JPH01289281A - gate protection circuit - Google Patents
gate protection circuitInfo
- Publication number
- JPH01289281A JPH01289281A JP63119671A JP11967188A JPH01289281A JP H01289281 A JPH01289281 A JP H01289281A JP 63119671 A JP63119671 A JP 63119671A JP 11967188 A JP11967188 A JP 11967188A JP H01289281 A JPH01289281 A JP H01289281A
- Authority
- JP
- Japan
- Prior art keywords
- well
- gate
- protection circuit
- diode
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D89/00—Aspects of integrated devices not covered by groups H10D84/00 - H10D88/00
- H10D89/60—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD]
- H10D89/601—Integrated devices comprising arrangements for electrical or thermal protection, e.g. protection circuits against electrostatic discharge [ESD] for devices having insulated gate electrodes, e.g. for IGFETs or IGBTs
Landscapes
- Solid State Image Pick-Up Elements (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
- Logic Circuits (AREA)
- Electronic Switches (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明はMO,S、型ゲートの保護回路に関し、特に基
板相当に対し正負両方向の電圧信号が印加されるゲート
の保護回路に関する。DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a protection circuit for MO, S, and type gates, and particularly to a protection circuit for gates to which voltage signals in both positive and negative directions are applied to the substrate.
〈従来の技術〉
通常のMO8型回路では、ゲートに印加される電圧信号
は基板に対して単極性であり保護回路の構成も容易であ
る。例えばP型基板上のNチャネルMOSゲートの場合
、第3図に示すようにゲート端子から抵抗ROを介した
後ゲート信号線と基板間に信号線e側を順方向とするダ
イオード(このときのしきい値VD。)、及び信号線■
側でのしきい値をVToとするスイッチ素子を並列接続
することによジ達成される0即ち(−1v< )−Vp
□くv。<vToという通常の動作範囲では静的電流
が流れず、かつv6く−VD。及びV6〉vooという
過大電流に対しては正負両方向とも保護される。<Prior Art> In a normal MO8 type circuit, the voltage signal applied to the gate is unipolar with respect to the substrate, and the construction of the protection circuit is easy. For example, in the case of an N-channel MOS gate on a P-type substrate, as shown in Figure 3, a diode (in this case Threshold value VD.), and signal line■
0, that is, (-1v<)-Vp, is achieved by connecting switching elements in parallel whose threshold value is VTo.
□kv. In the normal operating range <vTo, no static current flows and v6 -VD. Both positive and negative directions are protected against excessive currents such as and V6>voo.
スイッチ素子としては第3図に示したゲート促進アバラ
ンシェブレークダウン素子の他にパンチスルートランジ
スタ、フィールド反転トランジスタ。In addition to the gate promoted avalanche breakdown element shown in FIG. 3, the switch elements include a punch-through transistor and a field inversion transistor.
アバランシェブレークダウンダイオード等積々のものが
考えられる。There are many possibilities, such as an avalanche breakdown diode.
しかしながらゲートに印加される電圧が基板に対して正
負両方向に及ぶ場合もある。−例としてMO3型構造の
一種である電荷結合素子(CCI))の場合を考える。However, the voltage applied to the gate may extend in both positive and negative directions with respect to the substrate. - As an example, consider the case of a charge-coupled device (CCI), which is a type of MO3 type structure.
