JPH01298666A - Current collecting device for rotating electrical equipment - Google Patents
Current collecting device for rotating electrical equipmentInfo
- Publication number
- JPH01298666A JPH01298666A JP12935388A JP12935388A JPH01298666A JP H01298666 A JPH01298666 A JP H01298666A JP 12935388 A JP12935388 A JP 12935388A JP 12935388 A JP12935388 A JP 12935388A JP H01298666 A JPH01298666 A JP H01298666A
- Authority
- JP
- Japan
- Prior art keywords
- current collector
- intermetallic compound
- brush
- base material
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 70
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 239000002184 metal Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 34
- 229910000765 intermetallic Inorganic materials 0.000 claims abstract description 28
- 239000007787 solid Substances 0.000 claims abstract description 6
- 238000000576 coating method Methods 0.000 claims description 48
- 239000011248 coating agent Substances 0.000 claims description 45
- 150000004767 nitrides Chemical class 0.000 claims description 24
- 238000009792 diffusion process Methods 0.000 claims description 9
- 230000002093 peripheral effect Effects 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 238000012546 transfer Methods 0.000 claims description 4
- 239000007921 spray Substances 0.000 claims description 3
- 229910000943 NiAl Inorganic materials 0.000 claims 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 239000000314 lubricant Substances 0.000 claims 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 abstract description 18
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 230000006378 damage Effects 0.000 abstract description 6
- 238000002156 mixing Methods 0.000 abstract description 5
- 238000005299 abrasion Methods 0.000 abstract description 4
- 230000001050 lubricating effect Effects 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract 2
- 230000004308 accommodation Effects 0.000 abstract 1
- 230000005611 electricity Effects 0.000 abstract 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 25
- 239000010408 film Substances 0.000 description 24
- 239000000919 ceramic Substances 0.000 description 22
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 21
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000007789 gas Substances 0.000 description 12
- -1 hafnium nitride Chemical class 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 11
- 239000010410 layer Substances 0.000 description 9
- 150000001247 metal acetylides Chemical class 0.000 description 9
- 239000010936 titanium Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 239000010949 copper Substances 0.000 description 8
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007769 metal material Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- 239000002344 surface layer Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 208000037998 chronic venous disease Diseases 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 229910010271 silicon carbide Inorganic materials 0.000 description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 4
- 238000007751 thermal spraying Methods 0.000 description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000017525 heat dissipation Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229910026551 ZrC Inorganic materials 0.000 description 2
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- WHJFNYXPKGDKBB-UHFFFAOYSA-N hafnium;methane Chemical compound C.[Hf] WHJFNYXPKGDKBB-UHFFFAOYSA-N 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 2
- NFFIWVVINABMKP-UHFFFAOYSA-N methylidynetantalum Chemical compound [Ta]#C NFFIWVVINABMKP-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000007750 plasma spraying Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 229910003468 tantalcarbide Inorganic materials 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 239000012808 vapor phase Substances 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 description 1
- 229910052580 B4C Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- LRTTZMZPZHBOPO-UHFFFAOYSA-N [B].[B].[Hf] Chemical compound [B].[B].[Hf] LRTTZMZPZHBOPO-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- CXOWYMLTGOFURZ-UHFFFAOYSA-N azanylidynechromium Chemical compound [Cr]#N CXOWYMLTGOFURZ-UHFFFAOYSA-N 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- SKKMWRVAJNPLFY-UHFFFAOYSA-N azanylidynevanadium Chemical compound [V]#N SKKMWRVAJNPLFY-UHFFFAOYSA-N 0.000 description 1
- 238000005513 bias potential Methods 0.000 description 1
- VDZMENNHPJNJPP-UHFFFAOYSA-N boranylidyneniobium Chemical compound [Nb]#B VDZMENNHPJNJPP-UHFFFAOYSA-N 0.000 description 1
- XTDAIYZKROTZLD-UHFFFAOYSA-N boranylidynetantalum Chemical compound [Ta]#B XTDAIYZKROTZLD-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- ZDVYABSQRRRIOJ-UHFFFAOYSA-N boron;iron Chemical compound [Fe]#B ZDVYABSQRRRIOJ-UHFFFAOYSA-N 0.000 description 1
- LAROCDZIZGIQGR-UHFFFAOYSA-N boron;vanadium Chemical compound B#[V]#B LAROCDZIZGIQGR-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 244000145845 chattering Species 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 239000002482 conductive additive Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005546 reactive sputtering Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Motor Or Generator Current Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は回転電機の集電装置に係わり、更に詳細には、
フラジと摺動接触して電流の授受を行なう集電環(スリ
ップリングあるいは整流子)に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a current collector for a rotating electric machine, and more specifically,
It relates to a current collector ring (slip ring or commutator) that makes sliding contact with a flange to exchange current.
回転電機の集電装置は、回転界磁型交流発電機の界磁電
流の供給、回転電機子型直流電動機における電機子電流
の供給、電車における駆動電力の供給など、静止体から
回転あるいは直線運動体内部に電流や電力を供給するこ
とは周知の通りである。この種の集電装置は、静止体の
ブラシと回転体の集電環(スリップリングあるいは整流
7−)とが機械的に接触して、電流の授受を行うもので
。Current collectors for rotating electric machines are used to generate rotating or linear motion from a stationary body, such as supplying field current for a rotating field type alternating current generator, supplying armature current for a rotating armature type DC motor, and supplying driving power for a train. It is well known that current and power are supplied inside the body. In this type of current collector, a brush of a stationary body and a current collector ring (slip ring or rectifier 7-) of a rotating body are in mechanical contact to exchange current.
その構造そのものは簡易である。The structure itself is simple.
ところで、近年においては、回転電機の単機容量の増大
、高周速回転あるいは小型軽量化などが進み、ブラシ装
荷の高密度化およびブラシ電流密度が大きくなる傾向に
ある。このため、ブラシ摩耗の増大、集電環の荒損など
回転ffi機の運転上の障害も増え、その保守2点検が
繁雄化している。Incidentally, in recent years, the capacity of rotating electric machines has increased, their circumferential speeds have increased, their size and weight have been reduced, and there has been a tendency for brush loading to become denser and brush current density to increase. For this reason, the number of operating problems of the rotary FFI machine, such as increased brush wear and rough damage to the current collection ring, has increased, and the number of maintenance and inspections has become more frequent.
この対策として最近、特開昭61−4178号公報等に
開示されるように導電性セラミックスを用いた集電環、
およびブラシが注目されている。導電性セラミックスを
用いた従来例について第6図〜第9図より説明する。As a countermeasure to this problem, a current collection ring using conductive ceramics, as disclosed in Japanese Patent Application Laid-Open No. 61-4178, etc.
and brushes are attracting attention. Conventional examples using conductive ceramics will be explained with reference to FIGS. 6 to 9.
第6図は1回転型機の集電装置の従来例を示す概要図、
第7図は第6図のA−A’力方向らみた断面を示す。こ
れらの図に示すように1回転型機の回転子軸1に絶縁物
2を介して配されたスリップリング3があり、スリップ
リング3の外周にブラシ4が摺動可能に接触している。Figure 6 is a schematic diagram showing a conventional example of a current collector for a single-rotation machine;
FIG. 7 shows a cross section taken along line A-A' in FIG. 6 in the force direction. As shown in these figures, there is a slip ring 3 disposed on a rotor shaft 1 of a single-rotation machine with an insulator 2 in between, and a brush 4 is in slidable contact with the outer periphery of the slip ring 3.
スリップリング3は5回転軸1の軸中心側に固定配置さ
れる銅、鋼、鉄などの環状金属基材3bと、金属基材3
bの外周に嵌合固着した導電性セラミックス製の円筒体
3aとで構成され、セラミックス円筒体3aの表面がブ
ラシ4と摺動する。The slip ring 3 includes an annular metal base material 3b made of copper, steel, iron, etc., which is fixedly arranged on the axis center side of the rotating shaft 1, and a metal base material 3b.
