[go: up one dir, main page]

JPH01299641A - Structure having multiple surface and its production - Google Patents

Structure having multiple surface and its production

Info

Publication number
JPH01299641A
JPH01299641A JP63129715A JP12971588A JPH01299641A JP H01299641 A JPH01299641 A JP H01299641A JP 63129715 A JP63129715 A JP 63129715A JP 12971588 A JP12971588 A JP 12971588A JP H01299641 A JPH01299641 A JP H01299641A
Authority
JP
Japan
Prior art keywords
surface area
sheet material
manufacturing
folded
area structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63129715A
Other languages
Japanese (ja)
Other versions
JPH06104194B2 (en
Inventor
Yasuo Nagazumi
永積 靖夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAZUMI YOSHIKO
NAGAZUMI YOSHIYUKI
Original Assignee
NAGAZUMI YOSHIKO
NAGAZUMI YOSHIYUKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAZUMI YOSHIKO, NAGAZUMI YOSHIYUKI filed Critical NAGAZUMI YOSHIKO
Priority to JP63129715A priority Critical patent/JPH06104194B2/en
Publication of JPH01299641A publication Critical patent/JPH01299641A/en
Publication of JPH06104194B2 publication Critical patent/JPH06104194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/32Packing elements in the form of grids or built-up elements for forming a unit or module inside the apparatus for mass or heat transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)
  • Folding Of Thin Sheet-Like Materials, Special Discharging Devices, And Others (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To enable production of a large amt. of structure having multiple surfaces, high rigidity and resistance by folding a sheet material to a doubly folded shell structure and forming the multiple surface structure three- dimensionally by superposing many number of said doubly folded shell while bonding the edge lines to each other. CONSTITUTION:For example, zig-zag folds are provided to a sheet material comprising such as metal or other optional material. Solid line parts in the drawing correspond to edge line parts of crests of an assembled multiple surface structure, and dotted line parts correspond to bottom lines of troughs. A multiple surface structure is obtd. if the sheet material is folded and bonded along the edge lines and the bottom lines in this state. Structures having different surface and surface area may be obtd. if the depth of the folds, i.e. degrees of the difference between the crests and the bottoms are varied depending on a purpose in a stage of laminating folded sheets. Obtd. structure may be applied to a material for catalyst, heat exchanger, filter for fluid, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はシート素材を二重折り曲げ殻構造にして稜線を
互いに接合しながら多数重ね合わせて立体的に形成した
多表面積構造体およびその製法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a multi-surface area structure formed three-dimensionally by stacking sheet materials in a double-folded shell structure with their ridgelines joined to each other, and a method for manufacturing the same. It is something.

[従来の技術] 触媒、熱交換、イオン交換、流体のP通用などの装置中
で流体に関与する部分の接触面積の、より拡大化が従来
から要望されている0例えば、触媒などの場合において
は、化学反応の量は触媒担体の表面積によって支配され
、また−過装置やイオン交換器においては同一の圧力条
件下で処理される流体流量がフィルタの表面積によって
支配される。したがって、流体と接触する部分の接触面
積をいかに拡大して、上記装置等の処理効果を増大する
かが重要な技術的課題となっている。
[Prior Art] In the case of catalysts, etc., it has been conventionally desired to further increase the contact area of parts involved in fluids in equipment for catalysts, heat exchange, ion exchange, P-passage of fluids, etc. The amount of chemical reaction is controlled by the surface area of the catalyst support, and in filters and ion exchangers, the flow rate of the fluid processed under the same pressure conditions is controlled by the surface area of the filter. Therefore, it has become an important technical issue how to increase the contact area of the portion that comes into contact with the fluid to increase the processing effect of the above-mentioned devices and the like.

この問題を解決する方法として従来においては、流体に
接触する部分の素材の直線的な折り曲げ、例えば車のエ
ンジンのエアクリーナ部分のように一重折り曲げ構造や
、微細なキャピラリーを束ねた構造にするなどして流体
に接触する部分の表面積の拡大化が図られている。
Conventional methods to solve this problem include linearly bending the material in the parts that come into contact with the fluid, such as creating a single-fold structure like the air cleaner part of a car engine, or creating a structure in which fine capillaries are bundled. In this way, the surface area of the part that comes into contact with the fluid is expanded.

[発明が解決しようとする問題点] しかしながら、従来、そのような多表面積構造体を製造
するための製造工程が複雑になるため価格的な点から実
現できないことが多く、また稼動時における内部流体の
圧力に対する構造上の強度・剛性が十分でない等の問題
が残り、実現できないのが実状である。
[Problems to be solved by the invention] However, conventionally, the manufacturing process for manufacturing such a multi-surface area structure is complicated, so it is often not possible to realize it from a cost standpoint, and the internal fluid during operation is In reality, problems such as insufficient structural strength and rigidity to withstand the pressures remain, making it impossible to achieve this goal.

