[go: up one dir, main page]

JPH01302836A - Collection device of impurities on surface of semiconductor substrate - Google Patents

Collection device of impurities on surface of semiconductor substrate

Info

Publication number
JPH01302836A
JPH01302836A JP13298188A JP13298188A JPH01302836A JP H01302836 A JPH01302836 A JP H01302836A JP 13298188 A JP13298188 A JP 13298188A JP 13298188 A JP13298188 A JP 13298188A JP H01302836 A JPH01302836 A JP H01302836A
Authority
JP
Japan
Prior art keywords
droplet
substrate
impurities
stage
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13298188A
Other languages
Japanese (ja)
Inventor
Mokuji Kageyama
もくじ 影山
Ayako Maeda
綾子 前田
Takao Ota
多禾夫 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP13298188A priority Critical patent/JPH01302836A/en
Publication of JPH01302836A publication Critical patent/JPH01302836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To obtain a collection device which does not require oxidation process before collecting impurities, requires only a small amount of liquid needed for collecting impurities, increases sensitivity for measuring the impurities, and improves analysis accuracy of the impurities and reliability of analyzed value by providing a specific stage, a magnetic floating mechanism, and a droplet retainer. CONSTITUTION:This device has a stage 1 for mounting a semiconductor substrate 2, where the surface oxide film is dissolved, in horizontal state, magnetic floating mechanism 3 and 4 for rotating or traveling the stage 1 within the horizontal plane while it is being floated, and a droplet retainer 9 for retaining a droplet 8 dripped on the surface of the above semiconductor substrate 2. For example, with the semiconductor substrate 2, an oxide film on the substrate surface is exposed into steam of hydrofluoric acid aqueous solution so that it is dissolved and the hydrofluoric acid solution droplet 8 is dripped on the surface of the substrate 2. Then, by traveling the droplet 8 to the radium direction of the substrate 2 by the droplet retainer 9 while allowing the rotary stage 1 to be floated, the droplet 8 can be dripped over the entire surface of the substrate 2 and the impurities on the substrate 2 are collected by the droplet 8.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、半導体基板の表面の不純物を回折するために
基板表面の不純物を回収するための回収装置に係り、特
に表面の酸化膜が溶解された半導体基板を磁気浮上構造
により浮」ユさせた状態で基板表面を液滴で走査させる
装置に関する。
Detailed Description of the Invention [Objective of the Invention (Industrial Application Field) The present invention relates to a recovery device for recovering impurities on the surface of a semiconductor substrate in order to diffract the impurities on the surface of the substrate. The present invention relates to an apparatus in which a semiconductor substrate having an oxide film dissolved therein is suspended by a magnetic levitation structure and the surface of the substrate is scanned with droplets.

(従来の技術) 半導体基板上に形成された酸化膜などの薄膜中にナトリ
クム(Na)、カリウム(K)、鉄(Fe )等の不純
物が含まれていると、例えその量が極微量であっても、
半導体素子の電気的特性に大きな影響を与えることは良
く知られている。それゆえ、素子の電気的特性を向上さ
せる九めには、これらの基板上からの不純物の混入をで
きる限り抑制することが必要であり、そのためには基板
表面上の不純物を正確に測定する必要がある。
(Prior art) When impurities such as sodium (Na), potassium (K), iron (Fe), etc. are contained in a thin film such as an oxide film formed on a semiconductor substrate, even if the amount is extremely small, Even so,
It is well known that it has a great influence on the electrical characteristics of semiconductor devices. Therefore, the ninth step to improving the electrical characteristics of devices is to suppress the incorporation of impurities from the substrate as much as possible, and to do this, it is necessary to accurately measure impurities on the substrate surface. There is.

従来、基板表面上の不純物を測定するに際し、二次イオ
ン質量分析装置、オージェ電子分析装置および放射化分
析装置などによる機器分析が用いられてきたが、これら
に代って基板表面全体を簡便に分析する方法として、主
に次の2つの方法が用いられている。第1の方法は予め
基板表面に適切な熱酸化膜を生成せしめた後に、この基
板を弗酸蒸気中に5111!せしめ、表面の不純物を酸
化膜と共に弗酸溶液として回収し、分光分析装置にかけ
て不純物測定を行う気相分解法である。第2の方法は、
基板を酸化処理を施すことなく弗酸溶液中に浸漬して基
板表面全体の酸化膜を溶解し、その不純物を含む溶液を
測定する方法である。
Conventionally, instrumental analysis using secondary ion mass spectrometers, Auger electron spectrometers, activation analyzers, etc. has been used to measure impurities on the substrate surface, but instead of these methods, it is possible to easily measure the entire substrate surface. The following two methods are mainly used for analysis. The first method is to generate an appropriate thermal oxide film on the surface of the substrate in advance, and then immerse the substrate in hydrofluoric acid vapor. This is a gas phase decomposition method in which impurities on the surface are collected together with the oxide film as a hydrofluoric acid solution, and the impurities are measured using a spectrometer. The second method is
In this method, the substrate is immersed in a hydrofluoric acid solution without oxidation treatment to dissolve the oxide film on the entire surface of the substrate, and the impurity-containing solution is measured.