A cylindrical body 3a made of conductive ceramic is fitted and fixed to the outer periphery of the brush 4, and the surface of the ceramic cylindrical body 3a slides on the brush 4.
電気的には、ブラシ4が円筒体3aの表面上を摺動接触
して、リード線6を介して図示しない回転電機の巻線な
どに電流を授受する。リード線6は。Electrically, the brush 4 makes sliding contact on the surface of the cylindrical body 3a, and sends and receives current to and from the windings of a rotating electric machine (not shown) via the lead wire 6. Lead wire 6 is.
スリップリング3の側面を押圧するリング5で圧接され
る。円筒体3aを構成する導電性セラミックスとして代
表的なものは、例えばSiC(シリコンカーバイト)、
5iaN4(窒化けい素)のセラミックス基板に、Zr
Bz(シリコニウムポライド)などの導電性添加物を配
合し、その配合割合を変えて高温焼結する。SiCや5
i3Niは細かい粒子の多結晶体として高温焼結され、
硬い1つの物体となる。この場合のセラミックスの粒形
は、必ずしも球形ではなく尖鋭状のものもある。The ring 5 presses against the side surface of the slip ring 3. Typical conductive ceramics constituting the cylindrical body 3a include, for example, SiC (silicon carbide),
Zr on a 5iaN4 (silicon nitride) ceramic substrate
A conductive additive such as Bz (siliconium poride) is blended, and the blending ratio is changed to perform high-temperature sintering. SiC and 5
i3Ni is sintered at high temperature as a fine-grained polycrystalline body,
It becomes a solid object. In this case, the shape of the ceramic particles is not necessarily spherical, but may also be sharp.
このようにブラシと摺動接触する集電環外周面のセラミ
ックス化は、腐食性ガス、油、ダストあるいは極低湿度
、高湿度の雰囲気など多岐にわたる集電環荒損の発生要
因に対して、その影響をほとんど受けなくなる。特にセ
ラミックスの焼結温度が鉄、銅系金属より融点が高いの
で、ブラシ火花などによる耐荒損性は極めてすぐれてい
る。The use of ceramic for the outer circumferential surface of the current collection ring, which makes sliding contact with the brushes, is effective against a wide variety of factors that can cause damage to the current collection ring, such as corrosive gas, oil, dust, or extremely low or high humidity environments. It becomes almost unaffected by it. In particular, since the sintering temperature of ceramics is higher than that of iron or copper-based metals, they have extremely high resistance to rough damage caused by brush sparks.
しかし、その反面、次に挙げる種々の改善すべき点があ
った。セラミックスのような脆性材料は、金属材料に比
較して破壊靭性が著しく低く1例えばタービン発電機の
スリップリングのように周速が70〜80 m / s
に及ぶ高速回転体への適用は、スリップリングの破壊、
飛散の危険性がある。また、従来の如くセラミックス円
筒体3aを金属基材に嵌合する構造では、セラミックス
と金属材料との接着性(ぬれ)が悪く、そのため、第6
図に示したように、リード線6の接続はリング5で圧接
する構造としたり、あるいは金属材の溶着照射面を介し
て接続するなど1部品工数が増え、作業上の手間を要し
た。However, on the other hand, there were various points that should be improved as listed below. Brittle materials such as ceramics have significantly lower fracture toughness than metal materials.1For example, brittle materials such as ceramics have a circumferential speed of 70 to 80 m/s, such as slip rings in turbine generators.
Applications to high-speed rotating bodies include destruction of slip rings,
There is a risk of splashing. In addition, in the conventional structure in which the ceramic cylindrical body 3a is fitted to the metal base material, the adhesion (wetting) between the ceramic and the metal material is poor, and therefore, the sixth
As shown in the figure, the lead wires 6 were connected by pressure contact with the ring 5, or by connecting through the welding irradiated surface of the metal material, which increased the number of man-hours per component and required work effort.
また、従来のセラミックス型集電装置の電気的特性をみ
ると、既述したように金属基材と円筒セラミックスとの
接着性(ぬれ)が悪いので、その接触境界部分の接触抵
抗が大きくなる傾向があった。このような接触抵抗の増
大は、比較的小容量の回転電機でブラシ取付゛け個数が
少ない場合にはそれほど問題にならないが、これが大容
量の回転電機1例えば600MW級タービン発電機では
次のような問題が生じる。すなわち、大容量の回転電機
は、正、負極の1極のスリップリングに取付けられるブ
ラシ個数が60〜80個と多数個となる。このため、ス
リップリングの軸方向のブラシが8〜10列にもなり、
軸長も極めて長い構造となる。したがって、円筒体3a
と金属基材3bとの嵌合い装着による密着性が十分でな
いと、大電流通電時に接触境界部分の接触抵抗による温
度上昇が高くなるという現象が生じる。特にセラミック
スの場合、導電性といえども、汎用の鋼材よりも熱伝導
性は悪く、回転軸の軸中心側への熱移動が乏しいので、
ブラシどの摩擦損、電気損による発熱も相乗して、スリ
ップリング円筒体+1を品の温度上昇も著しい。その結
果、ブラシの軸摩擦接触によるブラシ摩耗過大、チャタ
リング等の新らたな間層が発生している。In addition, looking at the electrical characteristics of conventional ceramic current collectors, as mentioned above, the adhesion (wetting) between the metal base material and the cylindrical ceramic is poor, so the contact resistance at the contact boundary tends to increase. was there. This increase in contact resistance is not so much of a problem in relatively small-capacity rotating electric machines with a small number of installed brushes, but in large-capacity rotating electric machines (for example, 600 MW class turbine generators), the following problem occurs. A problem arises. That is, in a large-capacity rotating electric machine, the number of brushes attached to each positive and negative slip ring is as large as 60 to 80. For this reason, there are 8 to 10 rows of brushes in the axial direction of the slip ring.
The structure also has an extremely long axis. Therefore, the cylindrical body 3a
If the adhesion between the metal base material 3b and the metal base material 3b is not sufficient, a phenomenon occurs in which the temperature rise due to the contact resistance at the contact boundary portion increases when a large current is applied. In particular, in the case of ceramics, even though they are electrically conductive, their thermal conductivity is poorer than that of general-purpose steel materials, and heat transfer toward the center of the rotating shaft is poor.
Heat generation due to friction loss and electrical loss in the brushes combine to cause a significant temperature rise in the slip ring cylindrical body +1. As a result, new interlayers such as excessive brush wear and chattering due to frictional contact between the shafts of the brushes are occurring.
更に導電性セラミックスの円筒体3aとブラシ4の摺動
状況をみると、第8図に示す如く、運転時間Tの経過に
対して、ブラシと円筒体摺動面間との接触電圧降下Va
に大きな変動が現われることがある。これは第6図で説
明したブラシ4とスリップリング3の円筒体3aとの接
触境界部分を微視的にみてみると、(1)第9図のよう
に円筒体3aの個々のセラミックスの粒子形状が不規則
に結合し、その外周面に微少な凹凸面を形成しているこ
と、(2)そして、セラミックス円筒体3aの基材であ
るSiCや5isN+は非常に硬質で潤滑性に乏しい材
質であり、一方、ブラシ4の表面には、黒鉛4a中に含
まれる僅かな堅硬物質4bが露出し、これらの硬質物同
士が突起物の様に接触するので、(1)、(2)に起因
してスリップリングとブラシの摩擦変動が大きく、不安
定接触となるためである。Furthermore, looking at the sliding situation between the conductive ceramic cylinder 3a and the brush 4, as shown in FIG.