したがって大量生産に適する多表面積構造体とその製法
の開発が要望されている。
Therefore, there is a need for the development of a multi-surface area structure suitable for mass production and a method for manufacturing the same.

[問題を解決するための手段] 本発明はシート素材を二重折り曲げ殻構造にするために
、各単体の稜線を相互に接合しながら多数重ね合わせた
立体的な多表面積構造体に形成してゆくので、従来技術
による一重折り曲げ殻構造では実現できなかった高い剛
性、耐性の多表面積構造体が可能となり、かつ大量生産
に適する製法を提供することを目的としている。
[Means for solving the problem] In order to make the sheet material into a double-folded shell structure, the present invention forms a three-dimensional multi-surface-area structure in which the ridge lines of each single piece are overlapped and bonded to each other. Therefore, it is an object of the present invention to provide a manufacturing method that enables a multi-surface area structure with high rigidity and durability that could not be realized with a single-folded shell structure according to the prior art, and that is suitable for mass production.

[作用コ 第1図は本発明による二重折り曲げ殻構造を形成するた
めのシート素材の平面展開パターンを示す0図示のよう
に各シート素材(金属、その他の素材であってよい)に
例えばジグザグした折り目をつける0図示の実線部分は
組立てた際、山の稜線に対応し、点線は谷線に相当する
[Operation Figure 1 shows the planar unfolding pattern of the sheet material for forming the double-folded shell structure according to the present invention.As shown in the figure, each sheet material (which may be made of metal or other material) is provided with, for example, a zigzag pattern. The solid lines shown in the figure correspond to the ridge lines of the mountains when assembled, and the dotted lines correspond to the valley lines.

こうしておいて、各シートのmu、谷線を折り曲げて接
合してゆけば多表面積構造体が形成できる。その理由は
、本発明の如き二重折り曲げ殻構造においては折り曲げ
線以外の変型が僅かである限り該構造体全体の形状変化
の自由度は1つしかないので、複数のシート素材を折り
曲げるべき稜線に沿って接合した11!遺体の自由度も
1つしかない。
In this way, by bending and joining the mu and valley lines of each sheet, a multi-surface area structure can be formed. The reason for this is that in the double-folded shell structure of the present invention, there is only one degree of freedom in changing the shape of the entire structure as long as the deformation other than the bending line is slight. 11 joined along! The body only has one degree of freedom.

したがって、上記自由度の方向に沿って該構造体の二重
折り曲げ角を理論上0〜180度の範囲で調整すること
によって接着された折り曲げ部分の引起しの程度によっ
て表面積の興なる多表面積構造体が形成されうる。
Therefore, by adjusting the double bending angle of the structure in the theoretical range of 0 to 180 degrees along the direction of the above-mentioned degrees of freedom, a multi-surface area structure in which the surface area increases depending on the degree of elongation of the bonded bent portions can be obtained. A body can be formed.

[実施例] 次に本発明による二重折り曲げ殻構造体の実施例につい
て図面を参照して説明する。
[Example] Next, an example of the double-folded shell structure according to the present invention will be described with reference to the drawings.

第2図は、1つの実施例としての組立てられた多表面積
構造体の外観を示す、すなわち、先に述べたように第1
図に示す各シート素材を積層して何らかの手段により山
と谷が形成されるように折り曲げ、それを例えば稜線ど
うしを接合してから膨張してゆけば第2図に示す構造体
が形成される。そして積層してゆく過程で折り目の深さ
、すなわち山と谷との落差の程度によって、目的に応じ
て表面積の異なる構造体が形成でき、流体処理機能にも
相違が生じることになる。
FIG. 2 shows the appearance of an assembled multi-surface area structure in one embodiment, i.e., the first
The structure shown in Fig. 2 is formed by stacking the sheet materials shown in the figure, bending them by some means to form peaks and valleys, and then, for example, joining the ridges together and then expanding them. . In the process of stacking layers, structures with different surface areas can be formed depending on the purpose, depending on the depth of the creases, that is, the degree of the difference between the peaks and valleys, and the fluid processing functions will also differ.

換言すれば、第2図の多表面積構造体において、組立て
の際、図の左から力を加えて該構造体をつぶす(潰す)
かのように、山と谷の折り曲げ程度を調節することによ
って、流体に対する処理機能の異なる多表面積構造体が
でき上る。
In other words, when assembling the multi-surface area structure shown in Figure 2, force is applied from the left side of the figure to crush the structure.
In this way, by adjusting the degree of bending of the peaks and valleys, a multi-surface area structure with different fluid processing functions is created.

例えば、折り曲げを強くすることによって表面積の大な
る(つぶしたような)構造体ができ、他方、折り曲げ度
を弱くすることによって表面積の比較的小なる構造体に
することができる。
For example, a structure with a large surface area (like a collapsed structure) can be created by strongly bending, whereas a structure with a relatively small surface area can be created by weakening the degree of bending.