CCD社最近では転送効率の高い埋め込み型とすること
が多い。この場合ゲート電圧VGに対する最大ポテンシ
ャルItmの関係は第4図のようになる。ここでは信号
電荷が電子の場合、従ってP基板上にN 層により転送
チャネルが形成された場合を考える。これよりv6=O
vですでにポテンシャルは正の値であり、またVG=V
・ で半導体表面に反転層(正孔が多数形in
成された層)ができ、voがそれ以下に低下してモホテ
ンシャルは変化しない。CCD転送りロックの低レベル
電圧vL fv、in付近とすると少くとも低レベル期
間中は半導体表面が反転層で覆われて不活性となるから
暗電流の発生が抑圧される〇従ってvL””pinとす
ることが多い。この場合間らかにvしく0である。一方
転送りロックの高レベル電圧vHとしてはクロック振幅
VH−V、が大きい程最大転送電荷量を多く取れるから
、vH〉0とすることが多い。このようにP基板上のN
チャネル型MOSゲートでありながらゲートに印加する
信号振幅は正負両方向にわたることとなる。Recently, CCD has often used an embedded type with high transfer efficiency. In this case, the relationship between the maximum potential Itm and the gate voltage VG is as shown in FIG. Here, we will consider the case where the signal charge is an electron, and therefore the case where a transfer channel is formed by an N layer on a P substrate. From this v6=O
The potential is already a positive value at v, and VG=V
- An inversion layer (a layer in which a large number of holes are formed) is formed on the semiconductor surface, and vo decreases below this level and the mohotential does not change. When the low level voltage vL of CCD transfer lock is near fv,in, the semiconductor surface is covered with an inversion layer and becomes inactive at least during the low level period, so the generation of dark current is suppressed.Therefore, vL""pin This is often the case. In this case, it is clearly 0. On the other hand, the transfer lock high level voltage vH is often set to vH>0 because the larger the clock amplitude VH-V, the larger the maximum transfer charge amount. In this way, N on the P substrate
Even though it is a channel type MOS gate, the signal amplitude applied to the gate spans both positive and negative directions.
このような場合の保護回路は従来入れられないかあるい
は第5図に示すような回路が用いられていた。即ち本体
部P基板をN基板上の第1ウェルに置き換えるとともに
、%IPウェルと隔てて第2Pウェルを形成し第2Pウ
ェルにはV、より低い電圧−vAを外部より印加する。Conventionally, a protection circuit for such cases has not been included, or a circuit as shown in FIG. 5 has been used. That is, the main body P substrate is replaced with the first well on the N substrate, a second P well is formed separated from the IP well, and V and a lower voltage -vA are externally applied to the second P well.
この第2Pウェル上に従来と同じ保護回路を入れる。こ
れによりv6は−vA−vDoからvTo−vAまでの
動作が保障される。The same protection circuit as the conventional one is placed on this second P-well. This ensures that v6 operates from -vA-vDo to vTo-vA.
〈発明が解決しようとする問題点〉
しかしながらこの場合静電サージ電圧等に対して保護の
役割を十分果さない。なぜなら−vA端子は内部抵抗の
十分率さい外部電源に接続されるまでは接地(GND)
端子に対して開放状態である。<Problems to be Solved by the Invention> However, in this case, it does not sufficiently protect against electrostatic surge voltages and the like. This is because the -vA terminal is grounded (GND) until it is connected to an external power supply with a sufficient internal resistance.
It is open to the terminal.
このときにGND端子に対して大きなサージ電圧がVG
端子に印加されれば保護回路でサージ電荷を逃がすこと
ができず直接ゲートへ印加されてしまう。At this time, a large surge voltage with respect to the GND terminal
If a surge charge is applied to the terminal, the protection circuit will not be able to release the surge charge and it will be applied directly to the gate.
本発明は以上のような問題点に鑑みて考案されたもので
、MOS型ゲートに基板相当領域を基準として正負両方
向の信号電圧が印加される場合にも十分機能するゲート
保護回路を提供するものである。The present invention has been devised in view of the above-mentioned problems, and provides a gate protection circuit that functions satisfactorily even when signal voltages in both positive and negative directions are applied to a MOS type gate with reference to a region corresponding to the substrate. It is.
