JPH0130770B2 - - Google Patents
Info
- Publication number
- JPH0130770B2 JPH0130770B2 JP20181184A JP20181184A JPH0130770B2 JP H0130770 B2 JPH0130770 B2 JP H0130770B2 JP 20181184 A JP20181184 A JP 20181184A JP 20181184 A JP20181184 A JP 20181184A JP H0130770 B2 JPH0130770 B2 JP H0130770B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- glass
- light
- amount
- color
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 45
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 claims description 12
- 239000006103 coloring component Substances 0.000 claims description 9
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 8
- 238000002156 mixing Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 3
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 3
- 239000006121 base glass Substances 0.000 claims description 3
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 2
- 238000002834 transmittance Methods 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 12
- 230000000694 effects Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 230000003595 spectral effect Effects 0.000 description 6
- 239000003086 colorant Substances 0.000 description 5
- 238000004040 coloring Methods 0.000 description 5
- 230000031700 light absorption Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Landscapes
- Glass Compositions (AREA)
Description
[発明の利用分野]
本発明はカラーコントスラトフイルター用ガラ
スに関し、さらに詳しくは青色、緑色、赤色が鮮
かなコントラストで観察又は撮影できるフイルタ
ーガラスに係る。
[従来の技術]
カラーコントラストフイルター用ガラスとして
は、カラーCRT表示装置用に開発された特開昭
58−49641号公報のガラスが知られている。この
ガラスは珪酸塩ガラス又は硼珪酸塩ガラスに、
Nd2O3、CeO2、CuO、MnO2、CoO、Fe2O3、
NiO、Pr6O11などの着色成分を配合しものである
が、短波長側の吸収端が充分にシヤープでないう
え、500nm付近の吸収も充分でないため、カラ
ーコントラストが必ずしも満足できる程でない欠
点がある。また、このガラスはカラーCRT表示
装置用に開発されたものである関係で、吸光特性
を蛍光体の発色ピークに合わせてあるため、カラ
ーCRT表示管に対する反射光の影響を取り除く
には最適であるものの、ただ単に外界の色のコン
トラストを高めるためには適性を欠く。
[発明の目的]
本発明の目的は、短波長側の吸収端のピークを
シヤープにカツトし、500nm付近の吸収を増加
させて、外界を観察又は撮影する際の色のコント
ラストを高めることができるフイルター用ガラス
