[go: up one dir, main page]

JPH01308162A - Linear actuator - Google Patents

Linear actuator

Info

Publication number
JPH01308162A
JPH01308162A JP13284388A JP13284388A JPH01308162A JP H01308162 A JPH01308162 A JP H01308162A JP 13284388 A JP13284388 A JP 13284388A JP 13284388 A JP13284388 A JP 13284388A JP H01308162 A JPH01308162 A JP H01308162A
Authority
JP
Japan
Prior art keywords
yoke
permanent magnet
coil
outer periphery
linear actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13284388A
Other languages
Japanese (ja)
Inventor
Naotaka Sasaki
直孝 佐々木
Kazuo Onishi
和夫 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Japan Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Servo Corp filed Critical Japan Servo Corp
Priority to JP13284388A priority Critical patent/JPH01308162A/en
Publication of JPH01308162A publication Critical patent/JPH01308162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electromagnets (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

PURPOSE:To make the ratio of thrust/weight of apparatus larger by providing a moving coil at the outer periphery of a permanent magnet with an annular external yoke. CONSTITUTION:In the central part of the top of a non-magnetic material yoke- supporting block 8, an axially N- and S-magnetized bar permanent magnet 9 as a center yoke is vertically held between internal yokes 10, 11. Also, a coil bobbin 4 is provided with two sets of coils 12-13 separated from each other axially and wound the same number of times in directions opposite to each other so that said coils correspond respectively to the sides of said upper and lower internal yokes 10-11. Then, an annular external yoke 14 is arranged at the outer periphery of said coil 12-13 via an air gap so as to face a center yoke, and the lower part of said external yoke is fixed to said supporting block 8. Thus, a leakage flux decreases and a magnetic flux generated by the permanent magnet can be used effectively.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直線動作を必要とする各種機構に利用される
リニアアクチュエータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a linear actuator used in various mechanisms requiring linear motion.

(発明が解決しようとする課題) 一般に前述のような利用分野に使用されるリニアアクチ
ュエータは可能な限り小型で高推力の特性即ち推力/重
量の高い特性が比較的長いストロークにわたって要求さ
れる。従来、ボイスコイルモータと呼称されるリニアア
クチュエータは、第3図の磁石磁極形の方式や第4図の
内磁形の方式等が実用化されているが、次の様な欠点を
有している。
(Problems to be Solved by the Invention) Generally, linear actuators used in the above-mentioned fields of application are required to be as small as possible and have high thrust characteristics, that is, high thrust/weight characteristics over a relatively long stroke. Conventionally, linear actuators called voice coil motors have been put into practical use, such as the magnetic pole type system shown in Figure 3 and the internal magnetic type system shown in Figure 4, but they have the following drawbacks. There is.

例えば第3図の従来例の場合、中心軸に沿って設けられ
た円筒状永久磁石1の円筒長さを長くすると長いストロ
ークにわたって均一な磁界が得られ、又、永久磁石1を
円周上に配した事により比較的高い空隙磁束量を得る事
ができるが、永久磁石1の体積が増加するため結果とし
てアクチュエータ本体の重量が増大し、更にはコスト上
昇を招く欠点がある。
For example, in the case of the conventional example shown in FIG. 3, if the length of the cylindrical permanent magnet 1 provided along the central axis is increased, a uniform magnetic field can be obtained over a long stroke, and the permanent magnet 1 can be placed along the circumference. Although a relatively high amount of air gap magnetic flux can be obtained by arranging the permanent magnet 1, the volume of the permanent magnet 1 increases, resulting in an increase in the weight of the actuator body, which has the disadvantage of causing an increase in cost.

尚3ばヨーク、4はコイルボビン、5はコイル、6はコ
イルボビン4に連結された作動軸、7はセンタヨークで
ある。
Note that 3 is a yoke, 4 is a coil bobbin, 5 is a coil, 6 is an operating shaft connected to the coil bobbin 4, and 7 is a center yoke.