There may be large fluctuations in the If we look microscopically at the contact boundary between the brush 4 and the cylindrical body 3a of the slip ring 3, as explained in FIG. (2) SiC and 5isN+, which are the base materials of the ceramic cylinder 3a, are extremely hard and have poor lubricity. On the other hand, on the surface of the brush 4, a small amount of hard material 4b contained in graphite 4a is exposed, and these hard materials come into contact with each other like protrusions, so (1) and (2) are satisfied. This is because frictional fluctuations between the slip ring and the brush are large, resulting in unstable contact.
本発明は以上の点に鑑みてなされたものであり、その目
的とするところは、集電装置の耐摩耗性。The present invention has been made in view of the above points, and its purpose is to improve the wear resistance of a current collector.
耐荒損性の向上化を図ると共に、放熱特性、if!気特
性及び機械強度を向上させて、高速運転及び大容量の回
転電機にも充分に対応でき、且つコスト的にも有利な回
転電機の集電装置を提供することにある。In addition to improving roughness resistance, heat dissipation characteristics, if! It is an object of the present invention to provide a current collector for a rotating electric machine that has improved mechanical properties and mechanical strength, can sufficiently cope with high-speed operation and large-capacity rotating electric machines, and is advantageous in terms of cost.
上記目的は、回転電機のブラシと摺動接触して電流の授
受を行うスリップリング或いは整流子からなる集電環を
有する集電装置において、前記集電環の本体となる環状
の金属基材の外周表面に。The above object is to provide a current collector having a current collecting ring made of a slip ring or a commutator that makes sliding contact with the brushes of a rotating electrical machine to transfer current, and to provide a current collector with a ring-shaped metal base material that is the main body of the current collecting ring. on the outer surface.
耐摩耗性、耐電弧性に優れた導電性の金属間化合物の被
膜を拡散を伴った原子的結合により形成してなることで
達成される。This is achieved by forming a film of a conductive intermetallic compound with excellent wear resistance and arc resistance through atomic bonding accompanied by diffusion.
ここで、集電環の基材の材質としては、高速回転等の機
械的強度の確保、及び電力を供給するための電気伝導性
を考慮して、これらの要求を満足する素材、例えば銅+
It鉄等が用いられる。Here, the material for the base material of the current collection ring should be selected from materials that satisfy these requirements, such as copper +
It iron or the like is used.
また、金属基材の表面に形成される金属間化合物の被膜
としては、例えば、導電性を有する窒化物、炭化物、硼
化物等やN1AQの合金被服があり、また、これらの金
属間化合物の被膜は、例えば、物理気相蒸気法、化学気
相蒸気法、溶射法等の方法を用いて形成される。In addition, examples of intermetallic compound coatings formed on the surface of metal substrates include conductive nitrides, carbides, borides, etc., and N1AQ alloy coatings; is formed using a method such as a physical vapor vapor method, a chemical vapor vapor method, or a thermal spray method.
金属基材(集電環本体)の外周表面に、金属間化合物の
被膜を拡散を伴った原子的結合により形成することで、
金属基材と被膜との結合(密着性)が極めて良好となる
。具体的には、金属基材と被膜との境界が拡散による濃
度勾配によって明確に区別し難い程に結合されて、金属
基材の表面に極めて密着性が優れた表面層が形成される
。By forming a film of intermetallic compound on the outer peripheral surface of the metal base material (collector ring main body) through atomic bonding accompanied by diffusion,
The bond (adhesion) between the metal base material and the coating becomes extremely good. Specifically, the boundary between the metal base material and the coating is bonded to such an extent that it is difficult to clearly distinguish it due to the concentration gradient caused by diffusion, and a surface layer with extremely excellent adhesion is formed on the surface of the metal base material.
また、集電環の表面に形成される被膜は、薄膜で、集電
環のほとんどが金属基材で占められ、この金属基材が靭
性のある銅、鋼、鉄等で構成されるだめに、集電環の破
壊靭性も被膜の存在によって大きく損われず、且つ被膜
自身も金属基材に高密着結合するので、高周速の回転体
機種への適用にも充分耐えられる構造となる。In addition, the coating formed on the surface of the current collecting ring is a thin film, and most of the current collecting ring is made of a metal base material. The fracture toughness of the current collecting ring is not significantly impaired by the presence of the coating, and the coating itself is highly closely bonded to the metal base material, resulting in a structure that can withstand application to high peripheral speed rotating body models.
更に、集電環は、はとんどが金属基材であるので、回転
電機巻線の電流リード線と摺電環との接続は、金属基材
の側面に直接接続することが可能となり、部品工数の低
減9作業性の向上を図り得る。Furthermore, since the current collecting ring is mostly made of a metal base material, the current lead wire of the rotating electric machine winding and the sliding ring can be connected directly to the side surface of the metal base material. Reduction in parts man-hours9 Workability can be improved.
更に摺電環本体の外周表面に形成される被膜は。Furthermore, the coating formed on the outer peripheral surface of the sliding ring body.
ブラシと摺動するため、耐摩耗性に優れ且つブラシ火花
等に耐える耐電弧性の金属間化合物で形成されるが、そ
の被膜形成は、例えば物理気相蒸気法、化学気相蒸気法
等の表面処理技術を用いて、非常に緻密な結晶構造の被
膜とすることができるので、従来のセラミックス円筒体
のように不規則な粒形状の突起物が介在せず、被覆表面
が滑らかとなって、その表面の摩擦係数を低くできる。Since it slides with the brush, it is formed of an intermetallic compound that has excellent wear resistance and resistance to brush sparks, etc., but the coating is formed using a physical vapor phase method, a chemical vapor phase method, etc., for example. Using surface treatment technology, it is possible to create a coating with a very dense crystal structure, so there are no irregularly shaped protrusions like in conventional ceramic cylinders, and the coating surface is smooth. , the coefficient of friction on its surface can be lowered.
その結果、ブラシとの摺動接触に際して摩擦変動が小さ
く安定した動特性が得られ、この集電環被膜がブラシの
摺動を阻害することはないので、集電環とブラシとの接
触電圧降下を抑制できる。As a result, stable dynamic characteristics with small frictional fluctuations are obtained during sliding contact with the brush, and since this current collecting ring coating does not impede the sliding movement of the brush, the contact voltage drop between the current collecting ring and the brush can be suppressed.
また1本発明によれば、前述した如く集電環本体たる金
属基材に被膜が拡散を伴って高密着結合するので、金属
基材と被膜との境界が区別し難い程の結合状態となり、
その結果、金属基材と被膜間の接触抵抗を小さくして電
気伝導性を高めると共に、大電流通電時に接触境界部分
の接触抵抗による温度上昇も抑制することができる。ま
た、集電環とブラシとの摺動接触によって発生する摩擦
熱及び電気損によって発生する熱は速やかに金属基材か
ら回転子軸側に伝達され、熱拡散によりブラシ及びスリ
ップリングの温度上昇を低くすることができる。従って
、集電環及びブラシの電気特性を向上させることができ
る。Furthermore, according to the present invention, as described above, the coating is highly closely bonded to the metal base material serving as the main body of the current collector ring with diffusion, so that the bonding state is such that the boundary between the metal base material and the coating is difficult to distinguish.
As a result, it is possible to reduce the contact resistance between the metal base material and the coating, thereby increasing the electrical conductivity, and also to suppress the temperature rise due to the contact resistance at the contact boundary portion when a large current is applied. In addition, the frictional heat generated by the sliding contact between the current collection ring and the brushes and the heat generated by electrical loss are quickly transferred from the metal base material to the rotor shaft side, and heat diffusion reduces the temperature rise of the brushes and slip ring. It can be lowered. Therefore, the electrical characteristics of the current collection ring and brush can be improved.
以上5本発明の実施例を第1図ないし第5図に基づき説
明する。The above five embodiments of the present invention will be described based on FIGS. 1 to 5.