く問題点を解決するための手段〉
本発明、第1の導電型の半導体基板上に第2の導電型の
第1ウヱルが形成され、当該ウェルは接地電圧とされて
当該ウェル上に形成されたMOS型のゲートに正負両極
性にわたる電圧信号が印加される回路に於て、
前記基板上に第2の導電型の第2ウェルが前記第1ウェ
ルと隔てて形成され、第1ウェル上にある前記ゲートの
信号線はパッド端子に至る間に第2ウェル上にダイオー
ドを含む第1の保護回路を備え、かつ前記第1ウェル電
圧(接地電圧)を与える信号線もパッド端子に至る間に
grI2ウェル上ないし第2ウェルと電気的に接続され
た第3ウェル上にダイオードを含む第2の保護回路を備
えてゲート保護回路を構成する。また、前記第1の保護
回路は抵抗、第1のダイオード、及び当該ダイオード逆
方向極性時のしきい値が当該極性における前記ゲート信
号電圧より高い第1のスイッチ素子からな9、かつ第1
のダイオードと第1のスイッチ素子は前記ゲート信号線
と第2ウェルとの間に並列に接続されるとともに抵抗は
前記ゲート信号線とハツト端子との間に接続されてなり
、前記第2の保護回路は第2のダイオード及び当該ダイ
オード逆方向極性時のしきい値が当該極性における前記
ゲート信号電圧より高い第2のスイッチ素子からなり、
かつ第2のダイオードと第2のスイッチ素子は前記第1
ウェル信号線と第2ウェルないし第3ウェルとの間に並
列に接続してゲート保護回路を構成する。Means for Solving Problems〉 According to the present invention, a first well of a second conductivity type is formed on a semiconductor substrate of a first conductivity type, and the well is connected to a ground voltage and is formed on the well. In a circuit in which a voltage signal of both positive and negative polarities is applied to a gate of a MOS type, a second well of a second conductivity type is formed on the substrate and separated from the first well, and a second well is formed on the first well. The signal line of one of the gates has a first protection circuit including a diode on the second well while reaching the pad terminal, and the signal line for applying the first well voltage (ground voltage) is also connected to the pad terminal. A gate protection circuit is configured by providing a second protection circuit including a diode on the grI2 well or on a third well electrically connected to the second well. Further, the first protection circuit includes a resistor, a first diode, and a first switch element whose threshold value when the diode is reversely polarized is higher than the gate signal voltage in the polarity, and the first
The diode and the first switch element are connected in parallel between the gate signal line and the second well, and the resistor is connected between the gate signal line and the hat terminal, and the second protection The circuit includes a second diode and a second switch element whose threshold value when the diode is in reverse polarity is higher than the gate signal voltage in the polarity,
and the second diode and the second switch element are connected to the first diode and the second switch element.
A gate protection circuit is configured by connecting in parallel between the well signal line and the second to third wells.
〈実施例〉
第1図は本発明をNチャネル型MOSゲート(電子を電
荷とするCCDも含まれる)に適用した場合の一実施例
を示したものである。保護すべきゲートはN基板上の第
1Pウェル上に形成され、第1ウェル電圧は接地電圧(
GND )とされる。<Embodiment> FIG. 1 shows an embodiment in which the present invention is applied to an N-channel MOS gate (including a CCD whose charge is electrons). The gate to be protected is formed on the first P well on the N substrate, and the first well voltage is the ground voltage (
GND).
次にN基板上で%IPウェルとは隔てた所に第2Pウェ
ルが形成される。第1の保護回路はゲート端子V6 と
第2ウェル間に形成される。即ちv6端子から見てまず
抵抗R1t’介した後第2Pウェルに対して以下の2素
子が並列に接続される。−方の素子はゲート信号線e側
を順方向とするダイオードDI+他方の素子はゲート信
号線をe側としたときしきい値が正側ゲート信号電圧よ
り高いスイッチ素子T1であり、Tl として第1図(
a)ではゲート促進アバランシェブレークダウン素子の
例を示す。第2の保護回路は第1Pウェル電圧を与える
線CGND線)と第2Pウェル間に以下の2つの素子が
並列に接続されることにより形成される。一方の素子は
GND@e11111を順方向とするダイオードD2
、他方の素子はGND線を■側としたときしきい値が負
側ゲート信号電圧の絶対値より高いスイッチ素子T2で
あり、T2として第1図(a)ではT1同様ゲート促進
アバランシェブレークダウン素子の例を示す。なお第2
Pウェル電圧線(PW)は外部接続する必要がない。Next, a second P well is formed on the N substrate at a location separated from the IP well. A first protection circuit is formed between the gate terminal V6 and the second well. That is, when viewed from the v6 terminal, the following two elements are first connected in parallel to the second P well via the resistor R1t'. The - element is a diode DI whose forward direction is on the gate signal line e side, and the other element is a switch element T1 whose threshold value is higher than the positive gate signal voltage when the gate signal line is on the e side. Figure 1 (
In a), an example of a gate-facilitated avalanche breakdown device is shown. The second protection circuit is formed by connecting the following two elements in parallel between the first P-well voltage supply line (CGND line) and the second P-well. One element is a diode D2 whose forward direction is GND@e11111.
