneaded with an organic binder to coat the base material, and after machining the coating layer, the organic binder is heated and removed in a sintering furnace, and the molten metal binder is added to the chromium boride layer. and bond to the base material.
以下、実施例について説明する。 Examples will be described below.
本発明では有機バインダとしてアクリル系樹脂を、有機
溶剤としてメチル・エチル・ケトンを金属バインダとし
てNi基自溶性合金粒子を使用した。平均粒径50μm
以下のホウ化クロム粒子を100重量部とし、アクリル
系樹脂’k O,5重量部、メチ・し・エチル・ケトン
を10重量部の混合比としてスラリーを作る。In the present invention, an acrylic resin was used as an organic binder, methyl ethyl ketone was used as an organic solvent, and Ni-based self-soluble alloy particles were used as a metal binder. Average particle size 50μm
A slurry was prepared by mixing 100 parts by weight of the following chromium boride particles, 5 parts by weight of acrylic resin 'kO, and 10 parts by weight of methi-ethyl-ketone.
本実施例に使用するプラスチック加工機のスクリュー材
料ばSCM435で、スクリューは予じめ仕上り寸法よ
りもマイナス側の寸法に加工しておく。次に先に混練し
たスラリ全スプレー装置を用いてスクリュー表面に被覆
する。この被覆された成形体を旋盤によシ被覆層の厚さ
が約1mmに旋削する。The screw material of the plastic processing machine used in this example is SCM435, and the screw is processed in advance to a dimension on the negative side of the finished dimension. The previously kneaded slurry is then coated onto the screw surface using a full spray device. This coated molded body is turned on a lathe until the thickness of the coating layer is about 1 mm.
次にマトリックス成分としてNi基自溶性合金粒子(成
分B : 2.30.、Si : 4.50、Fe :
<1.0゜C: 0.15、Bal:Ni、その他帆
5%)ヲルッポ内に入れ、同ルツボ内にスクリューを直
立した姿勢で保持し、焼結炉内に収納し、焼結処理を行
なう。焼結条件は、真空度1×10〜I X 1O−1
torr、焼結温度0〜400℃(50℃/■1)、4
00〜1100℃(5”C/min )、1100℃(
30分保持)→炉冷とした。Next, Ni-based self-fusing alloy particles (component B: 2.30, Si: 4.50, Fe:
<1.0°C: 0.15, Bal: Ni, 5% of other materials) Place it in the crucible, hold the screw in an upright position in the same crucible, store it in the sintering furnace, and perform the sintering process. Let's do it. The sintering conditions are a vacuum degree of 1×10 to I×1O−1.
torr, sintering temperature 0-400℃ (50℃/■1), 4
00~1100℃(5"C/min), 1100℃(
Hold for 30 minutes) → Furnace cooling.
被覆後、この方法によりホウ化クロム粒子がスクリュー
表面にアクリル系樹脂を介して固着するが、昇温中にア
クリル系樹脂が蒸発分解するとホウ化クロム粒子の付着
力のみでスクリュー表面に固着する。焼結中ICNiC
Ni基台溶性合金層に浸透して耐摩耗性材料全形成し、
かつ母材と拡散接合する。耐摩耗性材料の線膨張率は1
.2.I X 10−6/℃で、SCM435ば12.
7 X 10 7℃である。After coating, the chromium boride particles are fixed to the screw surface via the acrylic resin by this method, but when the acrylic resin evaporates and decomposes during temperature rise, the chromium boride particles are fixed to the screw surface only by the adhesive force of the chromium boride particles. ICNiC during sintering
Penetrates into the Ni-based soluble alloy layer to form a wear-resistant material,
and diffusion bonded to the base material. The coefficient of linear expansion of wear-resistant material is 1
.. 2. At I x 10-6/°C, SCM435 12.
The temperature is 7×107°C.