第1図は本実施例の集電装置の片側極だけを表ねした部
分断面図で、その機能については従来と同様で、既述し
た第6図の従来例と同一符号は同一または共通する要素
を示す。スリップリング3は、その本体3′を銅、鋼、
鉄等で形成し、その外観形状は変わらないが、ブラシ4
と摺動接触する同スリップリングの外表面に本発明の要
旨となる金属間化合物の被膜3cが拡散を伴った原子的
結合により形成される。Fig. 1 is a partial cross-sectional view showing only one side of the current collector of this embodiment, and its function is the same as that of the conventional example, and the same reference numerals as those of the conventional example of Fig. 6 described above are the same or common. Indicates an element. The slip ring 3 has its main body 3' made of copper, steel,
Brush 4 is made of iron, etc., and its external shape remains the same.
An intermetallic compound coating 3c, which is the gist of the present invention, is formed on the outer surface of the slip ring in sliding contact with the slip ring by atomic bonding accompanied by diffusion.
被膜3cは、ブラシとの摺動に対して耐摩耗性。The coating 3c is wear resistant against sliding with the brush.
耐電弧性を有し、且つ油、ダクト、腐食性ガス。Has electric arc resistance and is resistant to oil, ducts, and corrosive gases.
湿度に耐えられる耐荒損性を有し、また、@気的に良導
体であることが必要である。It must have roughness resistance that can withstand humidity, and must also be a good electrical conductor.
このような要求に応えるため、被膜3cとして高硬度の
金属間化合物が用いられ、金属間化合物としては1例え
ば各種窒化物、炭化物、硼化物が好ましい。In order to meet such demands, a highly hard intermetallic compound is used as the coating 3c, and preferable examples of the intermetallic compound include various nitrides, carbides, and borides.
窒化物としては、窒化チタン(TiN)、窒化ジルコニ
ウム(ZrN)、窒化ハフニウム(ofN)。Examples of nitrides include titanium nitride (TiN), zirconium nitride (ZrN), and hafnium nitride (ofN).
窒化バナジウム(VN)、窒化タンタル(TaN)。Vanadium nitride (VN), tantalum nitride (TaN).
窒化ニオブニウム(NbN)、窒化クロムニウム(Cr
N、CrzN)などがある。炭化物としては炭化チタン
(TiC)、炭化ジルコニウム(ZrC) 。Niobium nitride (NbN), chromium nitride (Cr
N, CrzN), etc. Examples of carbides include titanium carbide (TiC) and zirconium carbide (ZrC).
炭化ハフニウム(HfN)、炭化バナジウム(VC)、
炭化タンタル(TaC)、炭化ニオブニウム(NbC)
、炭化タングステン(WC)。Hafnium carbide (HfN), vanadium carbide (VC),
Tantalum carbide (TaC), niobium carbide (NbC)
, tungsten carbide (WC).
炭化硼素(84G)、炭化クロムニウム(CraCz。Boron carbide (84G), chromium carbide (CraCz.
Cr7cs、Crzscs)などがある。また硼化物と
しては、硼化チタン(TzBz)*硼化ジルコニウム(
ZrBz)を硼化ハフニウム(HfBz)、硼化バナジ
ウム(VB2)、硼化タンタル(T a B 2) 1
硼化ニオブニウム(NbBz)、硼化タングステン(W
2Bs)p硼化クロムニウム(Cr B 2) T硼化
鉄(FeB、FezB)などがある。これらの窒化物、
炭化物及び硼化物の硬さは、約Hv1500からHv4
000程度の範囲内の値を示し、基材材質の銅、鋼、鉄
などの金属材料に比較して高い値にある。このため、金
属材料のみを用いた際に比較して耐摩耗性の向上を図れ
、且つ窒化物、炭化物、硼化物の比抵抗は、約6μΩ・
lから800μΩ・■の範囲内の値を示し、基材3′の
材質の銅、鋼、鉄などの金属材料と同等あるいはわずか
に高い値を示しているが、良導体である。したがって、
銅+fll−鉄などの基材材質の表面に前述の各種の低
い比抵抗を示す窒化物、炭化物、硼化物の被膜を形成し
ても、電力の供給に影響を及ぼさず、スリップリングと
しての特性を確保できる。Cr7cs, Crzscs), etc. In addition, as a boride, titanium boride (TzBz) * zirconium boride (
ZrBz) to hafnium boride (HfBz), vanadium boride (VB2), tantalum boride (T a B 2) 1
Niobium boride (NbBz), tungsten boride (W
2Bs) p chromium boride (Cr B 2) T iron boride (FeB, FezB), etc. These nitrides,
The hardness of carbide and boride is about Hv1500 to Hv4
The value is within the range of about 000, which is higher than that of metal materials such as copper, steel, and iron for the base material. Therefore, wear resistance can be improved compared to when only metal materials are used, and the specific resistance of nitrides, carbides, and borides is approximately 6 μΩ・
It shows a value within the range of 1 to 800 μΩ·■, which is equivalent to or slightly higher than the metal material such as copper, steel, or iron, which is the material of the base material 3', and is a good conductor. therefore,
Even if a film of nitride, carbide, or boride, which exhibits the aforementioned low resistivity, is formed on the surface of a base material such as copper + fll-iron, it will not affect the power supply and will maintain its properties as a slip ring. can be secured.
なお、被膜3cは、上記のものに限定されず、その他に
も、例えばAQNi被膜も要求に応える。Note that the coating 3c is not limited to the above-mentioned coating, and other coatings such as AQNi coating may also meet the requirements.
また硅化物は一般に絶縁性を有するものが多いが、導電
性を有するものについては適用可能である。In addition, although most silicides generally have insulating properties, they can also be used if they have electrical conductivity.
しかして、被膜3cは、特にスリップリング表面に拡散
を伴う原子的結合により形成することが重要である。Therefore, it is important that the coating 3c is formed by atomic bonding accompanied by diffusion, particularly on the slip ring surface.
被膜形成の表面処理法としては種々の方法があるが1本
実施例では、形成する被膜の材質が金属間化合物の窒化
物、炭化物、硼化物等であることから、化学気相蒸着法
(Chemical VaporDepositfon
、以下CVD法と称する)、物理気相蒸着法(Phys
ical Vapor Deposition 、以下
PVD法と称する)、溶射法などを用いて行われる。There are various surface treatment methods for film formation, but in this example, since the material of the film to be formed is an intermetallic compound such as nitride, carbide, or boride, a chemical vapor deposition method was used. VaporDepositphone
, hereinafter referred to as CVD method), physical vapor deposition method (Phys
ical vapor deposition (hereinafter referred to as PVD method), thermal spraying method, and the like.
CVD法では、金属間化合物となる原料をガス状で供給
し、加熱された基材表面で化学反応により金属間化合物
の被膜が形成される。例えば、窒化チタン被膜の形成で
は、原料ガスとしてチタン源に金属ハロゲン化物のT
i CQ < を水素ガスのキャリガスで飽和させて
供給し、窒素源としてアンモニアガス(NIIa)ある
いは窒素(N2)等を用いることにより、
TiCl2++1/2N2+211z→TiN+4II
CQ・・・(1)
或いは、
TiCff++NIIa+1/2IIz→T i N
+ 4 II CQ・・・(2)
等の反応式によってTiN被膜が形成される。この際の
反応温度は、窒化物の生成自由エネルギー(ΔG)によ
って決まる。窒化チタンの場合、(1)式の反応では、
通常620℃以上の反応温度を要するが、近年開発され
た直流グロー放電あるいは13.56MIIz の高
周波放電を用いたプラズマCVD法によれば、500℃
程度の低い温度においても窒化チタン被膜を形成できる
。同様に、CVD法において他の窒化物、炭化物、硼化
物についても基材表面に被膜を形成することができる。In the CVD method, a raw material to become an intermetallic compound is supplied in gaseous form, and a film of the intermetallic compound is formed by a chemical reaction on the heated surface of the base material. For example, in the formation of a titanium nitride film, T
By supplying i CQ < saturated with a carrier gas of hydrogen gas and using ammonia gas (NIIa) or nitrogen (N2) as a nitrogen source, TiCl2++1/2N2+211z→TiN+4II
CQ...(1) Or TiCff++NIIa+1/2IIz→T i N
+ 4 II CQ (2) A TiN film is formed according to a reaction formula such as (2). The reaction temperature at this time is determined by the free energy of nitride formation (ΔG). In the case of titanium nitride, in the reaction of equation (1),
Normally, a reaction temperature of 620°C or higher is required, but according to the recently developed plasma CVD method using DC glow discharge or high-frequency discharge of 13.56 MIIz, a reaction temperature of 500°C or higher is required.