しかし、前者の第1の方法は、酸化工程があるので、こ
の工程における雰囲気から基板への不純物の混入、基板
表面からの不純物の蒸発および基板内部から基板表面へ
の不純物の拡散などが生じるおそれがある。また、後者
の第2の方法は、不純物回収のために必要な弗酸溶液量
が分析に必要な弗酸溶液量に対して多過ぎるので、回収
した溶液中の不純物濃度の低下が著しく、不純物分析デ
ータの精度が低下するという問題がある。
However, since the first method involves an oxidation step, there is a risk that impurities may enter the substrate from the atmosphere in this step, evaporate impurities from the substrate surface, and diffuse impurities from inside the substrate to the substrate surface. There is. In addition, in the latter second method, the amount of hydrofluoric acid solution required for impurity recovery is too large compared to the amount of hydrofluoric acid solution required for analysis, so the impurity concentration in the recovered solution decreases significantly, and the impurity There is a problem that the accuracy of analysis data decreases.

(発明が解決しようとする課題) 本発明は、上記し友ように不純物回収前に基板上に熱酸
化膜を生成するための酸化工程を有することに伴う問題
点、および不純物回収のために必要な弗酸溶液量が多い
ことに伴う問題点を解決すべくなされ九もので、不純物
回収前に酸化工程を必要とせず、不純物回収のために必
要な液量が少量の液滴で済み、基板表面の微量不純物を
回収し九液滴の不純物濃度の低下を最小限に抑え、不純
物測定の高感度化ならびに不純物の分析精度および分析
値の信頼性の向上を図り得る半導体基板表面不純物の回
収装置を提供することを目的とする。
(Problems to be Solved by the Invention) As mentioned above, the present invention solves the problems associated with having an oxidation process for generating a thermal oxide film on a substrate before recovering impurities, and the problems necessary for recovering impurities. This was developed to solve the problems associated with the large amount of hydrofluoric acid solution.It does not require an oxidation process before impurity recovery, only a small amount of liquid droplets are required for impurity recovery, and it can be used on substrates. A device for recovering impurities on the surface of semiconductor substrates that collects trace impurities on the surface, minimizes the decrease in the impurity concentration of droplets, and improves the sensitivity of impurity measurements, the accuracy of impurity analysis, and the reliability of analysis values. The purpose is to provide

[発明の構成] (課題を解決する友めの手段) 本発明の半導体基板表面不純物の回収装置は、表面の酸
化膜が溶解された半導体基板を水平状態に搭載するステ
ージと、このステージを浮上させた状態で水平面内で回
転または移動させる磁気浮上機構と、前記半導体基板の
表面に滴下された不純物回収用の液滴を保持する液滴保
持具とを具備してなることを特徴とする。
[Structure of the Invention] (A Companion Means for Solving the Problems) The device for recovering impurities on the surface of a semiconductor substrate of the present invention includes a stage on which a semiconductor substrate whose surface oxide film has been dissolved is horizontally mounted, and a stage on which the stage is levitated. The present invention is characterized in that it is equipped with a magnetic levitation mechanism that rotates or moves within a horizontal plane in a horizontal plane, and a droplet holder that holds droplets for collecting impurities dropped on the surface of the semiconductor substrate.

(作用) 液滴で基板上を走査させるように磁気浮上機構によりス
テージを回転寸たは移動させるように駆動することによ
りて、液滴で基板上の不純物を回収することが可能にな
る。このように、不純物回収のために必要な液量が少量
の液滴で済むので、基板表面の微量不純物を回収した液
滴の不純物濃度の低下が最小限に抑えられる。まな、ス
テージは浮上状態で駆動されるので、ステージ駆動のた
めの機械的摺動部が存在せず1機械的摩耗によシ発生す
る粉塵等が不純物として混入するというおそれもない。
(Operation) Impurities on the substrate can be collected with the droplets by driving the stage to rotate or move using the magnetic levitation mechanism so that the droplets scan the substrate. In this way, since only a small amount of liquid droplets are required to recover impurities, a decrease in the impurity concentration of the droplets that have recovered trace amounts of impurities on the substrate surface can be minimized. Furthermore, since the stage is driven in a floating state, there is no mechanical sliding part for driving the stage, and there is no fear that dust or the like generated by mechanical wear will be mixed in as impurities.

