JPH01302874A - Optical semiconductor device - Google Patents
Optical semiconductor deviceInfo
- Publication number
- JPH01302874A JPH01302874A JP63133370A JP13337088A JPH01302874A JP H01302874 A JPH01302874 A JP H01302874A JP 63133370 A JP63133370 A JP 63133370A JP 13337088 A JP13337088 A JP 13337088A JP H01302874 A JPH01302874 A JP H01302874A
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical semiconductor
- semiconductor element
- optical
- lead frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 39
- 239000004065 semiconductor Substances 0.000 title claims abstract description 30
- 239000011347 resin Substances 0.000 claims abstract description 8
- 229920005989 resin Polymers 0.000 claims abstract description 8
- 230000005855 radiation Effects 0.000 claims description 11
- 230000000994 depressogenic effect Effects 0.000 abstract 7
- 230000000694 effects Effects 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
Landscapes
- Led Device Packages (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は光学特性を改善した光半導体装置に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical semiconductor device with improved optical characteristics.
従来の技術
第4図〜第6図は従来の光半導体素子用のリードフレー
ムを示すものであり、1は半導体素子載置部、2は内部
リード部、3は外部リード部、4は半導体素子載置部1
に形成された反射器である。Prior Art FIGS. 4 to 6 show a conventional lead frame for an optical semiconductor device, in which 1 is a semiconductor device mounting portion, 2 is an internal lead portion, 3 is an external lead portion, and 4 is a semiconductor device. Placement part 1
It is a reflector formed in
反射器4は第6図、第6図に示すように逆台形の断面形
状を有し、その底面4aに発光素子(図示せず)が載置
され、リードフレームとともに樹脂封止される。反射器
4の斜面4bは反射壁として使われる。すなわち、発光
素子からの光の大半は封止樹脂を通り直接光として前方
へ照射され、−方、発光素子の側面に向けて照射された
側面光は反射器4の斜面4bで反射された後、直接光と
ともに前方へ照射される。As shown in FIGS. 6 and 6, the reflector 4 has an inverted trapezoidal cross-sectional shape, and a light emitting element (not shown) is placed on the bottom surface 4a thereof, and is sealed with resin together with the lead frame. The slope 4b of the reflector 4 is used as a reflecting wall. That is, most of the light from the light emitting element passes through the sealing resin and is irradiated forward as direct light, while the side light irradiated toward the side of the light emitting element is reflected by the slope 4b of the reflector 4 and then emitted. , is irradiated forward with direct light.
発明が解決しようとする課題
この種の光半導体装置の光学特性を高めるためには、発
光素子の側面光を素子の主発光面と垂直な方向に取り出
す必要がある。また側面光は使用する素子によって特有
の放射強度分布を有している。したがって放射強度の最
も大きな部分からの側面光を反射器4の斜面4bを利用
して素子の主発行面と垂直な方向に反射することが望ま
しい。Problems to be Solved by the Invention In order to improve the optical characteristics of this type of optical semiconductor device, it is necessary to extract side light from the light emitting element in a direction perpendicular to the main light emitting surface of the element. Further, side light has a unique radiation intensity distribution depending on the element used. Therefore, it is desirable to reflect the side light from the portion with the highest radiation intensity in a direction perpendicular to the main light emitting surface of the element using the slope 4b of the reflector 4.
ところが、第4図〜第6図に示す従来のリードフレーム
では、斜面4bが底面4ILの周辺から直線状に延びた
単純な摺鉢状になっている。したがって、底面4aに載
置した発光素子からの側面光は、各素子特有の放射強度
分布とは無関係に平坦な斜面4bに照射され、その入射
角度に応じて様々な方向へ乱反射される。このため、本
来取り出すべき主発光部と垂直な方向への反射光が弱く
なり、光学特性が悪くなる。However, in the conventional lead frames shown in FIGS. 4 to 6, the slope 4b has a simple mortar shape extending linearly from the periphery of the bottom surface 4IL. Therefore, the side light from the light emitting elements placed on the bottom surface 4a is irradiated onto the flat slope 4b regardless of the radiation intensity distribution specific to each element, and is diffusely reflected in various directions depending on the angle of incidence. For this reason, the reflected light in the direction perpendicular to the main light emitting part that should originally be extracted becomes weak, and the optical characteristics deteriorate.