A titanium nitride film can be formed even at moderately low temperatures. Similarly, a film can be formed on the surface of the substrate using other nitrides, carbides, and borides using the CVD method.
PVD法では、銅、11.鉄等の金属基材との被膜の密
着性の観点から、イオンミキシング法、イオンブレーテ
ィング法、スパッタリング法、イオン注入法等で行われ
る。例えば、イオンミキシング法では、金属基材(摺電
環本体)の表面に第4a、第5a及び第6 a’族のい
ずれかの金属を蒸若あるいはスパッタリング等で被膜を
形成しながら、例えば窒化物を形成する場合には窒素イ
オン、炭化物を形成する場合には炭素イオンを注入する
ことにより形成できる。窒素イオンを注入する場合には
、窒素ガスやアンモニアガス等窒素を含有するガスを用
い、炭素イオンを注入する場合には、アセチレン(Cz
Hz)pメタン(CH4)ガス等を用いればよい。In the PVD method, copper, 11. From the viewpoint of adhesion of the film to the metal base material such as iron, the ion mixing method, ion blating method, sputtering method, ion implantation method, etc. are used. For example, in the ion mixing method, while forming a film of a metal of group 4a, 5a, or 6a' on the surface of a metal base material (sliding ring body) by vapor deposition or sputtering, for example, nitriding is performed. When forming a substance, nitrogen ions can be implanted, and when forming a carbide, carbon ions can be implanted. When implanting nitrogen ions, use a nitrogen-containing gas such as nitrogen gas or ammonia gas, and when implanting carbon ions, use acetylene (Cz
Hz) pmethane (CH4) gas or the like may be used.
本発明はこれ、らのガスに限るものではなく、要は窒化
物、炭化物を形成できるガスであればよい。The present invention is not limited to these gases, but any gas may be used as long as it can form nitrides and carbides.
例えばスリップリング金属基材の表面層にTiN(窒化
チタン)を形成する場合、表面層に窒素イオンを加速注
入すると同時に、基材表面にTi蒸着膜の生成を行ない
、基材構成原子に打ち込まれた窒素イオンとTi原子の
混合物層が形成される。For example, when forming TiN (titanium nitride) on the surface layer of a slip ring metal base material, nitrogen ions are acceleratedly implanted into the surface layer, and at the same time, a Ti vapor deposition film is generated on the base material surface and is implanted into the atoms constituting the base material. A mixture layer of nitrogen ions and Ti atoms is formed.
この混合物層は金属基材との層間に境界がないので、極
めて密着性がすぐれた表面層が形成される。Since this mixture layer has no boundary between the layers and the metal base material, a surface layer with extremely excellent adhesion is formed.
また、イオンブレーティング法では、減圧下でチタン源
たる金属チタンを電子ビームを照射して高温に加熱し蒸
発させるとともに、窒素源としてアンモニアガスあるい
は窒素ガスを導入し、蒸発源と基材間でプラズマを発生
させて、チタン及び窒素源を活性状態にして反応させる
。このようにして、窒化チタンを形成し、この窒化チタ
ンをバイアス電位によって基材に加速させて、コーティ
ングを行うものである。他の窒化物も同様に金属源を蒸
発させ、窒素源ガスを添加することで形成できる。炭化
物の場合は、炭素源として例えば炭化水素系ガス、CI
I+等を用いればよい。硼化物の場合には、金属源及び
硼素源を同時に蒸発させ、プラズマにより活性化するこ
とにより形成できる。In addition, in the ion blating method, metal titanium, which is a titanium source, is irradiated with an electron beam under reduced pressure to heat it to a high temperature and evaporate it. At the same time, ammonia gas or nitrogen gas is introduced as a nitrogen source, and a gap between the evaporation source and the substrate is A plasma is generated to activate the titanium and nitrogen sources and cause them to react. In this way, titanium nitride is formed, and the coating is performed by accelerating the titanium nitride onto the substrate using a bias potential. Other nitrides can be similarly formed by evaporating the metal source and adding a nitrogen source gas. In the case of carbides, the carbon source may be, for example, hydrocarbon gas, CI
I+ etc. may be used. In the case of boride, it can be formed by simultaneously vaporizing a metal source and a boron source and activating it with plasma.
また、スパッタリング法では、窒化物、炭化物。In addition, in the sputtering method, nitrides and carbides.
硼化物のターゲットを用いて、スパッタリング作用によ
り基材に被膜を形成できる。また、窒化物の場合は、反
応性スパッタリング、すなわち、金属源を窒素源ガスで
スパッタリングすることにより、金属間化合物とするこ
とができる。また、イオン注入法の如く、金属基材の表
面に窒素イオン。A boride target can be used to form a coating on a substrate by a sputtering action. In the case of nitride, it can be made into an intermetallic compound by reactive sputtering, that is, by sputtering a metal source with a nitrogen source gas. In addition, nitrogen ions are added to the surface of the metal base material using ion implantation methods.
炭素イオン等を打込んで金属基材自身の表面にこの基材
をベースとした窒化物、炭化物等の被膜を形成してもよ
い。A film of nitride, carbide, etc. based on this base material may be formed on the surface of the metal base material itself by implanting carbon ions or the like.
溶射法は、被膜となる原料を高温、高速状態にして基材
表面に吹付けることでコーティングされる。例えばプラ
ズマ溶射法は、A r 、 Nz、II e等のベース
ガスを多量に流しながら、陽極と陰極間に熱プラズマを
発生させて高温、高速のプラズマ炎を生成し、このプラ
ズマ炎の内部に原料の窒化物、炭化物、硼化物等の原料
粉末を供給することにより、これらの粉末は高温に加熱
されるとともに高速に加速されて、基材表面に到達し、
被膜が形成される。プラズマ溶射の場合、ガス組成を制
御することによって目的の被膜を、CVD及びPVD法
に比較して高速に形成できる。しかし、形成された被膜
の表面の粗さはCVD法及びPVD法に比較して粗いた
め、目的によっては表面の仕上げ加工を行うことが、摩
擦特性上好ましい。In the thermal spraying method, coating is performed by spraying the raw material for the coating onto the surface of the substrate at high temperature and high speed. For example, in the plasma spraying method, a thermal plasma is generated between an anode and a cathode while flowing a large amount of base gas such as Ar, Nz, IIe, etc. to generate a high-temperature, high-speed plasma flame, and inside this plasma flame By supplying raw material powders such as nitrides, carbides, and borides, these powders are heated to high temperatures and accelerated at high speeds, reaching the surface of the base material,
A film is formed. In the case of plasma spraying, by controlling the gas composition, a desired coating can be formed at a higher speed than with CVD and PVD methods. However, since the surface roughness of the formed film is rougher than that of the CVD method and the PVD method, depending on the purpose, it is preferable in terms of friction properties to perform surface finishing.
以上のような方法により形成する金属間化合物(例えば
窒化物、炭化物、硼化物)の被膜の厚さは、剥離しない
厚さであれば、厚い方が摩耗を考慮すると好ましい。一
般的にCVD法及びPVD法で形成される膜厚は100
μm程度以下である。The thickness of the intermetallic compound (for example, nitride, carbide, boride) film formed by the above method is preferably thicker in consideration of wear, as long as it does not peel off. Generally, the film thickness formed by CVD method and PVD method is 100
It is about μm or less.