なお、第2図のものは第1層から第4層まで積層した場
合の多表面積構造体を示す。
Note that FIG. 2 shows a multi-surface area structure in which the first to fourth layers are laminated.

第3図は、2重折り曲げ殻構造を形成する別の実施例を
示す0図中、シート素材上の実線部分を山の稜線に、点
線を谷線になるように折り曲げて、例えば稜線同志を接
合すれば別の円筒形構造の多表面積構造体が形成できる
FIG. 3 shows another embodiment of forming a double-folded shell structure. In FIG. When joined, a multi-surface area structure of another cylindrical structure can be formed.

第4図は、第2図の構造体を製造する製造工程の基本原
理図を示す。
FIG. 4 shows a basic principle diagram of the manufacturing process for manufacturing the structure shown in FIG. 2.

図中、1はシート素材、2は折り曲げ部分の印刷工程、
3は重ね合わせ工程、4は接合工程、5は構造体の膨張
工程、6は製品(多表面積構造体)を示す。
In the figure, 1 is the sheet material, 2 is the printing process of the folded part,
3 indicates the overlapping process, 4 indicates the bonding process, 5 indicates the structure expansion process, and 6 indicates the product (multi-surface area structure).

この場合に、シート素材上に第1図に示した如きパター
ンを印刷工程2を介して印刷し、重ね合わせ工程3で重
ね合わせ、接合工程4で接合し、膨張工程5で多表面積
構造体の原形を膨張させながら折り曲げて構造体として
の製品6に仕上げる。
In this case, a pattern as shown in FIG. 1 is printed on a sheet material in a printing process 2, superposed in an overlapping process 3, bonded in a bonding process 4, and formed into a multi-surface structure in an expansion process 5. The original shape is expanded and bent to form a product 6 as a structure.

第5図は本発明による多表面積構造体を製造する製造工
程の具体的な実施例を示す、同図において、10−1.
10−2.10−3・・・10−iは折り目パターンが
印刷されたシート素材、11はシート素材のパターン位
置合わせを行なう張力制御部、12は重ね合わせ部、1
3は重ね合わせ位置検出部、14は接合部、15は気圧
を調整する気圧室、16.17.18はローラ対、19
は接合され固定された稜線以外の空間を膨張させながら
折り曲げを行なう(自由度が1のなめ可能となる)膨張
部、20は気圧制御部、21は仕上り状態検出部をそれ
ぞれ示す。
FIG. 5 shows a specific example of a manufacturing process for manufacturing a multi-surface area structure according to the present invention. In the same figure, 10-1.
10-2.10-3...10-i is a sheet material on which a crease pattern is printed, 11 is a tension control section for aligning the pattern of the sheet material, 12 is an overlapping section, 1
3 is an overlapping position detection part, 14 is a joint part, 15 is an air pressure chamber for adjusting the air pressure, 16, 17, 18 is a pair of rollers, 19
2 shows an expansion section that performs bending while expanding a space other than the joined and fixed ridgeline (allowing licking with one degree of freedom), 20 an air pressure control section, and 21 a finished state detection section.

各巻取ロールから繰出された各シート素材10−1.1
0−2.・・・10−1は張力制御部11において各パ
ターンの位置合わせが行なわれ、次いで重ね合わせ部1
2で重ね合わせが行なわれる0重ね位置の微少なずれは
重ね合わせ位置検出部13で検出され、線j、を介して
張力制御部11へ送られ、ずれが修正されて接合部14
で稜線部分の接合が行なわれる。所望の数だけ′f?を
層され稜線部分が接合された構造体の原形が膨張部19
で膨張され、接合され固定された稜線部分以外の空間が
拡大されて連続した多表面積構造体ができ上がる。なお
、完成品としての構造体における接合点のずれ具合、あ
るいは重ね合わせ状態の微少な偏れは、絶えず線jzρ
3を介して張力制御部11および膨張部に対する気圧制
御部20への制御信号により(検出部21から)修正さ
れている。
Each sheet material 10-1.1 fed out from each winding roll
0-2. ...10-1, each pattern is aligned in the tension control section 11, and then the overlapping section 1
A slight deviation at the 0 overlap position where the overlap is performed in step 2 is detected by the overlap position detection unit 13, and is sent to the tension control unit 11 via the line j, where the deviation is corrected and
The ridgeline portions are joined. As many as desired 'f? The original form of the structure in which the ridges are layered and the ridgeline parts are joined is the expansion part 19.
The space other than the joined and fixed ridgeline portions is expanded to create a continuous multi-surface area structure. In addition, the degree of deviation of the joint points in the structure as a finished product, or the slight deviation of the overlapping state, is constantly caused by the line jzρ.
3 to the tension control section 11 and the air pressure control section 20 for the expansion section (from the detection section 21).