を提供することにある。
[発明の構成]
本発明はカラーコントラストフイルター用ガラ
スの基礎組成を改良し、MgO、CaO、SrO、
BaO、ZnO及びPbOを包含するRO成分の配合量
を増大させることにより、上記の目的が達成させ
るとの新知見に基づいて完成されたものである。
而して、本発明に係るカラーコントラストフイ
ルター用ガラスは、重量%でSiO2 3〜70%、
B2O3 0〜40%、Al2O3 0〜23%、R2O 0〜23
%(但しR2OはLi2O、Na2O及びK2Oの1種又は
2種以上を示す)、RO 35〜40%(但しROは
MgO、CaO、SrO、BaO、ZnO及びPbOの2種
以上を示す)、TiO2 0〜10%、ZrO2 0〜10%、
La2O3 0〜35%、Nd2O3 5〜40%からなる基礎
ガラス100重量部に対し、6重量%以下のCeO2、
1.0重量%以下のCuO、3.5重量%以下のMnO2、
0.15重量%以下のCoOから選ばれた少なくとも1
種の必須着色成分と、0〜3.0重量%のFe2O3、0
〜1.5重量%のNiO及び0〜5重量%のPr6O11の
任意着色成分とを配合してなるものである。
進んで本発明に於ける各成分の役割とその量的
限定理由を説明すると、次の通りである。
SiO2は基礎ガラス成分であつて、その量が70
%を越えるとガラスの粘性が高くなりすぎて溶解
が困難になると共に、Nd2O3の溶解度が小さくな
つてガラス化しにくくなる。3%未満ではB2O3
が比較的多量に共存しないとガラス化せず、また
使用に耐え得る化学的耐久性が得られない。
B2O3はSiO2に代わり得るガラス網目形成成分で
あつて、このものはNd2O3の溶解度を増大させる
作用があるので、40%まで配合可能であるが、40
%を上廻ると化学的耐久性が悪化する。また
B2O3は緑色光量の調節にCoO着色を利用する場
合に有効な成分である。Al2O3はガラスの化学的
耐久性や機械的強度を向上させ、また光吸収を強
める機能を有するが、その配合量が23%を上廻る
とガラスの溶解が困難になる。R2Oはガラスの溶
解性を向上させる成分であるが、23%を越える配
合はガラスの化学的耐久性を劣化させる。
RO成分の配合量は基礎ガラス組成の35〜40%
を占めることが重要であつて、この範囲を下廻つ
た場合には短波長側の吸収端をシヤープにカツト
することができないばかりでなく、500nm付近
を充分吸収することもできない。RO成分のなか
にあつて、特にPbO、BaO、SrOは高屈折率が要
求される場合に有効な添加成分である。RO成分
の配合量の上限は40%にあり、これを上廻るとガ
ラスの化学的耐久性が著しく悪化し、使用に耐え
なくなる。
TiO2は紫外域に強い吸収を示し、またCeO2の
着色を強めて可視短波長域の吸収及び青色光量の
調節に寄与するが、10%を越えて配合するとガラ
スが失透しやすくなる。ZrO2は化学的耐久性を
高める効果をもつが、10%以上では溶融しにくく
なる。La2O3は着色成分ではないが、Nd2O3と性
質が非常に似ているので、ガラスの化学的耐久性
や硬度を高めるために、Nd2O3との置換で35%ま
で添加することができる。しかし、35%を越える
とガラスが失透しやすくなる。Nb2O5、Ta2O5は
ガラスの化学的耐久性及び硬度を高める目的で配
合しても差支えないが、非常に高価な成分である
ので、5%以上加えることは意味がない。
本発明は基礎ガラスにNd2O3を5〜4重量%を
含んでいるが、このNd2O3固有の吸収によつて光
の青、緑、赤の3色分離効果をもたらし、同時に
このガラスは光の緑色域の光量を減じてマゼンタ
色を呈する。したがつて高輝度で高コントラスト
機能を有する無彩色フイルターガラスとするため
には、青、緑、赤のピーク波長附近の透過率をで
きるだけ低下させずに、CeO2、CuO、MnO2、
CoO、Fe2O3、NiO、Pr6O11などの着色成分を用
いて他の波長光を吸収させて3色光量をバランス
させるものである。その配合量が5%未満では3
色光の分離効果に乏しい。しかし、40%を越えて
配合しても効果の増大はなく、むしろガラスを失
透しやすくする。
Nd2O3含有ガラスは演色性を示し、光の分光エ
ネルギーによつて色相が異なつて見える。Nd2O3
含有量が比較的少ない場合は、自然光下ではマゼ
ンタ色に、そして蛍光灯下では青色に見える。と