本発明はこのような従来の問題を解決する光半導体装置
を提供するものである。The present invention provides an optical semiconductor device that solves these conventional problems.
課題分解法するための手段
この目的を達成するために、本発明はリードフレームの
半導体素子載置部に円形陥没部とこの円形陥没部の周辺
から湾曲して延びる反射壁を設け、上記円形陥没部内に
載置した光半導体素子と上記リードフレームを透光性の
樹脂で封止するとともに、上記円形陥没部の直径および
深さと上記反射壁の曲面とを、上記光半導体素子からの
放射強度の最も大きい部分の側面光を光軸方向に反射さ
せるかまたは入射光を上記光半導体素子の受光強度の最
も大きい側面部分に向けて反射させ寸法に設定したもの
である。Means for Solving the Problem In order to achieve this object, the present invention provides a circular recess in the semiconductor element mounting portion of a lead frame and a reflective wall that curves and extends from the periphery of the circular recess. The optical semiconductor element placed inside the optical semiconductor element and the lead frame are sealed with a light-transmitting resin, and the diameter and depth of the circular recess and the curved surface of the reflective wall are determined based on the radiation intensity from the optical semiconductor element. The dimensions are set such that the side light of the largest portion is reflected in the optical axis direction, or the incident light is reflected toward the side surface portion of the optical semiconductor element where the received light intensity is greatest.
作用
このようにすれば、各発光素子特有の最大放射強度部分
の側面光を光軸方向に反射させることができるか、ある
いは入射光を各受光素子特有の最も受光強度の大きい側
面部分に入射させることができるため、光半導体素子の
光学特性を大幅に改善することができる。By doing this, it is possible to reflect the side light of the maximum radiation intensity part specific to each light emitting element in the optical axis direction, or to make the incident light enter the side part of each light receiving element having the highest light receiving intensity. Therefore, the optical characteristics of the optical semiconductor device can be significantly improved.
実施例
以下、本発明の一実施例を第1図〜第3図とともに説明
する。EXAMPLE Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 3.
第1図〜第3図において、1はリードフレームの半導体
素子載置部、2は内部リード部、3は外部リード部であ
り、これらの構成は従来と同一である。5は半導体装置
部1の中央に設けられた反射器であり、円形陥没部6と
、この円形陥没部6の周辺から湾曲して延びる反射壁7
と分備えている。8は上記円形陥没部6の底面に載置さ
れた発光素子、9は発光素子8の側面光放射強度最大部
、10はリードフレームと発光素子8を一体に封止する
透光性の樹脂、11は反射光である。In FIGS. 1 to 3, reference numeral 1 denotes a semiconductor element mounting portion of a lead frame, 2 an internal lead portion, and 3 an external lead portion, and these structures are the same as those of the prior art. Reference numeral 5 denotes a reflector provided at the center of the semiconductor device section 1, which includes a circular depression 6 and a reflecting wall 7 extending in a curved manner from the periphery of the circular depression 6.
I am prepared for this. 8 is a light emitting element placed on the bottom surface of the circular recess 6; 9 is a side surface of the light emitting element 8 with maximum radiation intensity; 10 is a translucent resin that integrally seals the lead frame and the light emitting element 8; 11 is reflected light.
この実施例では、発光素子8の厚さがおよそ100μm
で、側面光放射強度最大部9が発光素子8の上端からお
よそ10μmのところにある。In this example, the thickness of the light emitting element 8 is approximately 100 μm.
The maximum side light radiation intensity portion 9 is located approximately 10 μm from the upper end of the light emitting element 8.