第6図は、第1図に示す如きジグザグパターンを有する
各シート素材を重ね・1¥わせ位置に設定する設定例を
示す、第2層以下のジグザグパターンが、上からみた場
合に図示のような各位置にくるように設定して稜線を接
合してゆくようにする。
FIG. 6 shows an example of setting the sheet materials having a zigzag pattern as shown in FIG. Set it so that it comes to each position and join the ridge lines.

第7図は、第6図の各パターンを有するシート素材が積
み重ねられた状態を断面方向から見た状態を示す。
FIG. 7 shows a stacked state of sheet materials having the respective patterns shown in FIG. 6, viewed from a cross-sectional direction.

第8図はシート素材に印刷するジグザグパターンの一例
を示す、各シート素材ごとに、位置合わせマークMの場
所をずらせておいて山の稜線に相当する位置が適正な位
置にくるように制御が行なわれる。
Figure 8 shows an example of a zigzag pattern printed on a sheet material. For each sheet material, the location of the alignment mark M is shifted and control is performed so that the position corresponding to the ridgeline of the mountain is at the appropriate position. It is done.

電熱素材を用いた場合にジグザグ線部分にループ電流を
流して接合する。なお、P部分は、さん孔部分を示し斜
線で示した部分は導電体の巾を広くとってあり、ジグザ
グ部分を流れるループ電流が該部分に流れた際にも電流
が拡散するので溶着されないようにしている。そしてさ
ん孔された部分は、後に述べる実施例で最終製品の不要
部切離しのために設けである。
When using electric heating material, a loop current is passed through the zigzag wire section to join. In addition, in the P part, the width of the conductor is widened in the diagonally shaded part, which indicates the perforated part, so that even when the loop current flowing through the zigzag part flows through that part, the current will spread, so that it will not be welded. I have to. The perforated portion is provided for cutting off unnecessary parts of the final product in the embodiment described later.

第9図は高周波源HPを用いてコアコイルに電流を流し
ておいて、フレーム部を上下に移動させながら圧着力を
加えてシート素材の稜線部を溶着する実施例を示す。
FIG. 9 shows an embodiment in which a current is applied to the core coil using a high frequency source HP, and the ridgeline portion of the sheet material is welded by applying pressure while moving the frame portion up and down.

第10図は、積層させる各シート素材の間に溶解する接
合媒体を接合すべき稜線部分に配置し、その間にガス発
生媒体を配置して圧搾(または加熱)して溶着させ、多
表面積構造体を形成する別の実施例を示す。
In Figure 10, a bonding medium that dissolves between the laminated sheet materials is placed on the ridgeline to be bonded, and a gas-generating medium is placed in between and compressed (or heated) to weld and form a multi-surface area structure. Another example is shown below.

すなわち同図で、(イ)のように接合媒体およびガス発
生媒体をサンドイッチしておいて、(ロ)のように圧力
を加え、接合媒体を溶解させてシートを互いに接合させ
、加熱によりガス発生媒体をガス化させ、(ハ)のよう
にガスを発生させて多表面積構造体の原形を膨張させて
折り曲げ、(ニ)然る後に折り曲げたたむようにする。
In other words, in the same figure, the bonding medium and the gas generating medium are sandwiched together as shown in (a), pressure is applied as shown in (b), the bonding medium is melted and the sheets are bonded together, and gas is generated by heating. The medium is gasified, and as in (c) gas is generated to expand and bend the original shape of the multi-surface area structure, and (d) the original shape of the multi-surface area structure is then folded.

第11図は、第5図に示す製造工程中の膨張工程の具体
的な膨張方法を示す0重ね合わせられ接合された多表面
積構造体の原形は、偏らされて稜線が接合された段差の
あるシート層になっているので図示のように切断面の穴
に向けて複数の噴射口から圧縮空気を送り込んで膨張さ
せ多表面積構造体を形成する。
Figure 11 shows the specific expansion method of the expansion process in the manufacturing process shown in Figure 5.The original shape of the overlapping and joined multi-surface area structure has a stepped shape with deviated and joined ridge lines. Since it is a sheet layer, as shown in the figure, compressed air is sent into the hole in the cut surface from a plurality of injection ports to expand it and form a multi-surface area structure.

第12図は、第4図の製造工程において、ローラ対17
の部分にジグザグ状に正負極交互に帯電させたローラを
用いてシート素材相互の電気的反発力を利用して膨張さ
せ折り曲げ線に沿って多表面積構造体を形成する実施例
を示す。
FIG. 12 shows the roller pair 17 in the manufacturing process of FIG.
An example will be shown in which a roller is charged alternately with positive and negative electrodes in a zigzag pattern to expand the sheet material using the mutual electrical repulsion force to form a multi-surface area structure along the bending line.