, the other element is a switch element T2 whose threshold value is higher than the absolute value of the negative side gate signal voltage when the GND line is set to the ■ side, and T2 is a gate-promoted avalanche breakdown element like T1 in FIG. 1(a). Here is an example. Furthermore, the second
The P-well voltage line (PW) does not need to be externally connected.
以上の回路構成においてゲート端子の電圧v6と電流工
。の関係を求めると第1図(b)のようになる。まず正
方向にv6を増大していくとTlのしきい値vT8とD
lの順方向しきい値vD2(通常+v以下)の和V□1
+vo2を越える所で電流は急増する。次に負方向にv
6の絶対値を増大していくとT2のしきい値V。2とD
lの順、方向し−きい値Vn1((1v )(7)和v
T2+vD1を越える所で電流は負方向に急増する。従
って−(vT2+vD1)くV〈(v11+vD2)の
間は通常動作が保障されるとともに、正負両方向のサー
ジ電圧がv66端子に印加されてもゲート端子点Aでは
(vTl+■D2)以上及び−(vo2+vD1)以下
ノミ圧絶対値の上昇は抑制されることとなる。即ち保護
回路として十分機能することとなる0第2図は第1図(
a)の場合の断面構成例を示したものである。In the above circuit configuration, the gate terminal voltage v6 and the current voltage. The relationship shown in FIG. 1(b) is obtained. First, by increasing v6 in the positive direction, the threshold value vT8 of Tl and D
Sum of forward threshold value vD2 (usually less than +v) of l V□1
The current increases rapidly when it exceeds +vo2. Then in the negative direction v
As the absolute value of 6 increases, the threshold value V of T2. 2 and D
In the order of l, the direction threshold Vn1 ((1v) (7) sum v
The current increases sharply in the negative direction when T2+vD1 is exceeded. Therefore, normal operation is guaranteed between −(vT2+vD1) and V<(v11+vD2), and even if surge voltage in both positive and negative directions is applied to the v66 terminal, at gate terminal point A, the voltage is greater than or equal to (vTl+■D2) and −(vo2+vD1). ) or below, the increase in the absolute value of chisel pressure will be suppressed. In other words, it functions satisfactorily as a protection circuit.
An example of the cross-sectional configuration in case a) is shown.
以上の説明においては第2の保護回路が第1の保護回路
と同一ウェル(第2Pウェル)上にある場合を例とした
が、%IPウェルとも第2Pウニ ・ルとも異なる第
3Pウェル上に形成される場合でも第2Pウェルと接続
されている限り同様であることは明らかである。またス
イッチ素子T+、Tzとしてはゲート促進アバランシェ
ブレークダウンP、子以外にパンチスルートランジスタ
、フィールド反転トランジスタ、アバランシェブレーク
ダウンダイオード等地の素子でも可能である。In the above explanation, the case where the second protection circuit is located on the same well (second P well) as the first protection circuit is taken as an example, but it is assumed that the second protection circuit is located on the third P well, which is different from the IP well and the second P well. It is clear that the same applies even when the second P well is formed as long as it is connected to the second P well. Further, as the switching elements T+ and Tz, other than gate-promoted avalanche breakdown devices P and D, other elements such as punch-through transistors, field inversion transistors, avalanche breakdown diodes, etc. can be used.