このため線膨張の差異による熱応力は少なく、スクリュ
ー表面に亀裂が発生せず良好な被覆層が得られた。また
この方法によるとホウ化クロム容積率は45%であった
。被覆層の硬度ばT−TV 700〜1000の範囲に
分布し、母材の硬度はHRCIOであった。Therefore, there was little thermal stress due to the difference in linear expansion, and a good coating layer was obtained without cracks occurring on the screw surface. According to this method, the volume fraction of chromium boride was 45%. The hardness of the coating layer was distributed in the range of T-TV 700 to 1000, and the hardness of the base material was HRCIO.
第1図は上記方法で処置したスクリュ表面の金属組織の
顕微鏡写真を示す。]はスクIJ x−母材で、母材1
上に耐摩耗性被覆層2が良好に接合している。FIG. 1 shows a microscopic photograph of the metallographic structure of the screw surface treated by the above method. ] is the square IJ x-base metal, and the base metal 1
A wear-resistant coating layer 2 is well bonded thereon.
第2図は比摩耗量と摩擦速度の関係を示し、従来からあ
るWC−Ni基合金と比較しても同等の結果を示してい
る。FIG. 2 shows the relationship between specific wear amount and friction speed, and shows comparable results when compared with conventional WC-Ni-based alloys.
摩耗試験は大越式摩耗試験機により相手材5KI)11
、焼入れ硬度HR,c58e用いて、最終荷重18.9
Kp、摩擦距離600mの条件におけるものである。The wear test was performed using the Okoshi type abrasion tester on the mating material 5KI) 11
, using quenched hardness HR, c58e, final load 18.9
This is under the conditions of Kp and friction distance of 600 m.
また第3図は摩擦速度帆3 m / secにおける比
摩耗量とホウ化クロム容積率の関係を示す。これによる
とホウ化クロム容積率が30%以上で良好な結果が得ら
れた。またホウ化クロム容積率の最大は70%である。Further, FIG. 3 shows the relationship between the specific wear amount and the volume fraction of chromium boride at a friction speed of 3 m/sec. According to this, good results were obtained when the volume fraction of chromium boride was 30% or more. Further, the maximum volume fraction of chromium boride is 70%.
以上詳述したように、本発明による耐摩耗性被覆材料の
線膨張率は11〜13X]O/1:であるため、安価な
構造用鋼の表面に、超硬・WC−Ni基合金と同等の耐
摩耗性を有する被覆層を結合することができる。又熱応
力が少ないため、複雑な形状にも被覆が可能となる。As detailed above, since the coefficient of linear expansion of the wear-resistant coating material according to the present invention is 11 to 13 Coating layers with equivalent abrasion resistance can be combined. Furthermore, since there is little thermal stress, it is possible to coat even complex shapes.
【図面の簡単な説明】
第1図はスクリュ表面の金属組織の顕微鏡写真(50倍
)、第2図は実施例および従来からあるWC−Ni基合
金の比摩耗量−摩擦速度の関係を示す図、第3図は実施
例の比摩耗量−ホウ化クロム容積率の関係を示す図であ
る。
1:スクリュー材料[Brief explanation of the drawings] Figure 1 shows a micrograph (50x magnification) of the metallographic structure of the screw surface, and Figure 2 shows the relationship between specific wear amount and friction speed of the example and conventional WC-Ni-based alloys. FIG. 3 is a diagram showing the relationship between the specific wear amount and the volume ratio of chromium boride in Examples. 1: Screw material
Claims (1)
Fe基自溶性合金のうち少なくとも1種類以上からなる
耐摩耗性被覆材料。The volume ratio of chromium boride is 30 to 70%, the remainder is Ni group,
A wear-resistant coating material comprising at least one type of Fe-based self-fusing alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14551188A JPH01312055A (en) | 1988-06-13 | 1988-06-13 | Wear-resistant coating material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14551188A JPH01312055A (en) | 1988-06-13 | 1988-06-13 | Wear-resistant coating material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01312055A true JPH01312055A (en) | 1989-12-15 |
Family
ID=15386936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14551188A Pending JPH01312055A (en) | 1988-06-13 | 1988-06-13 | Wear-resistant coating material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01312055A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104131281A (en) * | 2013-08-01 | 2014-11-05 | 天津大学 | Simple iron-based laser cladding powder and preparation method for cladding layer |
CN109622973A (en) * | 2018-11-22 | 2019-04-16 | 淮北市菲美得环保科技有限公司 | A kind of preparation process of wearability stainless steel alloy coating |