第13図は、膨張部において、膨張工程の初期に超音波
または機械的振動を加えることによって円滑な膨張を行
なわせる他の実施例を示す。
FIG. 13 shows another embodiment in which smooth expansion is performed by applying ultrasonic waves or mechanical vibrations to the expansion section at the beginning of the expansion process.

ガイドGに沿ってローラから送り出された接合剤多表面
積構造体の原形に対して超音波変換器Tから超音波を加
えて膨張させる。またR械的振動を与える場合には、折
り曲げ線に囲まれた微少面の固有振動数の整数倍程度の
振動数を加えると効果的に膨張しうる。
Ultrasonic waves are applied from an ultrasonic transducer T to the original shape of the adhesive multi-surface area structure sent out from the roller along the guide G to cause it to expand. In addition, when applying R mechanical vibration, effective expansion can be achieved by applying a vibration frequency that is approximately an integral multiple of the natural frequency of the microscopic surface surrounded by the bending line.

第14図は、シート素材を両側から保護フィルム(膜)
で挾んでシーム溶着装置S、S2でシームしてから接合
し、膨張部の手前でロータリーカッタRなどで再縁を切
断することによって膨張させるようにした実施例を示す
、この実施例の場合は、極薄膜の多表面積構造体を形成
したり、あるいは弾性的なシート素材などの形状記憶を
有するシート材から上記構造体を製造するのに適してい
る。
Figure 14 shows a protective film (membrane) on both sides of the sheet material.
This example shows an example in which the parts are sandwiched and seamed using seam welding devices S and S2, then joined, and expanded by cutting the edges with a rotary cutter R or the like before the expansion part. It is suitable for forming multi-surface area structures of ultra-thin films, or for manufacturing the above-mentioned structures from sheet materials having shape memory, such as elastic sheet materials.

第15(^)(B)図は、上記のようにして出来上った
多表面積構造体の両端をふさいで最終的な完成品にする
様子を示す、第4図の構造体を、かなり潰したような状
態(18C変形)で左側の切断面を見ると、第15(A
)図のような形で形成されている。したがって、各格子
状の開口部の中心に連通孔p、、 Pz、 PJ  ・
・・がくるような端末面部材EMを接着することによっ
て完成する。
Figure 15(^)(B) shows how the multi-surface area structure produced as described above is closed at both ends to form the final finished product.The structure in Figure 4 is considerably crushed. If you look at the cut surface on the left in a state like that (18C deformation), you will see that the 15th (A
) It is formed in the shape shown in the figure. Therefore, communicating holes p, , Pz, PJ are located at the center of each grid-like opening.
It is completed by gluing the end face member EM that looks like this.

なお、本発明の多表面積構造体をフィルタとして使うよ
うな場合には、連通孔は一列おきに形成する。すなわち
、P、 P、の列の前後の連通孔274列およびPJ 
p、 p2列は省略すればよい。
Note that when the multi-surface area structure of the present invention is used as a filter, communication holes are formed in every other row. That is, 274 rows of communication holes before and after rows P and P, and PJ
Columns p and p2 may be omitted.

第16図は第15図のように完成させて形成した第4図
の多表面積構造体を4ユニツトを使って構成した触媒装
置を示す、 v、、 v、、 V、、 v。
FIG. 16 shows a catalyst device constructed by using four units of the multi-surface area structure of FIG. 4, which was completed and formed as shown in FIG. 15, v,, v,, V,, v.

が当該構造体を示し、EMは連通孔を有する端末面部材
、SPはスペーサであって左から入ってくる流体(ガス
等)が右へ抜ける。
indicates the structure, EM is an end face member having a communication hole, and SP is a spacer through which fluid (gas, etc.) entering from the left exits to the right.

第17図は本発明による多表面積構造体を8ユニツト使
用して構成したポンプ機能をもたせた応用例を示す、こ
の実施例では容器に図示°のように収めた本発明による
構造体8ユニットに対して脈動圧を加えてボンピング作
用を行なわすことができる。
Figure 17 shows an application example in which eight units of the multi-surface area structure according to the present invention are used to provide a pump function. A pumping action can be performed by applying pulsating pressure to the pump.

E効果] 以上述べたように本発明においては各シート素材につい
て二重折り曲げ殻構造にして稜線を接合して積層構造に
仕上げているためその製造プロセスも比較的簡単なもの
で済み、大量生産が容易にできる。
Effect E] As described above, in the present invention, each sheet material has a double-folded shell structure and the ridges are joined to create a laminated structure, so the manufacturing process is relatively simple and mass production is possible. It's easy to do.

本発明の多表面積構造体のその他の特徴、利点は下記の
通りである。
Other features and advantages of the multi-surface area structure of the present invention are as follows.