(実施例) 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図に示す半導体基板表面不純物の回収装置において
、1は磁気浮上機構によシ浮上されて水平面内で回転す
るように駆動される回転ステージであり、その上面に半
導体基板(ウェハ)2が装着されて固定されている。3
は上記回転ステージ2に固定された磁石であり、4はケ
ース5内で上記磁石3に同極が対向して設けられた磁石
である。
In the semiconductor substrate surface impurity recovery apparatus shown in FIG. 1, reference numeral 1 denotes a rotation stage which is levitated by a magnetic levitation mechanism and driven to rotate in a horizontal plane, and a semiconductor substrate (wafer) 2 is mounted on the upper surface of the rotation stage. installed and fixed. 3
is a magnet fixed to the rotary stage 2, and 4 is a magnet provided in the case 5 with the same polarity facing the magnet 3.

この磁石4は、基台10上のモータ6によシ水平面内で
回転駆動される回転テーブル7上に固定されている。し
たがって、ケース側の磁石4と回転ステージ側の磁石3
とが磁気的に反発して回転ステージ1が浮上し、ケース
側の磁石4の回転に応じて磁石3と共に回転ステージ1
が回転するようになりてbる。
The magnet 4 is fixed on a rotary table 7 which is rotated in a horizontal plane by a motor 6 on a base 10. Therefore, the magnet 4 on the case side and the magnet 3 on the rotating stage side
are magnetically repelled and the rotary stage 1 levitates, and as the magnet 4 on the case side rotates, the rotary stage 1 and the magnet 3
begins to rotate.

一方、前記半導体基板1は、基板表面の酸化膜が高純度
の弗化水素酸水溶液蒸気中(弗酸雰囲気中)に暴露され
て溶解されたものである。そして、この基板2の表面に
弗酸溶液の液滴8が滴下されて接触しておシ、この液滴
8を保持するためのくぼみが設けられているテフロン製
の液滴保持具9が設けられている。
On the other hand, in the semiconductor substrate 1, the oxide film on the surface of the substrate is exposed to vapor of a highly purified aqueous hydrofluoric acid solution (in a hydrofluoric acid atmosphere) and dissolved. A droplet 8 of the hydrofluoric acid solution is dropped onto the surface of the substrate 2 and comes into contact with the surface of the substrate 2. A droplet holder 9 made of Teflon and having a recess for holding the droplet 8 is provided. It is being

而して、上記不純物回収装置において、回転ステージ1
を浮上させた状態で回転させながら液滴保持具9により
て液滴8を基板2の半径方向へ移動させることによって
、液滴8を基板上の全面にわたりて走査させることがで
き、基板上の不純物を液滴8により回収することが可能
になる。
Therefore, in the above impurity recovery device, the rotation stage 1
By moving the droplet 8 in the radial direction of the substrate 2 using the droplet holder 9 while rotating it in a floating state, the droplet 8 can be scanned over the entire surface of the substrate. It becomes possible to collect impurities with the droplets 8.

このように、不純物回収のために必要な液量が少量の液
滴で済むので、基板表面の微量不純物を回収した液滴の
不純物濃度の低下が防止される。
In this way, since only a small amount of liquid droplets are necessary for recovering impurities, a decrease in the impurity concentration of the droplets that have recovered trace impurities on the substrate surface is prevented.

また、回転ステージ1は浮上状態で駆動されるので、ス
テージ駆動のための機械的摺動部が存在せず1機械的摩
耗により発生する粉塵等が不純物として混入するという
おそれもない。したがって、不純物測定の高感度化なら
びに不純物の分析精度および分析値の信頼性の向上を図
ることができる。
Further, since the rotary stage 1 is driven in a floating state, there is no mechanical sliding part for driving the stage, and there is no fear that dust or the like generated by mechanical wear will be mixed in as impurities. Therefore, it is possible to improve the sensitivity of impurity measurement, the accuracy of impurity analysis, and the reliability of analytical values.

なお、従来例で説明し次男法では、不純物の検出限界が
1010〜1011のオーダであったのに対して、上記
装置を用いた方法では検出限界が108〜1o9のオー
ダに低下した。
In addition, in the second son method explained in the conventional example, the detection limit of impurities was on the order of 1010 to 1011, whereas in the method using the above-mentioned apparatus, the detection limit was lowered to the order of 108 to 109.