一方、溶射法では1mm程度以下である。なお、被膜を
厚くするために異なった材質の金属間化合物の層を複数
組み合せることにより改善することもでき、目的に応じ
て被膜を形成することが望ましい。On the other hand, in thermal spraying, the thickness is about 1 mm or less. It should be noted that improvements can be made by combining multiple layers of intermetallic compounds of different materials in order to thicken the coating, and it is desirable to form the coating depending on the purpose.
ここで、被膜3cの具体的な形成例を、下達の実施例I
、nにより説明する。Here, a specific example of the formation of the coating 3c will be described in Example I below.
, n.
(実施例I)
本実施例では、金属間化合物(被膜)3cは、窒化チタ
ン(T i N)とし、スリップリング基材として鉄、
鋼基材を用い、この基材表面にイオンミキシング法によ
りTiN被膜を形成する。具体 −的には、真空
容器内で10−4〜″″6Torr以下で、Tiを基材
表面に蒸着しながら窒素イオンを注入し、窒化化合物(
T i N)を形成する。イオン注入条件は、Ti蒸着
速度:3人/see、加速電圧:20KVで窒素イオン
注入量は2×1018個イオン/dである0通常、この
集電装置の集電、摺動材として耐摩耗、低摩擦係数の窒
化物層3cを形成するためには窒素イオン注入量は1×
1018個イオン/d以上が望ましく、これ以下の量で
は蒸着金属の残留が多く、所要の特性が得られない。(Example I) In this example, the intermetallic compound (coating) 3c is titanium nitride (T i N), and the slip ring base material is iron,
A steel base material is used, and a TiN film is formed on the surface of this base material by an ion mixing method. Specifically, nitrogen ions are implanted while depositing Ti on the surface of the substrate at a pressure of 10-4 to 6 Torr in a vacuum chamber, and a nitride compound (
T i N) is formed. The ion implantation conditions were: Ti evaporation rate: 3 persons/see, acceleration voltage: 20 KV, and nitrogen ion implantation amount: 2 x 1018 ions/d.Normally, this current collector is used as a current collector and a wear-resistant material as a sliding material. , in order to form the nitride layer 3c with a low coefficient of friction, the amount of nitrogen ions implanted is 1×
It is desirable that the amount is 1018 ions/d or more; if the amount is less than this, a large amount of vapor-deposited metal remains, and the desired characteristics cannot be obtained.
この窒化物層3cの厚さは数μm程度であり、スリップ
リングはほとんどが金属基材であるので、回転電機内の
巻線への電流授受を行なうリード線6の接続は、第1図
に示す如くスリップリング3の基材3′に通常行なわれ
るボルト8による取付け、あるいは半田付けなどの加工
が可能であり、この部分の作業性が改善される。The thickness of this nitride layer 3c is about several μm, and most of the slip rings are made of metal base material, so the connection of the lead wire 6 that transfers current to and from the windings in the rotating electric machine is as shown in FIG. As shown, it is possible to attach the slip ring 3 to the base material 3' using bolts 8, which is usually done, or to process the slip ring 3 by soldering, and the workability of this part is improved.
第2図〜第4図に本実施例と従来の集電装置を用い比較
した実験結果の一例を示す。FIGS. 2 to 4 show examples of experimental results comparing this embodiment with a conventional current collector.
第2図は本実施例のスリップリングを用いたブラシとの
接触電圧降下Vbの時間変化を示す。前述した第8図の
結果と比較して摩擦変動が低く。FIG. 2 shows the change over time in the contact voltage drop Vb with the brush using the slip ring of this example. The friction fluctuation is lower than the results shown in FIG. 8 mentioned above.
ブラシ摺動特性は非常に安定していることがわかる。こ
れはスリップリング表面の窒化物層が鏡面様に緻密に形
成されると共に、その硬さがHv250o程度と硬質で
摩擦係数も低いことから、ブラシ黒鉛の不均一な付着や
、黒鉛に混在する堅硬質物粒子が露出しても窒化物層と
の硬質物同志の摺動であり低摩擦係数となるので、ブラ
シ摺動を阻害する要因が解消されるからである。It can be seen that the brush sliding characteristics are very stable. This is because the nitride layer on the slip ring surface is densely formed like a mirror, and its hardness is about Hv250o, and the coefficient of friction is low. This is because even if the hard material particles are exposed, the nitride layer slides against the hard material, resulting in a low coefficient of friction, and the factors that inhibit brush sliding are eliminated.
前述のようにブラシの摩擦変動が低いと、ブラシ集電に
伴うその他の諸特性も著しく改善され、その全効果は大
きい。As mentioned above, when the brush friction variation is low, other characteristics associated with brush current collection are also significantly improved, and the overall effect is large.
例えばブラシ摩耗量をみると、第3図はブラシ電流密度
δと1000時間あたりのブラシ摩耗量Wにおけるブラ
シ摩耗曲線で、従来技術のL曲線に対し、本実施例はN
曲線で表わされるように約50%に半減している。For example, looking at the amount of brush wear, Figure 3 shows the brush wear curve at brush current density δ and brush wear amount W per 1000 hours.
As shown by the curve, it has been halved to about 50%.
また、各ブラシ電流密度の試験において、運転前後のス
リップリング表面の“荒れ”の変化もほとんど認められ
なかった。In addition, in the tests for each brush current density, there was almost no change in the "roughness" of the slip ring surface before and after operation.
さらにまた同様にブラシ温度Tは、第4図に示すように
従来技術ではブラシ温度曲線はPであり、本発明によれ
ば温度曲線Qとなり20〜30%の温度低下を図ること
ができる。Furthermore, similarly, as shown in FIG. 4, the brush temperature curve is P in the prior art, but the brush temperature curve becomes Q according to the present invention, making it possible to reduce the temperature by 20 to 30%.
これはブラシ摩擦変動が低減されたことよりも、スリッ
プリングを構成する窒化物層とリング基材との境界が拡
散を伴う原子的結合により不明瞭となるので、熱及び電
気伝導性が良好となり、ブラシ摺動接触による摩擦損、
電気損によって発生する熱がスリップリング基材から回
転子軸側に速やかに移動するので、熱放散効果が大きい
ためである。従って、ブラシ及びスリップリング双方の
温度上昇を抑制して、集電装置全体の電気特性を大幅に
向上させることができる。This is not due to a reduction in brush friction fluctuations, but because the boundary between the nitride layer that makes up the slip ring and the ring base material becomes unclear due to atomic bonding accompanied by diffusion, resulting in better thermal and electrical conductivity. , friction loss due to brush sliding contact,
This is because heat generated due to electrical loss quickly moves from the slip ring base material to the rotor shaft side, resulting in a large heat dissipation effect. Therefore, temperature increases in both the brush and the slip ring can be suppressed, and the electrical characteristics of the current collector as a whole can be significantly improved.
更に本実施例は、ブラシ火花、荒損等に対する耐力も表
面被膜そのものがセラミックス層であり、その機能は従
来のセラミックス円筒タイプのものと同等の効果を奏す
る。従って、ブラシ火花の大きい難整流機種の場合、表
面層形成膜の厚さを制御することで耐荒損性を高めるこ
とができる。Further, in this embodiment, the surface coating itself is a ceramic layer, which has the same resistance to brush sparks, rough damage, etc., and its function is equivalent to that of the conventional ceramic cylindrical type. Therefore, in the case of a difficult-to-rectify model with large brush sparks, the roughness resistance can be improved by controlling the thickness of the surface layer forming film.
これは、腐食性ガスが介在する雰囲気における機種につ
いても同様の対処で回避が可能である。This can be avoided by taking similar measures for models that operate in an atmosphere containing corrosive gas.