【1重接合部を介して同一平面上に異なるシート素材の
面が並ぶため、全体的な構造強度、剛性が極めて高い構
造を実現でき、外部からの衝撃や流体圧力による破壊の
限界を高めることが可能となる。
[Since the surfaces of different sheet materials are aligned on the same plane through a single joint, a structure with extremely high overall structural strength and rigidity can be achieved, increasing the limit of destruction due to external impact or fluid pressure. becomes possible.

[2]二重折り曲げ殻を構成する部分平面は、折り曲げ
のピッチに対応して微細なものとすることができ、この
部分平面は周囲を剛性の高い折り曲げ線で囲まれている
ことから、たわみ量が少なく対向する他の部分平面との
間隔を最少限に押えることができ、全体の容積を削減す
ることができる。
[2] The partial planes that make up the double-folded shell can be made fine in proportion to the pitch of the folds, and since these partial planes are surrounded by highly rigid bending lines, they do not bend easily. Since the amount is small, the distance between the opposing partial planes can be minimized, and the overall volume can be reduced.

具体的に短辺をa、長辺をbとして矩形の部分平面のた
わみ量と応力で近似的に計算し比較すると以下のように
なる。
Specifically, when the short side is a and the long side is b, an approximate calculation is made using the deflection amount and stress of a rectangular partial plane, and the results are as follows.

微小たわみ理論に基づく周辺単純支持の矩形板が分布荷
重Pを受ける場合の最大たわみ一1aX最大応力5na
xは下記の式(1)、(2)で与えられる。
Maximum deflection - 1a x maximum stress 5na when a rectangular plate with simple peripheral support receives distributed load P based on minute deflection theory
x is given by the following equations (1) and (2).

Wnax=^IPa”/ (Eh” ) −(1)Sl
ax= BIPa”/(h”)=−−−(2)上式にお
いてEは板の弾性率、hは板厚、^1、B1は(b/a
)で定まる係数である。
Wnax=^IPa”/ (Eh”) −(1) Sl
ax=BIPa”/(h”)=---(2) In the above formula, E is the elastic modulus of the plate, h is the plate thickness, ^1, B1 is (b/a
) is the coefficient determined by

上式からbのみが違うふたつの条件にある板のたわみと
応力のそれぞれの比は、単純に^1の比とB1の比で表
わせることがわかる。上記係数は下記の数値であること
が知られている(機械工学便覧、第5版、機械学会[4
−P67.68参照)。
From the above equation, it can be seen that the respective ratios of the deflection and stress of the plate under the two conditions where only b is different can be simply expressed as the ratio of ^1 and the ratio of B1. It is known that the above coefficient is the following numerical value (Mechanical Engineering Handbook, 5th edition, Japan Society of Mechanical Engineers [4
- see page 67.68).

従ってこの場合4:1の矩形に生じるたわみと応力の散
大値は正方形のそれに比して、それぞれ3倍、2.5倍
となり、前述[2]を考慮するまでもなく局部的な面の
たわみと応力の比較だけですら大きな差があることがわ
かる。(さらにb / aの比が大である場合は差が広
がる方向である) [3]積層された二重折り曲げ殻構造物は各部の折り曲
げ角度が180度に近くなるほど圧縮された状態では端
末部に流体通路実質面積より大きな菱形等の連通孔で内
部空間と接続されるので、外部装置と接続するための端
末処理が極めて容易になる。
Therefore, in this case, the expansion values of deflection and stress occurring in a 4:1 rectangle are 3 times and 2.5 times, respectively, compared to those of a square, and without considering the above [2], It can be seen that there is a large difference even just by comparing the deflection and stress. (Furthermore, when the b/a ratio is large, the difference tends to increase.) [3] When the laminated double-folded shell structure is compressed as the bending angle of each part approaches 180 degrees, the terminal part Since it is connected to the internal space through a communication hole such as a diamond shape which is larger than the actual area of the fluid passage, terminal processing for connection to an external device is extremely easy.