く効 果〉
以上説明してきたように、MO3型ゲートの基板相当領
域を基準としてゲート信号電圧が正負両方向に及ぶ場合
でも、本発明においてスイッチ素子のしきい値電圧を正
負両方向のゲート信号電圧絶対値より少し高くかつゲー
ト保護には十分低い値に適当に設定することにより、正
負両方向の静電サージ電圧に対してゲートの保護が可能
となる。Effect> As explained above, even when the gate signal voltage extends in both positive and negative directions with respect to the substrate equivalent region of the MO3 type gate, the threshold voltage of the switching element is adjusted to the absolute value of the gate signal voltage in both the positive and negative directions in the present invention. By appropriately setting the value to a value slightly higher than the value and sufficiently low to protect the gate, the gate can be protected against electrostatic surge voltages in both positive and negative directions.
しかも回路構成としては見かけ上接地電圧線にも保護回
路全入れるという簡単なものであり、さらに従来外部端
子としていた第2のPウェル電圧端子が不要となる利点
もある。Moreover, the circuit configuration is apparently simple, with all the protection circuits being inserted into the ground voltage line, and there is also the advantage that the second P-well voltage terminal, which was conventionally used as an external terminal, is not required.
第1図は本発明のゲート保護回路の一実施例で、(a)
は回路図、(b)は動作特性図を示し、第2図は第1図
(a)の場合の断面構成図、第3図はゲート印加電圧が
単極性の場合の従来のゲート保護回路で、(a)は回路
図をら)は動作特性図を示し、第4図は電子を電荷とす
る埋め込みチャネル型CCDのゲート電圧と最大ポテン
シャルの関係図、第5図はゲート印加電圧が両極性の場
合の従来のゲート保護回路図を示す。
”l + T2 :スイッチ素子 Dt + D
2 :ダイオード。
代理人 弁理士 杉 山 毅 至(他1名)(a)(b
)
第1図
嘉2図FIG. 1 shows an embodiment of the gate protection circuit of the present invention, (a)
is a circuit diagram, (b) is an operating characteristic diagram, Fig. 2 is a cross-sectional configuration diagram for the case of Fig. 1 (a), and Fig. 3 is a conventional gate protection circuit when the gate applied voltage is unipolar. , (a) shows the circuit diagram, (a) shows the operating characteristic diagram, Fig. 4 shows the relationship between the gate voltage and the maximum potential of a buried channel type CCD whose charge is electrons, and Fig. 5 shows the relationship between the gate voltage and the maximum potential when the gate applied voltage is bipolar. A conventional gate protection circuit diagram is shown in the case of . "l + T2: Switch element Dt + D
2: Diode. Agent Patent attorney Takeshi Sugiyama (1 other person) (a) (b
) Figure 1 Ka 2
Claims (1)
ウェルが形成され、当該ウェルは接地電圧とされて当該
ウェル上に形成されたMOS型のゲートに正負両電極性
にわたる電圧信号が印加される回路に於て、 前記基板上に第2の導電型の第2ウェルが前記第1ウェ
ルと隔てて形成され、第1ウェル上にある前記ゲートの
信号線はパッド端子に至る間に第2ウェル上にダイオー
ドを含む第1の保護回路を備え、かつ前記第1ウェル電
圧(接地電圧)を与える信号線もパッド端子に至る間に
第2ウェル上ないし第2ウェルと電気的に接続された第
3ウェル上にダイオードを含む第2の保護回路を備えた
ことを特徴とするゲート保護回路。 2、前記第1の保護回路は抵抗、第1のダイオード、及
び当該ダイオード逆方向極性時のしきい値が当該極性に
おける前記ゲート信号電圧より高い第1のスイッチ素子
からなり、かつ第1のダイオードと第1のスイッチ素子
は前記ゲート信号線と第2ウェルとの間に並列に接続さ
れるとともに抵抗は前記ゲート信号線とパッド端子との
間に接続されてなり、 前記第2の保護回路は第2のダイオード及び当該ダイオ
ード逆方向極性時のしきい値が当該極性における前記ゲ
ート信号電圧より高い第2のスイッチ素子からなり、か
つ第2のダイオードと第2のスイッチ素子は前記第1ウ
ェル信号線と第2ウェルないし第3ウェルとの間に並列
に接続されてなることを特徴とする特許請求の範囲第1
項記載のゲート保護回路。[Claims] 1. A first semiconductor substrate of a second conductivity type on a semiconductor substrate of a first conductivity type.