第4図の従来例ではセンタヨーク7として棒状永久磁石
2を配する事により前述の従来例の様に重量、コストの
増加を招く欠点を排除できるが、磁束の漏れが大きいと
いう欠点を有している。第5図、第6図は夫々第3図、
第4図の従来例の磁束経路を有限要素法で解析シュミレ
ーションした結果を示し、従来例では漏れ磁束の多い事
が分かる。
In the conventional example shown in FIG. 4, by arranging the rod-shaped permanent magnet 2 as the center yoke 7, it is possible to eliminate the disadvantage of increasing weight and cost as in the conventional example described above, but it also has the disadvantage of large leakage of magnetic flux. ing. Figures 5 and 6 are respectively Figure 3 and Figure 6.
FIG. 4 shows the results of analysis and simulation of the magnetic flux path of the conventional example using the finite element method, and it can be seen that there is a large amount of leakage magnetic flux in the conventional example.

本発明はこの様な欠点を改善し推力/重量比が良好で且
つ低価格なリニアアクチュエータを提供することを目的
としている。
It is an object of the present invention to provide a linear actuator that improves these drawbacks, has a good thrust/weight ratio, and is inexpensive.

(課題を解決するだめの手段) 本発明のリニアアクチュエータは非磁性の支持体と、こ
の支持体上にセンタヨークとして設iJた軸方向に着磁
した永久磁石と、この永久磁石の外周をこれより離間し
て取り巻くよう配置された可動コイルと、この可動コイ
ルの外周をごれより離間して取り巻くよう配置された環
状外部ヨークとより成ることを特徴とする。
(Means for Solving the Problems) The linear actuator of the present invention includes a non-magnetic support, an axially magnetized permanent magnet provided as a center yoke on the support, and an outer periphery of the permanent magnet. It is characterized by comprising a moving coil arranged so as to surround it at a distance from the dirt, and an annular external yoke arranged to surround the outer periphery of the moving coil at a distance from the dirt.

(実施例) 以下図面によって本発明の詳細な説明する。(Example) The present invention will be explained in detail below with reference to the drawings.

一般に直流リニアアクチュエータの推力Fはフレミング
の左手の法則に従い、空隙の磁束密度をB、前記空隙内
に配置されたコイルに対する通電電流をI 、 Eft
界中に置かれたコイルの有効長をIl、コイルの巻回数
をtとすると F=t−B−1−L  ・・・・・・・・・(1)で表
現される。こ\で良好な推力/重量比を得るためには(
1)式を考慮しながら磁石や磁界ヨークの磁気特性、形
状、配置を検討し、更に空隙長、コイル仕様も併せて検
討する必要がある。
In general, the thrust force F of a DC linear actuator follows Fleming's left-hand rule, where the magnetic flux density in the air gap is B, the current flowing to the coil placed in the air gap is I, and Eft.
When the effective length of the coil placed in the field is Il, and the number of turns of the coil is t, it is expressed as F=t-B-1-L (1). In order to obtain a good thrust/weight ratio (
1) It is necessary to consider the magnetic characteristics, shape, and arrangement of the magnet and magnetic field yoke while considering equation 1), and also consider the air gap length and coil specifications.

(1)式のt、■、Lはアクチュエータ本体寸法の制限
とコイル山積率に関連する温度上昇限度仕様から、ある
制限付条件下での検討結果で決定され、推力特性向上の
主眼はコイルに如何に有効な鎖交磁束を得るかに置かれ
、即ち(1)式〇Bを効率良く大きな値とすることが重
要となる。本発明はこの様な考え方を基になされたもの
である。
t, ■, and L in equation (1) are determined based on the results of studies under certain restrictive conditions, based on the temperature rise limit specifications related to the actuator body size restrictions and coil stacking ratio, and the main focus of improving thrust characteristics is on the coil. The important point is how to obtain an effective magnetic flux linkage, that is, it is important to efficiently make Equation (1) B a large value. The present invention is based on this idea.