また、上記装置を用いると、不純物回収作業が容易にな
り、回収作業時の基板の破損率がほぼ零になう、従来例
の方法では5%程度であったのに対して激減し、作業の
安定性が得られた。
In addition, when using the above device, the impurity recovery work becomes easier, and the damage rate of the substrate during the recovery work becomes almost zero, compared to about 5% with the conventional method, and the work is significantly reduced. stability was obtained.

第2図は他の実施例を示しており、2,8および9は前
記実施例と同様の半導体基板、液滴および液滴保持具で
あ・す、21は磁力により浮上した状態で水平面内で移
動自在な移動ステージであって、磁石22・・・が固定
されている。23は基台24上に水平方向に設けられて
固定された磁気レールであり、磁石25・・・がレール
長さ方向に配列されている。26は上記磁気レール23
上で磁力により浮上してレール長さ方向に水平面内で移
動自在な中間ステージであり、前記磁気レール23の磁
石25・・・と同極が対向する磁石27・・・および移
動方向に直交する方向に配列された磁石28・・・が設
けられている。この磁石28・・・と前記移動ステージ
21の磁石22・・・とはrim[が対向するように設
けられている。
FIG. 2 shows another embodiment, in which 2, 8 and 9 are the same semiconductor substrates, droplets and droplet holders as in the previous embodiment, and 21 is suspended in a horizontal plane by magnetic force. It is a movable stage that can be moved freely, and magnets 22... are fixed. Reference numeral 23 denotes a magnetic rail provided and fixed horizontally on the base 24, and magnets 25... are arranged in the length direction of the rail. 26 is the above magnetic rail 23
It is an intermediate stage which is levitated by a magnetic force above the rail and is movable in a horizontal plane in the length direction of the rail, and has magnets 27 with the same polarity facing the magnets 25 of the magnetic rail 23 and which are orthogonal to the direction of movement. Magnets 28... arranged in the direction are provided. The magnets 28 and the magnets 22 of the moving stage 21 are provided so that the rims thereof face each other.

上記不純物回収装置においては、中間ステージ26が水
平面内のX方向に移動し、移動ステージ21が水平面内
のY方向に移動することによって、基板2は水平面内の
任意の位置に移動可能であり、液滴保持具9を一定位置
に保持しておくことによって、液滴8によシ基板上全面
にわたって走査することが可能になる。したがって、前
記実施例と同様に不純物の回収を行うことができ、前記
したと同様の効果が得られる。
In the impurity recovery device described above, the intermediate stage 26 moves in the X direction in the horizontal plane, and the moving stage 21 moves in the Y direction in the horizontal plane, so that the substrate 2 can be moved to any position in the horizontal plane, By holding the droplet holder 9 in a fixed position, the droplet 8 can be scanned over the entire surface of the substrate. Therefore, impurities can be recovered in the same manner as in the embodiment described above, and the same effects as described above can be obtained.

なお、磁気浮上機構は上記各実施例に限らず、種々の変
形実施が可能である。
Note that the magnetic levitation mechanism is not limited to the above-mentioned embodiments, and various modifications are possible.