ころが、本発明のガラスのようにNd2O3を5%以
上含有するガラスは、緑色光域の吸収が非常に強
くなるため、蛍光灯下でもマゼンタ色が強くな
る。カラー映像の色相を変えずにそれを忠実に表
示するためには、フイルターの色相が無彩色であ
ることが必要である。しかしながら、上記したよ
うにNd2O3を5%以上含有するガラスはマゼンタ
色を呈するので、単に無彩色フイルターを組合わ
せたり、単一着色成分を導入したのでは、無彩色
フイルターガラスを得ることはできない。ガラス
の色相を無彩色にするためには、Nd3+イオンに
よつて低下した緑色光量に対応させて、青色光及
び赤色光の透過率を減少させればよいが、この場
合、青、緑、赤のピーク波長付近の透過率をでき
るだけ低下させずに、それ以外の波長光を吸収す
ることにより3色光量をバランスさせれば、高輝
度で高コントラストの無彩色フイルターガラスが
得られるのである。
CeO2は可視短波長光域に光吸収を有し、この
領域の光の吸収並びに青色光透過率の調節に使用
されるが、基礎ガラス100重量部当り6重量%以
下の配合で充分目的は達せられる。適量は0.5〜
6.0重量%である。CuOはCeO2とは逆に可視長波
長光域に光吸収を有し、この領域の光の吸収及び
赤色光透過率の調節に有効である。しかし、基礎
ガラス100重量部当りの配合量が1.0重量%を越え
た場合は、着色が濃くなりすぎて赤色光透過率が
低くなりすぎてしまう。CuOの適量は0.01〜0.5
重量%の範囲にある。Fe2O3は可視光の長、短波
長の両側に光吸収を有するので、青色光及び赤色
光の透過率の調節に使われるが、基礎ガラス100
重量部当りの配合量が3.0重量%を越えると、着
色濃度が大きくなりすぎてしまう。MnO2及び
CoOは各々青色光と緑色光及び緑色光と赤色光の
中間波長域の光を吸収し、さらに緑色光透過率を
低下させるのに有効な成分であるが、基礎ガラス
100重量部当りMnO2で0.1重量%未満、CoOで
0.001重量%未満では充分な効果を得ることがで
きない。しかし、MnO2で3.5重量%をCoOで0.15
重量%を越えると、着色が濃くなりすぎる嫌いが
ある。NiOは青色光域に強い吸収を示し、青色光
透過率の調節に効果があるものの、基礎ガラス
100重量部当りの配合量が1.5重量%を越えること
は、青色光の透過率を必要以上に低下させるので
好ましくない。Pr6O11は青色光域と580〜590nm
付近に吸収を有するので、青色光強度を抑え、か
つ緑色光と赤色光を分離するのに効果があるが、
基礎ガラス100重量部当りの配合量が5重量%を
越えると、青色光域の透過率が低くなりすぎる。
なお、As2O3、Sb2O3は通常のガラスの場合と同
様、本発明でも脱泡剤として添加可能な成分であ
る。
[実施例]
一般的ガラス原料である酸化物、炭酸塩、硝酸
塩及び水酸化物等を使用してこれら原料をよく混
合し、セラミツク又は白金製のルツボ又はタンク
炉で1300〜1480℃で溶融し、攪拌し、清澄均質化
した後、所定の形状に成型して徐冷することによ
つて、次表に示す組成(重量%)のフイルターを
得た。
また、実施例No.1のフイルターの分光透過率を
測定した結果を第1図に示し、同じくNo.2および
No.4の分光透過率を第2図に示す。
[Field of Application of the Invention] The present invention relates to a glass for a color contrast filter, and more particularly to a filter glass that allows blue, green, and red colors to be observed or photographed with vivid contrast. [Prior art] As a glass for color contrast filters, Japanese Patent Application Publication No.
Glass disclosed in Japanese Patent No. 58-49641 is known. This glass is divided into silicate glass or borosilicate glass.