そこでこの実施例では側面光放射強度最大部9からの側
面光を有効に光軸Bとほぼ平行な方向に反射させるため
に1円形陥没部6の直径をC345mm 。Therefore, in this embodiment, in order to effectively reflect the side light from the maximum side light radiation intensity portion 9 in a direction substantially parallel to the optical axis B, the diameter of the circular depression 6 is C345 mm.
深さを0.05 mmに設定し、さらに反射壁7には曲
率半径0.39mmの曲面をもたせである。このように
すれば、第3図に示すように側面光のうち最もエネルギ
ーの大きい部分が湾曲した反射壁で反射 ・され、はと
んどの反射光11が光軸Bと平行に放射される。実際に
この実施例によれば、従来の反射器4を用いた時と比べ
、光学特性が20%程度改善できた。The depth is set to 0.05 mm, and the reflecting wall 7 has a curved surface with a radius of curvature of 0.39 mm. In this way, as shown in FIG. 3, the part of the side light with the highest energy is reflected by the curved reflecting wall, and most of the reflected light 11 is emitted parallel to the optical axis B. In fact, according to this embodiment, the optical characteristics were improved by about 20% compared to when the conventional reflector 4 was used.
なお、円形陥没部6の大きさ、反射壁7の曲率半径は、
使用する発光素子8の大きさとその側面光放射強度最大
部の位置から最適値を決定すればよいことは云うまでも
ない。また、上記実施例では光半導体素子として発光素
子を用いたが、受光素子を用いてもよい。この場合には
反射壁7で反射された光が受光素子側面の受光悪疫の最
も大きい部分に入射するように、反射壁7の曲率半径と
円形陥没部6の直径および深さを設定すればよい。The size of the circular depression 6 and the radius of curvature of the reflective wall 7 are as follows:
It goes without saying that the optimum value may be determined based on the size of the light emitting element 8 used and the position of the maximum side light radiation intensity. Furthermore, although a light emitting element was used as the optical semiconductor element in the above embodiment, a light receiving element may also be used. In this case, the radius of curvature of the reflective wall 7 and the diameter and depth of the circular recess 6 may be set so that the light reflected by the reflective wall 7 enters the part of the side surface of the light receiving element where the light reception is greatest. .
発明の効果
本発明によれば、発光素子の側面光を効率よく光軸方向
に反射させることができ、また入射光を受光素子の側面
部へ効率よく入射させることができるから、簡単な構成
で、光半導体素子の光学特性を大幅に改善することがで
きる。Effects of the Invention According to the present invention, side light of a light emitting element can be efficiently reflected in the optical axis direction, and incident light can be efficiently made to enter a side part of a light receiving element, so that a simple configuration is possible. , the optical characteristics of the optical semiconductor device can be significantly improved.
第1図は本発明の一実施例に用いるリードフレームの平
面図、第2図は同実施例の断面図、第3図は第2図の反
射器の部分の拡大断面図、第4゜第6図は従来の光半導
体装置に用いるリードフレームの平面図および断面図、
第6図は従来の反射器の部分の拡大断面図である。
1・・・・・・半導体素子載置部、2・・・・・・内部
リード部、ふ・・・・・・外部リード部、6・・・・・
・反射器、θ・・・・・・円形陥没部、7・・・・・・
反射壁、8・・・・・発光素子、9・・・・・・側面光
放射強度最大部、10・・・・・・樹脂、11・・・・
・・反射光。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名18
6.雫」−[イX1lXfQ
5−i’町氷
訃・−蔓九〇−Fig. 1 is a plan view of a lead frame used in an embodiment of the present invention, Fig. 2 is a sectional view of the same embodiment, Fig. 3 is an enlarged sectional view of the reflector portion of Fig. 2, and Fig. 4. Figure 6 is a plan view and a cross-sectional view of a lead frame used in a conventional optical semiconductor device,
FIG. 6 is an enlarged sectional view of a portion of a conventional reflector. 1... Semiconductor element mounting part, 2... Internal lead part, F... External lead part, 6...
・Reflector, θ...Circular depression, 7...