更に、被膜の金属基材(スリップリング本体)に対する
密着性が高く、しかもスリップリングの破壊靭性も基材
並みであり、高周速回転体機種への適用にも充分に耐え
られる。Furthermore, the adhesion of the coating to the metal base material (slip ring main body) is high, and the fracture toughness of the slip ring is also comparable to that of the base material, and it can withstand application to high peripheral speed rotating body models.
(実施例■)
本実施例では、CVD法による被膜3cの形成について
説明する。(Example ■) In this example, formation of the coating 3c by the CVD method will be described.
本実施例でも、金属間化合物(被膜)3cは窒化チタン
(TiN)とし、スリップリング基材として鉄材を用い
た例について述べる。CVD処理は、減圧容器の反応炉
内に被処理材のスリップリングを配設し、反応炉内を1
0−”Torr以下に減圧した後、水素ガスを導入して
80Torrに保持しながら、反応炉を外側の抵抗加熱
方式の電気炉によって1020℃に加熱する。この状態
で、チタン源たる金属ハロゲン化物の四塩化チタン(T
iC14)及び窒素源たる窒素ガスを供給し、8時間の
処理を行った。この処理によってTiN被膜が10μm
形成された。In this embodiment as well, an example in which titanium nitride (TiN) is used as the intermetallic compound (coating) 3c and iron material is used as the slip ring base material will be described. In CVD processing, a slip ring for the material to be treated is placed inside the reactor of a reduced pressure vessel, and the inside of the reactor is
After reducing the pressure to below 0-'' Torr, the reactor is heated to 1020°C using an external resistance heating electric furnace while introducing hydrogen gas and maintaining the temperature at 80 Torr.In this state, the metal halide, which is a titanium source, is titanium tetrachloride (T
iC14) and nitrogen gas as a nitrogen source were supplied, and treatment was performed for 8 hours. Through this treatment, the TiN film becomes 10 μm thick.
Been formed.
前述の如く金属基材が鉄の場合には、減圧CVD法によ
る被膜処理が可能であるが、金属基材の中には、減圧C
VD法で処理温度が高いものもある。As mentioned above, when the metal base material is iron, it is possible to apply a coating using the low pressure CVD method.
Some VD methods require high processing temperatures.
この場合には、直流グロー放電で被処理品を陰極に接続
して、前述同様のCVD処理を行うことで、600℃、
3時間で10μmのTiN被膜を形成することができる
。In this case, by connecting the product to be treated to the cathode using DC glow discharge and performing the same CVD treatment as described above, it is possible to
A 10 μm TiN film can be formed in 3 hours.
しかして1本実施例も、実施例■と同様の効果を奏し得
る。Therefore, this embodiment can also produce the same effects as the embodiment (2).
なお、上記各実施例では、スリップリングに被膜(金属
間化合物)3cとして窒化物のTiNをPVD法、CV
D法により形成した例を説明したが、TiN以外の被膜
材質(例えば実施例の冒頭に例挙した各種の金属間化合
物)についても同様の効果が得られる。In each of the above embodiments, nitride TiN was applied to the slip ring as a coating (intermetallic compound) 3c by PVD or CVD.
Although an example formed by method D has been described, similar effects can be obtained with coating materials other than TiN (for example, various intermetallic compounds listed at the beginning of the examples).
また、基材表面に形成する金属間化合物の被膜を複合化
することも可能である。特に溶射法においては、被膜原
料となる窒化物、炭化物、硼化物粉末と、ブラシとの摺
動に際して摩擦特性を改善できる、いわゆる固体潤滑特
性のある物質(例えばMo5s、Mn5z、h−BN+
黒鉛等)とを混合させることで、被膜中にこれらの固体
潤滑要素を分散した組織構造を得ることができる。It is also possible to form a composite film of intermetallic compounds on the surface of the base material. In particular, in the thermal spraying method, nitride, carbide, and boride powders, which are the raw materials for the coating, are mixed with substances that have so-called solid lubricating properties (e.g., Mo5s, Mn5z, h-BN+
Graphite, etc.), it is possible to obtain a structure in which these solid lubricating elements are dispersed in the film.
また、溶射被膜のみにおいても、例えば第5図に示すよ
うにコーティング条件を制御することで。Furthermore, even in the case of thermal spray coating alone, for example, by controlling the coating conditions as shown in FIG.
目的とする溶射粒子30間の気孔31を分散させ。The pores 31 between the target thermal spray particles 30 are dispersed.
この気孔31に固体潤滑要素(鉛等)を含浸させること
によっても、複合状態の組織を形成できる。A composite structure can also be formed by impregnating the pores 31 with a solid lubricating element (such as lead).
以上のような複合組織によって、電気特性を良好に保持
した状態で、摺動特性を向上させることができる。The composite structure as described above makes it possible to improve the sliding properties while maintaining good electrical properties.
以上のように本発明によれば、集電環、ブラシの耐摩耗
性、耐荒損性の向上化を図ると共に、放熱特性、電気特
性及び機械強度を向上させて、高速回転及び大容量の回
転電機にも充分に対応できる集電装置を提供することが
でき、しかも、被膜形成も容易に行い得ると共に、リー
ド線と摺電環との電気的接続作業も簡単に行い得1作業
コストの低減化を図り得る。As described above, according to the present invention, it is possible to improve the abrasion resistance and roughness resistance of the current collector ring and brushes, as well as improve the heat dissipation characteristics, electrical characteristics, and mechanical strength, and to achieve high-speed rotation and large capacity. It is possible to provide a current collector that is fully compatible with rotating electric machines, and also allows for easy coating formation, as well as easy electrical connection work between lead wires and sliding rings, reducing the cost of one work. This can be reduced.