Nd 2 O 3 , CeO 2 , CuO, MnO 2 , CoO, Fe 2 O 3 ,
Although it contains coloring components such as NiO and Pr 6 O 11 , the absorption edge on the short wavelength side is not sharp enough, and the absorption near 500 nm is also insufficient, so the color contrast is not necessarily satisfactory. be. Additionally, since this glass was developed for color CRT display devices, its light absorption characteristics are matched to the coloring peak of the phosphor, making it ideal for eliminating the effects of reflected light on color CRT display tubes. However, it is not suitable for simply increasing the color contrast of the outside world. [Object of the Invention] The object of the present invention is to sharply cut the peak of the absorption edge on the short wavelength side and increase the absorption near 500 nm, thereby increasing the color contrast when observing or photographing the outside world. Our objective is to provide glass for filters. [Structure of the invention] The present invention improves the basic composition of glass for color contrast filters, and includes MgO, CaO, SrO,
This was completed based on the new knowledge that the above objective can be achieved by increasing the blending amount of RO components including BaO, ZnO and PbO. Therefore, the glass for color contrast filter according to the present invention contains 3 to 70% SiO 2 by weight,
B 2 O 3 0-40%, Al 2 O 3 0-23%, R 2 O 0-23
% (however, R 2 O indicates one or more of Li 2 O, Na 2 O and K 2 O), RO 35-40% (however, RO
2 or more of MgO, CaO, SrO, BaO, ZnO and PbO), TiO 2 0-10%, ZrO 2 0-10%,
6 % by weight or less of CeO 2 based on 100 parts by weight of the base glass consisting of 0-35% La 2 O 3 and 5-40% Nd 2 O 3 ,
CuO not more than 1.0% by weight, MnO 2 not more than 3.5% by weight,
At least 1 selected from CoO of 0.15% by weight or less
Essential coloring components of seeds and 0 to 3.0% by weight of Fe 2 O 3 , 0
~1.5% by weight of NiO and 0 to 5% by weight of an optional coloring component of Pr 6 O 11 . The role of each component in the present invention and the reason for its quantitative limitation will be explained as follows. SiO 2 is a basic glass component whose amount is 70
%, the viscosity of the glass becomes too high, making it difficult to melt, and the solubility of Nd 2 O 3 decreases, making it difficult to vitrify. Less than 3% B 2 O 3
Unless they coexist in a relatively large amount, vitrification will not occur and chemical durability sufficient for use will not be obtained.
B 2 O 3 is a glass network-forming component that can replace SiO 2 , and since it has the effect of increasing the solubility of Nd 2 O 3 , it can be blended up to 40%.
%, chemical durability deteriorates. Also
B 2 O 3 is an effective component when CoO coloring is used to adjust the amount of green light. Al 2 O 3 has the function of improving the chemical durability and mechanical strength of glass and increasing light absorption, but if its content exceeds 23%, it becomes difficult to melt the glass. R 2 O is a component that improves the solubility of glass, but if it exceeds 23%, it deteriorates the chemical durability of glass. The amount of RO component blended is 35-40% of the basic glass composition.
If the wavelength is below this range, not only will it be impossible to sharply cut the absorption edge on the short wavelength side, but also it will not be possible to sufficiently absorb around 500 nm. Among the RO components, PbO, BaO, and SrO are particularly effective additive components when a high refractive index is required. The upper limit for the amount of RO components added is 40%, and if this is exceeded, the chemical durability of the glass will deteriorate significantly, making it unusable. TiO 2 exhibits strong absorption in the ultraviolet region, and also enhances the coloring of CeO 2 and contributes to absorption in the visible short wavelength region and adjustment of the amount of blue light, but if it is added in an amount exceeding 10%, the glass tends to devitrify. ZrO 2 has the effect of increasing chemical durability, but if it exceeds 10%, it becomes difficult to melt. Although La 2 O 3 is not a coloring component, it has very similar properties to Nd 2 O 3 , so it is added up to 35% to replace Nd 2 O 3 to increase the chemical durability and hardness of glass. can do. However, if it exceeds 35%, the glass tends to devitrify. Nb 2 O 5 and Ta 2 O 5 may be added for the purpose of increasing the chemical durability and hardness of the glass, but since they are extremely expensive components, it is meaningless to add more than 5%. In the present invention, the basic glass contains 5 to 4% by weight of Nd 2 O 3 , and the absorption unique to this Nd 2 O 3 brings about the effect of separating the three colors of light, blue, green, and red, and at the same time, this Glass reduces the amount of light in the green range, giving it a magenta color. Therefore, in order to create an achromatic filter glass with high brightness and high contrast functions, it is necessary to use CeO 2 , CuO, MnO 2 ,