本発明においては第1図に示すように非磁性体のヨーク
支持ブロック8の上部中央にセンタヨークとして軸方向
にNSにM硼した棒状永久磁石9を内部ヨーク10.1
1によって上下に挟持したものを用い、コイルボビン4
には軸方向に互いに離間した互いに反対方向に同一回数
巻回された2組のコイル12.13を夫々前記上下の内
部ヨーク10.11の側面に対応するように設けると共
に、このコイル12.13の外周に空隙を介して円環柱
状の外部ヨーク14を前記センタヨークに対向して配置
しその下部を前記支持ブロック8に固定せしめる。
In the present invention, as shown in FIG. 1, a rod-shaped permanent magnet 9 oriented NS in the axial direction is installed as a center yoke in the upper center of a yoke support block 8 made of a non-magnetic material.
Coil bobbin 4
is provided with two sets of coils 12.13 which are axially spaced apart and wound the same number of times in opposite directions, respectively, so as to correspond to the side surfaces of the upper and lower internal yokes 10.11, and these coils 12.13 An annular column-shaped external yoke 14 is disposed on the outer periphery of the center yoke with a gap therebetween, facing the center yoke, and its lower portion is fixed to the support block 8.

本発明装置は上記のような構成であるからコイル12.
13に通電すると第1図に矢印で示した磁束の流れとコ
イル電流が作用し、コイル12で発生ずる推力F1は(
1)式から Fl=t・B−1・■、 但しも二巻回数、B;空隙の磁束密度、■;コイル12
の通電電流値、L:コイルの円周長となり、同様にコイ
ル13にも同じ値の電流Iを通電した特発性ずる推力F
2は F2=t−B−1−L となる。こ\で作動軸6に発生ずる推力は矢印の方向と
なり、その値Fは F=F1+r2=2t−B−I−L となる。
Since the device of the present invention has the above-described configuration, the coil 12.
When the coil 13 is energized, the magnetic flux flow shown by the arrow in Fig. 1 and the coil current act, and the thrust force F1 generated in the coil 12 is (
1) From the formula, Fl = t・B-1・■, however, the number of turns is 2, B: magnetic flux density of the air gap, ■: coil 12
energizing current value, L: the circumference length of the coil, and the spontaneous shear thrust F when the same value of current I is also applied to the coil 13.
2 becomes F2=t-B-1-L. The thrust generated in the operating shaft 6 is now in the direction of the arrow, and its value F is F=F1+r2=2t-B-I-L.

以上の説明で明らかにした推力Fは上式からも明らかな
様に空隙に置かれたコイルに鎖交する磁束を如何に多く
するかが問題となるが、有限要素法を用いて、本発明の
実施例における磁束の流れは第2図の磁束流線図から明
らかな様に非常に漏れ磁束が少なく、永久磁石が発生す
る磁束を有効に活用することが可能となり、大きな(推
力/重量)比が得られる。
As is clear from the above equation, the problem with the thrust force F clarified in the above explanation is how to increase the magnetic flux interlinking with the coil placed in the air gap. As is clear from the magnetic flux flow diagram in Figure 2, the flow of magnetic flux in this embodiment has very little leakage magnetic flux, making it possible to effectively utilize the magnetic flux generated by the permanent magnets, resulting in a large (thrust/weight) The ratio is obtained.

(発明の効果) 」二記のように本発明によれば従来例に比較し約40%
大きい(推力/重量)比が得られる。
(Effects of the Invention) As described in section 2, according to the present invention, the reduction in energy consumption is approximately 40% compared to the conventional example.
A large (thrust/weight) ratio is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明リニアアクチュエータの断面図、第2図
はその磁力線の説明図、第3図、第4図は夫々従来のリ
ニアアクチュエータの断面図、第5図、第6図は夫々そ
の磁力線の説明図である。 1.2.9・・・永久磁石、3・・・コーク、4・・・
コイルボビン、5・・・コイル、6・・・作動軸、7・
・・センタヨーク、8・・・ヨーク支持ブロック、10
.11 ・・・内部ヨーク、11.1.3・・・コイル
、14・・・外部ヨーク。 代理人 弁理士 澤 木 誠 − 第5図 第す凶
Figure 1 is a sectional view of the linear actuator of the present invention, Figure 2 is an explanatory diagram of its magnetic lines of force, Figures 3 and 4 are sectional views of a conventional linear actuator, and Figures 5 and 6 are its lines of magnetic force. FIG. 1.2.9...Permanent magnet, 3...Coke, 4...
Coil bobbin, 5... Coil, 6... Operating shaft, 7.
...Center yoke, 8...Yoke support block, 10
.. 11... Internal yoke, 11.1.3... Coil, 14... External yoke. Agent Patent Attorney Makoto Sawagi - Figure 5 Sukyo