CN110106429A (en) * | 2019-06-06 | 2019-08-09 | 绵阳科奥表面涂层技术有限公司 | A kind of graphene wear-resistant material preparation method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5810458A (en) * | 1981-07-02 | 1983-01-21 | アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ | Method of film-coating base body |
JPS5943543A (en) * | 1982-09-06 | 1984-03-10 | Hitachi Ltd | Semiconductor device |
-
1988
- 1988-06-13 JP JP14551188A patent/JPH01312055A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5810458A (en) * | 1981-07-02 | 1983-01-21 | アクゾ・ナ−ムロ−ゼ・フエンノ−トシヤツプ | Method of film-coating base body |
JPS5943543A (en) * | 1982-09-06 | 1984-03-10 | Hitachi Ltd | Semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104131281A (en) * | 2013-08-01 | 2014-11-05 | 天津大学 | Simple iron-based laser cladding powder and preparation method for cladding layer |
CN105603418A (en) * | 2013-08-01 | 2016-05-25 | 天津大学 | Method for improving microhardness of 42CrMo steel in laser cladding through fusion cladding powder |
CN109622973A (en) * | 2018-11-22 | 2019-04-16 | 淮北市菲美得环保科技有限公司 | A kind of preparation process of wearability stainless steel alloy coating |
CN110106429A (en) * | 2019-06-06 | 2019-08-09 | 绵阳科奥表面涂层技术有限公司 | A kind of graphene wear-resistant material preparation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4228214A (en) | Flexible bilayered sheet, one layer of which contains abrasive particles in a volatilizable organic binder and the other layer of which contains alloy particles in a volatilizable binder, method for producing same and coating produced by heating same | |
US5236116A (en) | Hardfaced article and process to provide porosity free hardfaced coating | |
US6123797A (en) | Method for coating a non-wetting fluidizable and material onto a substrate | |
US8186565B1 (en) | Method of bonding aluminum-boron-carbon composites | |
JPH04241938A (en) | Composite item and manufacture thereof | |
EP1304185A4 (en) | POROUS METAL ARTICLES, METAL COMPOSITE MATERIAL USE THEREOF AND METHOD FOR THE PRODUCTION THEREOF | |
DK152179B (en) | CASTED ALUMINUM SUBSTANCE WITH INSTALLED PART OF AN AUSTENITIC PRE-ALOY. | |
JPH05318085A (en) | Method for incorporating hard wear resisting surface layer in metal article and article produced by said method | |
JP2001505825A (en) | Method for controlling the penetration of complex shaped ceramic-metal composite products and products made thereby | |
US4851267A (en) | Method of forming wear-resistant material | |
JPH0756077B2 (en) | Highly loadable coated structural member consisting of titanium-aluminide intermetallic phase | |
JPH08268799A (en) | Preparation of tool insert brazable in air and insert prepared thereby | |
JP2988281B2 (en) | Ceramic / metal composite powder for thermal spraying and method for forming thermal spray coating | |
JPH0249361B2 (en) | ||
JPH01312055A (en) | Wear-resistant coating material | |
CN108588628B (en) | High-speed die cutting tool surface gradient coating and preparation process thereof | |
JPH0196084A (en) | Surface-coated cubic boron nitride-based ultra-high pressure sintered material for cutting tools | |
CZ2007356A3 (en) | Process for producing sputter targets | |
CA2358624A1 (en) | Sprayable composition | |
US20130260172A1 (en) | Coated titanium alloy surfaces | |
US3288623A (en) | Method of flame spraying graphite to produce a low friction surface | |
US4306907A (en) | Age hardened beryllium alloy and cermets | |
JPH1112758A (en) | Cermet sintered body coated metal part and method of manufacturing the same | |
JP3438028B2 (en) | Nb3Si5Al2-Al2O3 two-layer coated Nb-based alloy and method for producing the same | |
JP4334812B2 (en) | Corrosion-resistant wear-resistant member and manufacturing method thereof |