Coloring components such as CoO, Fe 2 O 3 , NiO, and Pr 6 O11 are used to absorb light of other wavelengths to balance the amount of light of the three colors. If the amount is less than 5%, 3
Poor color light separation effect. However, even if it is added in excess of 40%, the effect will not increase, but rather it will make the glass more likely to devitrify. Nd 2 O 3 -containing glass exhibits color rendering properties, and its hue appears to vary depending on the spectral energy of the light. Nd2O3 _
When the content is relatively low, it appears magenta under natural light and blue under fluorescent light. However, a glass containing 5% or more of Nd 2 O 3 , like the glass of the present invention, has very strong absorption in the green light range, and therefore has a strong magenta color even under fluorescent lighting. In order to faithfully display a color image without changing its hue, the hue of the filter must be achromatic. However, as mentioned above, glass containing 5% or more of Nd 2 O 3 exhibits a magenta color, so simply combining achromatic filters or introducing a single coloring component will not produce an achromatic filter glass. I can't. In order to make the hue of the glass achromatic, the transmittance of blue and red light should be reduced in response to the amount of green light reduced by Nd 3+ ions. By absorbing light of other wavelengths without reducing the transmittance near the red peak wavelength as much as possible to balance the amount of light in the three colors, it is possible to obtain an achromatic filter glass with high brightness and high contrast. . CeO 2 has light absorption in the visible short wavelength region, and is used to absorb light in this region and adjust blue light transmittance, but a content of 6% by weight or less per 100 parts by weight of the base glass is sufficient for the purpose. can be achieved. The appropriate amount is 0.5~
It is 6.0% by weight. CuO, contrary to CeO 2 , has light absorption in the visible long wavelength light region, and is effective in absorbing light in this region and adjusting red light transmittance. However, if the blending amount exceeds 1.0% by weight per 100 parts by weight of the basic glass, the coloring will become too dark and the red light transmittance will become too low. The appropriate amount of CuO is 0.01~0.5
% by weight. Since Fe 2 O 3 has optical absorption in both long and short wavelengths of visible light, it is used to adjust the transmittance of blue light and red light, but basic glass 100
If the amount per part by weight exceeds 3.0% by weight, the color density will become too high. MnO2 and
CoO absorbs light in the intermediate wavelength range between blue light and green light, and between green light and red light, respectively, and is an effective component for further reducing the transmittance of green light.
Less than 0.1% by weight of MnO2 per 100 parts by weight, CoO
If it is less than 0.001% by weight, sufficient effects cannot be obtained. However, 3.5 wt% in MnO2 and 0.15% in CoO
If the weight percentage is exceeded, the coloring tends to become too dark. Although NiO exhibits strong absorption in the blue light region and is effective in adjusting blue light transmittance,
It is not preferable that the blending amount exceeds 1.5% by weight per 100 parts by weight because it unnecessarily lowers the transmittance of blue light. Pr 6 O 11 is in the blue light range and 580-590nm
Since it has absorption nearby, it is effective in suppressing the intensity of blue light and separating green light and red light.
If the blending amount exceeds 5% by weight per 100 parts by weight of the basic glass, the transmittance in the blue light region will become too low.
Note that As 2 O 3 and Sb 2 O 3 are components that can be added as defoaming agents in the present invention as well as in the case of ordinary glass. [Example] Common glass raw materials such as oxides, carbonates, nitrates, and hydroxides are mixed well and melted at 1300 to 1480°C in a ceramic or platinum crucible or tank furnace. After stirring, clarifying and homogenizing, the mixture was molded into a predetermined shape and slowly cooled to obtain filters having the compositions (% by weight) shown in the following table. In addition, the results of measuring the spectral transmittance of the filter of Example No. 1 are shown in FIG.
The spectral transmittance of No. 4 is shown in Figure 2.