Claims (2)

【特許請求の範囲】[Claims] (1)非磁性の支持体と、この支持体上にセンタヨーク
として設けた軸方向に着磁した永久磁石と、この永久磁
石の外周をこれより離間して取り巻くよう配置された可
動コイルと、この可動コイルの外周をこれより離間して
取り巻くよう配置された環状外部ヨークとより成ること
を特徴とするリニアアクチュエータ。
(1) A non-magnetic support, an axially magnetized permanent magnet provided as a center yoke on the support, and a moving coil arranged to surround the outer periphery of the permanent magnet at a distance from the permanent magnet; A linear actuator characterized by comprising an annular external yoke arranged to surround the outer periphery of the moving coil at a distance from the outer yoke.
(2)前記永久磁石の両端が内部ヨークによって挟持さ
れており、前記可動コイルが軸方向に2部分に離間され
夫々前記上下の内部ヨークに対向するよう配置されてい
る請求項第1項記載のリニアアクチュエータ。
(2) Both ends of the permanent magnet are held between internal yokes, and the movable coil is separated into two parts in the axial direction and arranged so as to face the upper and lower internal yokes, respectively. linear actuator.
JP13284388A 1988-06-01 1988-06-01 Linear actuator Pending JPH01308162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13284388A JPH01308162A (en) 1988-06-01 1988-06-01 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13284388A JPH01308162A (en) 1988-06-01 1988-06-01 Linear actuator

Publications (1)

Publication Number Publication Date
JPH01308162A true JPH01308162A (en) 1989-12-12

Family

ID=15090815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13284388A Pending JPH01308162A (en) 1988-06-01 1988-06-01 Linear actuator

Country Status (1)

Country Link
JP (1) JPH01308162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415838B1 (en) * 2010-07-19 2013-04-09 Moticont Linear motor with two magnets and a coil carrier having multiple winding areas with each area having a section of a coil wound with one continuous wire with the winding in opposite directions in spaced apart winding areas
JP2015218827A (en) * 2014-05-19 2015-12-07 株式会社ジェイテクト Static pressure fluid bearing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8415838B1 (en) * 2010-07-19 2013-04-09 Moticont Linear motor with two magnets and a coil carrier having multiple winding areas with each area having a section of a coil wound with one continuous wire with the winding in opposite directions in spaced apart winding areas
JP2015218827A (en) * 2014-05-19 2015-12-07 株式会社ジェイテクト Static pressure fluid bearing device

Similar Documents

Publication Publication Date Title
US5719451A (en) Linear magnetic actuator
US4703297A (en) Permanent magnet type linear electromagnetic actuator
EP1158547A3 (en) Electromagnetic actuator and composite electro-magnetic actuator apparatus
JPS60162981U (en) electric motor
JPS5961763A (en) Apparatus for generating uniform magnetic field
JPS61106058A (en) Ultrafine displacement linear electromagnetic actuator
EP0052651A1 (en) Linear solenoid device
JPH0544609B2 (en)
JP3882977B2 (en) Voice coil linear motor
JPH01308162A (en) Linear actuator
JP3778284B2 (en) Composite voice coil linear motor
JPS56101371A (en) Magnet movable type dc linear motor
JPH1169754A (en) Movable permanent magnet dc linear motor
JP3473639B2 (en) Voice coil type linear motor
JPS57151261A (en) Linear motor
JPS57191838A (en) Objective lens driver
JPS5910939Y2 (en) electromagnetic drive device
JP3824032B2 (en) Voice coil motor
JPH0232749A (en) Linear actuator
JPH05332470A (en) solenoid valve
JPH0237582U (en)
JPS59127572A (en) Magnetic actuator
JP3296890B2 (en) Polarized linear actuator
JPS61220310A (en) Bilaterally shifting solenoid
JP3731011B2 (en) Single pole linear DC motor