In a circuit in which a well is formed, the well is set to a ground voltage, and a voltage signal having both positive and negative polarities is applied to a MOS type gate formed on the well, a second conductivity type is formed on the substrate. a second well is formed separated from the first well, and the gate signal line on the first well is provided with a first protection circuit including a diode on the second well while reaching the pad terminal, and The signal line for applying the first well voltage (ground voltage) also includes a second protection circuit including a diode on the second well or on the third well electrically connected to the second well while reaching the pad terminal. A gate protection circuit characterized by: 2. The first protection circuit includes a resistor, a first diode, and a first switch element whose threshold value when the diode is reverse polarized is higher than the gate signal voltage in the polarity, and the first diode and a first switch element are connected in parallel between the gate signal line and the second well, and a resistor is connected between the gate signal line and the pad terminal, and the second protection circuit is a second diode and a second switch element whose threshold value when the diode is in reverse polarity is higher than the gate signal voltage in the polarity, and the second diode and the second switch element are connected to the first well signal Claim 1, characterized in that the wire is connected in parallel between the line and the second well to the third well.
Gate protection circuit described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63119671A JPH01289281A (en) | 1988-05-17 | 1988-05-17 | gate protection circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63119671A JPH01289281A (en) | 1988-05-17 | 1988-05-17 | gate protection circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01289281A true JPH01289281A (en) | 1989-11-21 |
Family
ID=14767170
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63119671A Pending JPH01289281A (en) | 1988-05-17 | 1988-05-17 | gate protection circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01289281A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162966A (en) * | 1990-07-06 | 1992-11-10 | Fuji Electric Co., Ltd. | Semiconductor device having a surge protecting element |
-
1988
- 1988-05-17 JP JP63119671A patent/JPH01289281A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5162966A (en) * | 1990-07-06 | 1992-11-10 | Fuji Electric Co., Ltd. | Semiconductor device having a surge protecting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3926975B2 (en) | Stacked MOS transistor protection circuit | |
CA2223199C (en) | Gate-coupled structure for enhanced esd input/output pad protection in cmos ics | |
US5173755A (en) | Capacitively induced electrostatic discharge protection circuit | |
JP3009614B2 (en) | Electrostatic discharge protection circuit for integrated circuits, electrostatic discharge protection device, and method for protecting against electrostatic discharge | |
US6624998B2 (en) | Electrostatic discharge protection scheme in low potential drop environments | |
US10181721B2 (en) | Area-efficient active-FET ESD protection circuit | |
JPH09181196A (en) | Electrostatic protection element | |
JPH0336926A (en) | Electronic circuit overvoltage protection device | |
US8730624B2 (en) | Electrostatic discharge power clamp with a JFET based RC trigger circuit | |
CN106653736A (en) | ESD protection circuit and semiconductor device thereof | |
US5349227A (en) | Semiconductor input protective device against external surge voltage | |
JP2009543324A (en) | Electrostatic discharge protection device and method therefor | |
CN1096747C (en) | Protection circuit | |
JPH01289281A (en) | gate protection circuit | |
US5698886A (en) | Protection circuit against electrostatic discharges | |
JPH1070246A (en) | Protection device for semiconductor device | |
JPH0773207B2 (en) | Output circuit | |
JP3479012B2 (en) | Electrostatic protection circuit and semiconductor device | |
JP2884946B2 (en) | Semiconductor integrated circuit device | |
JPS58122695A (en) | Input overvoltage protection circuit | |
JPS5814562A (en) | Semiconductor device | |
KR100388178B1 (en) | Protective circuit of a stacked mos transistor | |
JP3753506B2 (en) | Semiconductor integrated circuit device | |
JPH07235609A (en) | Field effect transistor protector | |
CN101385214A (en) | Method and apparatus for protecting a gate oxide using source/bulk pumping |