[4]楕構造体の端末に於ける力学的拘束条件が弱い場
合には、構造で決まる変形の自由度に従って自在に変形
させることができ、これによって内部空間の内容積の制
御すなわち内部流体の吸入と排出ができる。したがって
、適切な駆動手段と逆止弁手段などを併用することによ
り理論的に漏れ経路のない流体圧送機能も兼ねて、装置
を構成することができる。
[4] When the mechanical restraint conditions at the ends of the elliptical structure are weak, it can be freely deformed according to the degree of freedom of deformation determined by the structure, and this allows control of the internal volume of the internal space, that is, the internal fluid Can inhale and exhale. Therefore, by using an appropriate drive means, check valve means, etc., it is theoretically possible to construct an apparatus that also has a fluid pressure feeding function without any leakage path.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は平らなシート素材から二重折り曲げ殻構造を形
成するための平面展開パターンを示し、第2図は本発明
による多表面積構造体の組上げられた実施例、第3図は
他の実施例としての平面展開パターン、第4図は本発明
による多表面積構造体を製造する基本製造工程の構成図
、第5図は第4図の具体的製造工11の構成図、第6図
は各シート素材上で折り曲げられるべきジグザグパター
ンの位置関係を示す図、第7図は第6図の断面方向説明
図、第8図は熱溶着による接合手段の実施例、第9図は
高周波源を利用して稜線部を溶着する実施例、第10図
は接合後に高圧ガスを発生して各シート素材を膨張させ
る実施例、第11図は他の膨張方法の実施例、第12図
は帯電による膨張方法の実施例、第13図は超音波を用
いる膨張方法の実施例、第14図は極薄膜等で多表面積
構造体を製造する場合の他の実施例、第15(^)(B
)図は本発明の構造体を端末部材でふさぐ実施例、第1
6図は本発明の構造体を4ユニツト用いて構成した触媒
装置の実施例、第17図は本発明の構造体を8ユニツト
用いて構成したポンプ機構の実施例、をそれぞれ示す。 図中、(1)はシート素材、(2)は折り曲げパターン
印刷工程、(3)は重ね合わせ工程、(4)は接合工程
、(5)は膨張工程、(6)は製品としての多表面積構
造体、をそれぞれ示す。 第3図 第4図       第5図 帛11図 第12図 第14図 第15図 第17図
FIG. 1 shows a planar unfolding pattern for forming a double-folded shell structure from a flat sheet stock, FIG. 2 shows an assembled embodiment of a multi-surface area structure according to the invention, and FIG. 3 shows another embodiment. FIG. 4 is a block diagram of the basic manufacturing process for manufacturing a multi-surface area structure according to the present invention, FIG. 5 is a block diagram of the specific manufacturing process 11 shown in FIG. 4, and FIG. A diagram showing the positional relationship of a zigzag pattern to be bent on a sheet material, Figure 7 is an explanatory diagram of the cross-sectional direction of Figure 6, Figure 8 is an example of a joining means by thermal welding, and Figure 9 is a diagram using a high frequency source. Figure 10 shows an example in which high-pressure gas is generated to expand each sheet material after joining, Figure 11 shows an example of another expansion method, and Figure 12 shows expansion due to charging. Example of the method, FIG. 13 is an example of the expansion method using ultrasonic waves, FIG. 14 is another example of manufacturing a multi-surface area structure with an ultra-thin film, etc., and FIG. 15 (^) (B
) The figure shows an example of closing the structure of the present invention with an end member, the first
FIG. 6 shows an embodiment of a catalyst device constructed using four units of the structure of the present invention, and FIG. 17 shows an embodiment of a pump mechanism constructed using eight units of the structure of the present invention. In the figure, (1) is the sheet material, (2) is the folding pattern printing process, (3) is the overlapping process, (4) is the bonding process, (5) is the expansion process, and (6) is the multi-surface area of the product. structure, respectively. Figure 3 Figure 4 Figure 5 Figure 11 Figure 12 Figure 14 Figure 15 Figure 17

Claims (1)