Reflective wall, 8...Light emitting element, 9...Maximum side light radiation intensity part, 10...Resin, 11...
··reflected light. Name of agent: Patent attorney Toshio Nakao and 1 other person18
6. Shizuku” - [I
Claims (1)
この円形陥没部の周辺から湾曲して延びる反射壁を設け
、上記円形陥没部に載置した光半導体素子と上記リード
フレームを透光性の樹脂で封止するとともに、上記円形
陥没部の直径および深さと上記反射壁の曲面とを、上記
光半導体素子からの放射強度の最も大きい部分の側面光
を光軸方向に反射させるか、または入射光を上記光半導
体素子の受光強度の最も大きい側面部分に向けて反射さ
せる寸法に設定したことを特徴とする光半導体装置。A circular depression in the semiconductor element mounting part of the lead frame,
A reflective wall is provided that curves and extends from the periphery of the circular recess, and the optical semiconductor element placed in the circular recess and the lead frame are sealed with a translucent resin. The depth and the curved surface of the reflecting wall reflect side light from the optical semiconductor element at the portion where the radiation intensity is highest in the optical axis direction, or the incident light is reflected at the side surface portion where the light reception intensity is highest at the optical semiconductor element. What is claimed is: 1. An optical semiconductor device characterized in that the dimensions are set to reflect light toward.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133370A JPH01302874A (en) | 1988-05-31 | 1988-05-31 | Optical semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63133370A JPH01302874A (en) | 1988-05-31 | 1988-05-31 | Optical semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01302874A true JPH01302874A (en) | 1989-12-06 |
Family
ID=15103139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63133370A Pending JPH01302874A (en) | 1988-05-31 | 1988-05-31 | Optical semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01302874A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04307975A (en) * | 1991-04-05 | 1992-10-30 | Sharp Corp | Optical device |
JP2008004640A (en) * | 2006-06-20 | 2008-01-10 | Toyoda Gosei Co Ltd | Light emitting device |
US7508002B2 (en) | 1997-07-29 | 2009-03-24 | Osram Gmbh | Surface-mountable light-emitting diode structural element |
-
1988
- 1988-05-31 JP JP63133370A patent/JPH01302874A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04307975A (en) * | 1991-04-05 | 1992-10-30 | Sharp Corp | Optical device |
US7508002B2 (en) | 1997-07-29 | 2009-03-24 | Osram Gmbh | Surface-mountable light-emitting diode structural element |
JP2008004640A (en) * | 2006-06-20 | 2008-01-10 | Toyoda Gosei Co Ltd | Light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3753011B2 (en) | Reflective light emitting diode | |
JPH01130578A (en) | Light emitting diode | |
JPH0436588B2 (en) | ||
JP3767420B2 (en) | Light emitting element | |
JP2000277813A (en) | Light source device | |
JPS61185980A (en) | Light emitting diode | |
CN209801374U (en) | Polarizing lens with large deflection angle and lamp | |
JPH01302874A (en) | Optical semiconductor device | |
TW201345002A (en) | Lens and LED package having the same | |
JPH0550754U (en) | Light emitting device | |
JPH0422356B2 (en) | ||
JPH0639464Y2 (en) | Light emitting diode | |
JP2007142290A (en) | Light-emitting apparatus | |
JPS61187384A (en) | Light emitting diode | |
JPS60182781A (en) | Semiconductor device | |
JP2001284656A (en) | LED lamp | |
JP2000261038A (en) | Light emitting diode | |
JPS5718376A (en) | Condensing device for semiconductor light emitting element | |
JPS61198692A (en) | light emitting diode | |
JPS61147586A (en) | light emitting diode | |
JPH02280388A (en) | Light emitting diode | |
JPH05291627A (en) | Light emitting diode | |
JP2551176B2 (en) | Light emitting diode lamp | |
JPH0643932Y2 (en) | Collective LED lamp | |
JPS6285479A (en) | Semiconductor composite photo receiving and emitting device |