【表】
[発明の効果]
図面に示した分光透過率に見られる如く、本発
明のガラスは青、緑、赤の3色光をよく分離する
ので、このガラスから得たフイルターを通して外
界を観察又は撮影すれば、カラーコントラストが
鮮かな映像を得ることができる。また、色相が灰
色又は灰色に近いので、映像の色を忠実に再現す
ることができる。さらにフイルターに高屈折率が
要求される場合にも、本発明のガラスはPbO、
BaO、SrOを多量に配合することができるので、
そうしたフイルターを容易に取得できる利点もあ
る。また、本発明のガラスはカラーCRT表示装
置用コントラストフイルターとしても、効果的に
使用できることはもちろんである。[Table] [Effects of the Invention] As seen in the spectral transmittance shown in the drawings, the glass of the present invention separates the three color lights of blue, green, and red well, so it is possible to observe or observe the outside world through a filter obtained from this glass. When shooting, you can obtain images with vivid color contrast. Furthermore, since the hue is gray or close to gray, the colors of the image can be faithfully reproduced. Furthermore, even when a high refractive index is required for the filter, the glass of the present invention can be used with PbO,
Since large amounts of BaO and SrO can be blended,
Another advantage is that such filters can be easily obtained. Furthermore, it goes without saying that the glass of the present invention can also be effectively used as a contrast filter for color CRT display devices.
第1図は本発明の実施例No.1で得たフイルター
の分光透過率曲線図、第2図は同じく実施例No.2
およびNo.4で得たフイルターの分光透過率曲線図
である。
Fig. 1 is a spectral transmittance curve diagram of the filter obtained in Example No. 1 of the present invention, and Fig. 2 is the same as that of Example No. 2.
and spectral transmittance curve diagram of the filter obtained in No. 4.
Claims (1)
Li2O、Na2O及びK2Oの1種又は2種以上を示
す)、RO 35〜40%(但しROはMgO、CaO、
SrO、BaO、ZnO及びPbOの2種以上を示す)、
TiO2 0〜10%、ZrO2 0〜10%、La2O3 0〜35
%及びNd2O3 5〜40%からなる基礎ガラス100重
量部に対し、6重量%以下のCeO2、1.0重量%以
下のCuO、3.5重量%以下のMnO2、0.15重量%以
下のCoOから選ばれた少なくとも1種の必須着色
成分と、0〜3.0重量%のFe2O3、0〜1.5重量%
のNiO及び0〜5重量%のPr6O11の任意着色成分
とを配合してなるカラーコントラストフイルター
用ガラス。 2 少なくとも1種の必須着色成分の配合量が、
前記基礎ガラス100重量部に対し、CeO2 0.5〜6
重量%、CuO 0.01〜1.0重量%、MnO2 0.1〜3.5
重量%、CoO 0.001〜0.15重量%である特許請求
の範囲第1項記載のカラーコントラストフイルタ
ー用ガラス。[Claims] 1% by weight, SiO 2 3-70%, B 2 O 3 0-40%, Al 2 O 3 0-23%, R 2 O 0-23% (however, R 2 O
One or more of Li 2 O, Na 2 O and K 2 O), RO 35-40% (However, RO is MgO, CaO,
2 or more of SrO, BaO, ZnO and PbO),
TiO 2 0-10%, ZrO 2 0-10%, La 2 O 3 0-35
% and Nd 2 O 3 5 to 40% by weight of 100 parts by weight of the base glass, from not more than 6% by weight of CeO 2 , not more than 1.0% by weight of CuO, not more than 3.5% by weight of MnO 2 , not more than 0.15% by weight of CoO at least one selected essential coloring component and 0-3.0% by weight Fe 2 O 3 , 0-1.5% by weight
A glass for a color contrast filter, which is formed by blending NiO and 0 to 5% by weight of an arbitrary coloring component of Pr 6 O 11 . 2 The amount of at least one essential coloring component is
CeO 2 0.5-6 for 100 parts by weight of the basic glass
wt%, CuO 0.01-1.0 wt%, MnO2 0.1-3.5
% by weight, CoO 0.001 to 0.15% by weight. The glass for a color contrast filter according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20181184A JPS6183644A (en) | 1984-09-28 | 1984-09-28 | Glass for color contrast filter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20181184A JPS6183644A (en) | 1984-09-28 | 1984-09-28 | Glass for color contrast filter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6183644A JPS6183644A (en) | 1986-04-28 |