【特許請求の範囲】 1)所定の二重折り曲げ線に沿つて折り曲げるべき複数
枚のシート素材を重ね合わせ、最上面のシート素材を除
いて各シート素材の稜線に沿つて、少なくとも部分的に
接合して形状変化の自由度が1個の状態にしておいて、
該接合し固定した稜線部分以外の自由空間を膨張させる
ことによつて形成されたことを特徴とする二重折り曲げ
殻構造を有する多表面積構造体。 2)特許請求の範囲第1項記載の構造体において、前記
二重折り曲げ線はジグザグパターンになつていることを
特徴とする多表面積構造体。 3)予め用意された複数枚の各シート素材を所定の位置
で重ね合わせ、最上位のシート素材を除いて折り曲げた
際、稜線に相当する少なくとも各線部分を接合手段を介
して接合し、次いで接合され固定された以外の自由空間
を膨張手段を介して膨張させ、二重折り曲げ殻構造を有
する多表面積構造体を連続的に形成してゆくことを特徴
とする多表面積構造体の製法。 4)特許請求の範囲第3項記載の製法において、予め用
意された複数枚の各シート素材には、最上位のシート素
材を除いて所定のジグザグパターンが印刷されているこ
とを特徴とする上記製法。 5)特許請求の範囲第3項記載の製法において、前記シ
ート素材上で、折り曲げられるべき稜線および該稜線を
短絡する幅広線部分に電熱体の環状回路を構成し、外部
から印加された電磁場によつてループ電流を誘導させ、
該電流による発熱作用により前記稜線に沿つて各シート
素材を熱溶着させることを特徴とする製法。 6)特許請求の範囲第3項の製法において、重ね合わさ
れた各シート素材上で、折り曲げられるべき稜線上に沿
つて接合剤を配置すると共に、残りの空間にガス発生剤
を配置し、次いで圧搾して前記接合剤により各稜線部分
を接合した後に、圧搾によるガス発生により膨張させ二
重折り曲げ殻構造を有する多表面積構造体を形成するこ
とを特徴とする上記製法。
[Claims] 1) Layering a plurality of sheet materials to be folded along a predetermined double fold line and joining them at least partially along the ridgeline of each sheet material except for the topmost sheet material. and set the degree of freedom of shape change to one,
A multi-surface area structure having a double-folded shell structure, characterized in that it is formed by expanding free space other than the joined and fixed ridgeline portions. 2) A multi-surface area structure according to claim 1, wherein the double fold lines are in a zigzag pattern. 3) When a plurality of sheet materials prepared in advance are overlapped at a predetermined position and folded except for the uppermost sheet material, at least each line portion corresponding to the ridgeline is joined via a joining means, and then joined. 1. A method for manufacturing a multi-surface area structure, which comprises expanding a free space other than that fixed by an expansion means to continuously form a multi-surface area structure having a double-folded shell structure. 4) The manufacturing method according to claim 3, wherein each of the plurality of sheet materials prepared in advance is printed with a predetermined zigzag pattern except for the uppermost sheet material. Manufacturing method. 5) In the manufacturing method according to claim 3, an annular circuit of an electric heating body is formed on the sheet material at the ridge line to be bent and a wide line portion that short-circuits the ridge line, and the ring circuit is formed in the electromagnetic field applied from the outside. thereby inducing a loop current,
A manufacturing method characterized by thermally welding each sheet material along the ridge line by the heat generation effect of the electric current. 6) In the manufacturing method of claim 3, on each stacked sheet material, a bonding agent is placed along the ridge line to be bent, and a gas generating agent is placed in the remaining space, and then compressed. The above-mentioned manufacturing method is characterized in that after bonding each ridge line portion with the bonding agent, the multi-surface area structure is expanded by gas generation by compression to form a multi-surface area structure having a double-folded shell structure.
JP63129715A 1988-05-27 1988-05-27 Multi-surface area structure and its manufacturing method Expired - Lifetime JPH06104194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63129715A JPH06104194B2 (en) 1988-05-27 1988-05-27 Multi-surface area structure and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129715A JPH06104194B2 (en) 1988-05-27 1988-05-27 Multi-surface area structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01299641A true JPH01299641A (en) 1989-12-04
JPH06104194B2 JPH06104194B2 (en) 1994-12-21

Family

ID=15016418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129715A Expired - Lifetime JPH06104194B2 (en) 1988-05-27 1988-05-27 Multi-surface area structure and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH06104194B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197254A1 (en) * 2000-10-06 2002-04-17 Carl Freudenberg KG Pleated spatial article, especially filter element
GB2466459A (en) * 2008-12-19 2010-06-23 Dyson Technology Ltd Folded filter medium

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124666U (en) * 1973-02-16 1974-10-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49124666U (en) * 1973-02-16 1974-10-25

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1197254A1 (en) * 2000-10-06 2002-04-17 Carl Freudenberg KG Pleated spatial article, especially filter element
GB2466459A (en) * 2008-12-19 2010-06-23 Dyson Technology Ltd Folded filter medium

Also Published As

Publication number Publication date
JPH06104194B2 (en) 1994-12-21

Similar Documents

Publication Publication Date Title
JP3362611B2 (en) Heat exchanger and method for manufacturing heat exchange member of the heat exchanger
JP2698984B2 (en) Filter cartridge
JP2001521457A (en) Honeycomb structure and manufacturing method thereof
US7597773B2 (en) Producing method of laminated filter
CN105658296B (en) Filter with two-way pleated media
JPH1194476A (en) Heat exchanger
US20140116662A1 (en) Serpentine heat exchanger
US7108053B2 (en) Plate-type heat exchanger
JPH08309206A (en) Production of carrier of metal catalyst for purifying waste gas
JPH01299641A (en) Structure having multiple surface and its production
US4603460A (en) Method for manufacturing a heat exchanger
JP3879482B2 (en) Stacked heat exchanger
JP5221070B2 (en) Method for manufacturing laminated channel element and laminated channel element
JPH0422411A (en) Filter medium for filter element and its production
JP3731114B2 (en) Manufacturing method of heat exchanger
JP3546574B2 (en) Heat exchanger
CN110670799A (en) Structural plate with cavity and manufacturing method thereof
JPS63185627A (en) Manufacturing method of honeycomb structure
US20230241541A1 (en) Zigzag-folded nonwoven material
JPH06123579A (en) Heat exchanger element
JPS6262744A (en) Bending type composite corrugated body and manufacture thereof
JP2003021489A (en) Jointing structure for heat exchanger
JP2001066078A (en) Heat exchanger
KR19990034674U (en) Link bending machine
JP4354795B2 (en) Heat exchanger element and manufacturing method thereof