第1図は本発明の一実施例を示す集電装置の部分縦断面
図、第2図は上記実施例のブラシ接触電圧降下の特性図
、第3図は上記実施例と従来の集電装置のブラシ摩耗状
態を比較して表わす説明図、第4図は上記実施例と従来
の集電装置のブラシ温度状態を比較して表わす説明図、
第5図は本発明の他の実施例を示す部分拡大断面図、第
6図はセラミックス型集電装置の従来例を示す部分断面
図、第7図は第6図のA−A’断面図、第8図は上記従
来例のブラシ接触電圧降下の特性図、第9図は上記従来
例のブラシと集電環表面との接触状態を表わす説明図で
ある。
1・・・回転子軸、2・・・絶縁物、3・・・集電環、
3′・・・集電環本体(金属基材)、3c・・・金属間
化合物の被膜、4・・・ブラシ。
第1囚
第2の
θ↑f’s”。
63の
’(’/exす
第40
J (A/cat’ )
$5 (2)
め60 1□
肇8区
升Pl+’1FIG. 1 is a partial vertical sectional view of a current collector showing an embodiment of the present invention, FIG. 2 is a characteristic diagram of brush contact voltage drop of the above embodiment, and FIG. 3 is a current collector of the above embodiment and a conventional current collector. FIG. 4 is an explanatory diagram showing a comparison of brush wear conditions of the above embodiment and the conventional current collector;
FIG. 5 is a partial enlarged sectional view showing another embodiment of the present invention, FIG. 6 is a partial sectional view showing a conventional example of a ceramic type current collector, and FIG. 7 is a sectional view taken along line AA' in FIG. 6. 8 is a characteristic diagram of brush contact voltage drop in the conventional example, and FIG. 9 is an explanatory diagram showing the state of contact between the brush and the surface of the current collecting ring in the conventional example. 1... Rotor shaft, 2... Insulator, 3... Current collector ring,
3'... Current collector ring main body (metal base material), 3c... Intermetallic compound coating, 4... Brush. 1st prisoner 2nd θ↑f's". 63'('/exsu 40th J (A/cat') $5 (2) Me60 1□ Hajime 8th ward square Pl+'1
Claims (1)
スリップリング或いは整流子からなる集電環を有する集
電装置において、前記集電環の本体となる環状の金属基
材の外周表面に、耐摩耗性、耐電弧性に優れた導電性の
金属間化合物の被膜を拡散を伴つた原子的結合により形
成してなることを特徴とする回転電機の集電装置。 2、第1請求項において、前記金属間化合物の被膜は、
窒化物、炭化物、硼化物のいずれか1つで構成してなる
回転電機の集電装置。 3、第1請求項において、前記金属間化合物の被膜は、
NiAlの被膜よりなる回転電機の集電装置。 4、第1請求項ないし第3請求項のいずれか1項におい
て、前記金属間化合物の被膜は、物理気相蒸気法、化学
気相蒸気法及び溶射法のいずれか1つの方法を用いて形
成してなる回転電機の集電装置。 5、第1請求項ないし第4請求項のいずれか1項におい
て、前記金属間化合物の被膜は、ブラシに対する摩擦特
性を改善するための固体潤滑材を含有してなる回転電機
の集電装置。 6、第1請求項ないし第5請求項のいずれか1項におい
て、前記金属間化合物の被膜は、異なつた材質の金属間
化合物を少なくとも2層以上積層してなる回転電機の集
電装置。[Scope of Claims] 1. In a current collector having a current collecting ring consisting of a slip ring or a commutator that makes sliding contact with the brushes of a rotating electrical machine to transfer current, an annular body serving as the main body of the current collecting ring A current collector for a rotating electric machine, characterized in that a film of a conductive intermetallic compound with excellent wear resistance and arc resistance is formed on the outer peripheral surface of a metal base material through atomic bonding accompanied by diffusion. . 2. In the first claim, the intermetallic compound coating comprises:
A current collector for a rotating electrical machine made of one of nitride, carbide, and boride. 3. In the first claim, the intermetallic compound coating comprises:
A current collector for a rotating electrical machine made of a NiAl film. 4. In any one of claims 1 to 3, the intermetallic compound coating is formed using any one of a physical vapor vapor method, a chemical vapor vapor method, and a thermal spray method. A current collector for rotating electric machines. 5. The current collector for a rotating electric machine according to any one of claims 1 to 4, wherein the intermetallic compound coating contains a solid lubricant for improving frictional characteristics against the brush. 6. The current collector for a rotating electric machine according to any one of claims 1 to 5, wherein the intermetallic compound coating is formed by laminating at least two layers of intermetallic compounds of different materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63129353A JP2804479B2 (en) | 1988-05-26 | 1988-05-26 | Current collector for rotating electric machines |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63129353A JP2804479B2 (en) | 1988-05-26 | 1988-05-26 | Current collector for rotating electric machines |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01298666A true JPH01298666A (en) | 1989-12-01 |
JP2804479B2 JP2804479B2 (en) | 1998-09-24 |
Family
ID=15007505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63129353A Expired - Lifetime JP2804479B2 (en) | 1988-05-26 | 1988-05-26 | Current collector for rotating electric machines |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2804479B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744892A (en) * | 1995-09-06 | 1998-04-28 | Nippondenso Co., Ltd. | Brush and slip ring arrangement of an AC generator |
JP2020171091A (en) * | 2019-04-01 | 2020-10-15 | 株式会社デンソー | DC motor |
DE102023112449A1 (en) * | 2023-05-11 | 2024-11-14 | Schaeffler Technologies AG & Co. KG | Slip ring and brush module of an electrical machine |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567372A (en) * | 1979-07-02 | 1981-01-26 | Fuji Carbon Seizoushiyo Kk | Microbrush |
JPS6013451A (en) * | 1983-07-05 | 1985-01-23 | Nippon Gakki Seizo Kk | Slide current collector |
JPS61101986A (en) * | 1984-10-23 | 1986-05-20 | 田中貴金属工業株式会社 | Slide contact unit |
JPS6271454A (en) * | 1985-09-25 | 1987-04-02 | Toshiba Corp | Collector ring device for rotary electric machine |
JPS6391985A (en) * | 1986-10-03 | 1988-04-22 | 株式会社デンソー | Slip ring for rotary electric machine |
-
1988
- 1988-05-26 JP JP63129353A patent/JP2804479B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS567372A (en) * | 1979-07-02 | 1981-01-26 | Fuji Carbon Seizoushiyo Kk | Microbrush |
JPS6013451A (en) * | 1983-07-05 | 1985-01-23 | Nippon Gakki Seizo Kk | Slide current collector |
JPS61101986A (en) * | 1984-10-23 | 1986-05-20 | 田中貴金属工業株式会社 | Slide contact unit |
JPS6271454A (en) * | 1985-09-25 | 1987-04-02 | Toshiba Corp | Collector ring device for rotary electric machine |
JPS6391985A (en) * | 1986-10-03 | 1988-04-22 | 株式会社デンソー | Slip ring for rotary electric machine |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5744892A (en) * | 1995-09-06 | 1998-04-28 | Nippondenso Co., Ltd. | Brush and slip ring arrangement of an AC generator |
JP2020171091A (en) * | 2019-04-01 | 2020-10-15 | 株式会社デンソー | DC motor |
DE102023112449A1 (en) * | 2023-05-11 | 2024-11-14 | Schaeffler Technologies AG & Co. KG | Slip ring and brush module of an electrical machine |
Also Published As
Publication number | Publication date |
---|---|
JP2804479B2 (en) | 1998-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1154035B1 (en) | Amorphous carbon film containing oxide | |
US5300951A (en) | Member coated with ceramic material and method of manufacturing the same | |
JP2620976B2 (en) | Sliding member | |
US7226671B2 (en) | Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors | |
US6410086B1 (en) | Method for forming high performance surface coatings and compositions of same | |
CN1178204A (en) | Thermal barrier coating member, manufacturing method thereof, and gas turbine parts using the same | |
KR20100016486A (en) | Method for applying a high-strength coating to workpieces and/or materials | |
US3857682A (en) | High temperature resistive and dry lubricated film surfaces | |
Delplancke-Ogletree et al. | Deposition of titanium carbide films from mixed carbon and titanium plasma streams | |
Popov et al. | Improving the performance, reliability and service life of aviation technology products based on the innovative vacuum-plasma nanotechnologies for application of avinit functional coatings and surfaces modification | |
Okimura et al. | Metal matrix composites using diamond-like carbon-coated particles fabricated by cold spray technique | |
JP2804479B2 (en) | Current collector for rotating electric machines | |
JP2003301278A (en) | Method for manufacturing complex metal and complex metallic member | |
KR890002162B1 (en) | Sliding members coated ceramic and a method for manufacture thereof | |
JPH08132130A (en) | Surface covered cermet drawing die having hard covering layer excellent in adhesivity | |
JPS62178336A (en) | Sliding or frictional blank with functional section consisting of ceramic material and manufacture thereof | |
EP1052306A1 (en) | s METAL-BASED GRADIENT COMPOSITE MATERIAL HAVING GOOD LUBRICATION AND WEAR RESISTANCE PROPERTY, THE PRODUCTION AND THE USE OF THE SAME | |
JP4388152B2 (en) | Thin film laminate covering member | |
CN1030807C (en) | Rotating Anode X-ray Tube | |
GB2247693A (en) | Peeling tool process involving machining prior to coating | |
Sheveyko et al. | Hybrid Technology Combining Vacuum Electrospark Alloying, Cathodic Arc Evaporation, and Magnetron Sputtering for the Deposition of Hard Wear-Resistant Coatings | |
JP2001152320A (en) | Sliding member | |
JP4753489B2 (en) | Method for producing sintered body of DLC coated powder | |
EP0070952A1 (en) | Wear resistant synchronizer ring | |
JP2002114585A (en) | Molding basically consisting of polycrystalline sic, method for manufacturing the same, its use, wear member and sliding ring packing containing the same |