JPH0130770B2 true JPH0130770B2 (en) | 1989-06-21 |
Family
ID=16447302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20181184A Granted JPS6183644A (en) | 1984-09-28 | 1984-09-28 | Glass for color contrast filter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6183644A (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1990015782A1 (en) * | 1987-12-17 | 1990-12-27 | Ferro Corporation | Lead-free glass |
US4859637A (en) * | 1987-12-17 | 1989-08-22 | Ferro Corporation | Lead-free U.V. absorbing glass |
JP4442051B2 (en) * | 2001-05-09 | 2010-03-31 | コニカミノルタオプト株式会社 | Glass substrate, information recording medium using the same, and optical communication element |
JP4862431B2 (en) * | 2006-02-28 | 2012-01-25 | サクサ株式会社 | Banknote transfer device |
KR101013845B1 (en) | 2008-07-15 | 2011-02-14 | 현대자동차주식회사 | Method for Manufacturing Sealed Glass for Low Temperature Flat Solid Oxide Fuel Cell |
DE102009027109B4 (en) * | 2009-06-23 | 2012-02-16 | Schott Ag | Leaded space glass, its manufacture and use |
KR101141499B1 (en) | 2009-10-09 | 2012-05-08 | 연세대학교 산학협력단 | Glass composition for ltcc ceramic substrate |
WO2021095622A1 (en) * | 2019-11-14 | 2021-05-20 | 日本電気硝子株式会社 | Glass article |
CN116217071A (en) * | 2023-02-21 | 2023-06-06 | 云南大学 | Rare earth ion doped borosilicate laser glass and preparation method and application thereof |
-
1984
- 1984-09-28 JP JP20181184A patent/JPS6183644A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6183644A (en) | 1986-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4521524A (en) | Contrast enhancement filter for color CRT display devices | |
US4769347A (en) | Contrast enhancement filter glass for color CRT displays | |
US4288250A (en) | Glass filter for contrast enhancement in CRT displays | |
JPH0217494B2 (en) | ||
US5061659A (en) | Contrast enhancement filter glass useful for color CRT displays | |
WO1993002019A1 (en) | Constrat enhancement in glass | |
CN102910816B (en) | Optical glass, preform and optical element | |
JPH10265238A (en) | Optical glass having negative anomalous dispensability | |
CN106830676A (en) | A kind of optical glass, prefabricated component and optical element | |
US4105577A (en) | Filter glass | |
US4268312A (en) | Optical glass | |
JP2017190280A (en) | Optical glass | |
US4110245A (en) | Green colored filter glass | |
JPS6350293B2 (en) | ||
RU2269491C2 (en) | Composition of gray glass of silicate-sodium-lime type | |
JPH0130770B2 (en) | ||
GB1590210A (en) | Di-(acid esters) of dicarboxylic acids with di-(hydroxymethyl)-tricyclo-5.2.1.o2.6 decane | |
US5422755A (en) | Ultraviolet absorbing, fixed tint lenses | |
JP4943465B2 (en) | Optical glass | |
JP2001072432A (en) | Optical glass | |
US5387558A (en) | Colored glass-ceramic articles | |
JP3910012B2 (en) | Zinc-containing optical glass | |
KR960010801B1 (en) | Glass for projection cathode ray tube faceplate | |
JP4213301B2 (en) | Lead-free optical glass | |
WO2015118964A1 (en) | Near-infrared absorbing/high-contrast glass lens |