[発明の効果] 上述し友ように本発明の半導体基板表面不純物の回収装
置によれば、基板表面の微量不純物を回収シた液滴の不
純物濃度の低下を防止でき、不純物測定の高感度化なら
びに不純物の分析精度および分析値の信頼性の向上を図
ることができる。
[Effects of the Invention] As mentioned above, according to the device for recovering impurities on the surface of a semiconductor substrate of the present invention, it is possible to prevent a drop in the impurity concentration of droplets that collect trace impurities on the substrate surface, and to improve the sensitivity of impurity measurement. Furthermore, it is possible to improve the accuracy of impurity analysis and the reliability of analytical values.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体基板表面不純物の回収装置の一
実施例を概略的に示す構成説明図、第2図は同じく他の
実施例を水量構成説明図である。 1・・・半導体基板、2・・・回転ステーゾ、3,4゜
22.25,27.28・・・磁石、7・・・回転テー
ブル、8・・・液滴、9・・・液滴保持具、2ノ・・・
移動ステージ、23・・・磁気レール、26・・・中間
ステージ。 出願人代理人  弁理士 鈴 江 武 彦第1図 第2図
FIG. 1 is a structural explanatory diagram schematically showing one embodiment of a semiconductor substrate surface impurity recovery apparatus according to the present invention, and FIG. 2 is a water quantity structural diagram of another embodiment. DESCRIPTION OF SYMBOLS 1... Semiconductor substrate, 2... Rotating stator, 3, 4 degrees 22.25, 27.28... Magnet, 7... Rotating table, 8... Droplet, 9... Droplet Holder, 2 pieces...
Moving stage, 23... Magnetic rail, 26... Intermediate stage. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  表面の酸化膜が溶解された半導体基板を水平状態に搭
載するステージと、このステージを浮上させた状態で水
平面内で回転または移動させる磁気浮上機構と、前記半
導体基板の表面に滴下された液滴を保持する液滴保持具
とを具備してなることを特徴とする半導体基板表面不純
物の回収装置
A stage on which a semiconductor substrate with an oxide film on the surface thereof has been dissolved is mounted in a horizontal state, a magnetic levitation mechanism that rotates or moves this stage in a horizontal plane while floating, and a droplet dropped on the surface of the semiconductor substrate. A device for recovering impurities on the surface of a semiconductor substrate, comprising: a droplet holder for holding a droplet holder;
JP13298188A 1988-05-31 1988-05-31 Collection device of impurities on surface of semiconductor substrate Pending JPH01302836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13298188A JPH01302836A (en) 1988-05-31 1988-05-31 Collection device of impurities on surface of semiconductor substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13298188A JPH01302836A (en) 1988-05-31 1988-05-31 Collection device of impurities on surface of semiconductor substrate

Publications (1)

Publication Number Publication Date
JPH01302836A true JPH01302836A (en) 1989-12-06

Family

ID=15094000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13298188A Pending JPH01302836A (en) 1988-05-31 1988-05-31 Collection device of impurities on surface of semiconductor substrate

Country Status (1)

Country Link
JP (1) JPH01302836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249773A (en) * 1993-02-23 1994-09-09 Ebara Corp Measuring apparatus for particle on substrate surface
WO1999052139A1 (en) * 1998-04-04 1999-10-14 Tokyo Electron Limited Probe device
JP2010085447A (en) * 2008-09-29 2010-04-15 Nidec Copal Corp Image blurring correction device, imaging lens unit, and light amount control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249773A (en) * 1993-02-23 1994-09-09 Ebara Corp Measuring apparatus for particle on substrate surface
WO1999052139A1 (en) * 1998-04-04 1999-10-14 Tokyo Electron Limited Probe device
JP2010085447A (en) * 2008-09-29 2010-04-15 Nidec Copal Corp Image blurring correction device, imaging lens unit, and light amount control device

Similar Documents

Publication Publication Date Title
JP3059144B2 (en) Impurity measurement method
US4671852A (en) Method of forming suspended gate, chemically sensitive field-effect transistor
JPH01302836A (en) Collection device of impurities on surface of semiconductor substrate
KR100254015B1 (en) Impurity Analysis Method of Semiconductor Substrate
US5055413A (en) Method of measuring impurities in oxide films using a meltable sample collection stick
US6544803B2 (en) Method for determining the concentration of contamination on a component
JPH08160032A (en) Analysis of impurities on surface of semiconductor substrate
Hang et al. Direct analysis of trace rare earth elements by fluorination assisted ETV-ICP-AES with slurry sampling through nano-sized TiO2 separation/preconcentration
JPH08233709A (en) Method for measuring impurities
JP3257125B2 (en) Analysis method using decomposition solution
JP2005109292A (en) Method and apparatus for recovering object to be measured around wafer
JP3298918B2 (en) Analysis method using decomposition solution and analyzer
JP2772035B2 (en) Method for measuring the amount of impurities on the wafer surface
JP3627918B2 (en) Semiconductor substrate surface evaluation analyzer and jig used therefor
JPH11145230A (en) Analysis of polycrystalline silicon film
JPH0888258A (en) Electrical characteristic evaluation method of semiconductor material
CN119673797A (en) Method and device for collecting substances on wafer surface
JP2007333456A (en) Method for detecting particle-containing fissionable material using fission track method
Khanna Determination of sub-nanogram quantities of boron by diffusion in silicon
JPH0627643B2 (en) Micro positioning mechanism
JP2882419B2 (en) Metal impurity measurement method and semiconductor device manufacturing method using the same
JP2005236145A (en) Substrate inspecting apparatus
JP2000009615A (en) Support rod guided liquid phase dissolving method its and apparatus
JPH043445A (en) Measurement of anion attracted to semiconductor substrate surface
JPH09318507A (en) Recovery method and recovery equipment of surface contaminant