[go: up one dir, main page]

JPH01287627A - Light switching method - Google Patents

Light switching method

Info

Publication number
JPH01287627A
JPH01287627A JP11852688A JP11852688A JPH01287627A JP H01287627 A JPH01287627 A JP H01287627A JP 11852688 A JP11852688 A JP 11852688A JP 11852688 A JP11852688 A JP 11852688A JP H01287627 A JPH01287627 A JP H01287627A
Authority
JP
Japan
Prior art keywords
light
quantum well
wavelength
signal light
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11852688A
Other languages
Japanese (ja)
Inventor
Hideo Nagai
秀男 永井
Masahiro Kume
雅博 粂
Yuichi Shimizu
裕一 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11852688A priority Critical patent/JPH01287627A/en
Publication of JPH01287627A publication Critical patent/JPH01287627A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To switch light rays at high speed with a simple element structure by modulating the transmission intensity of modulated signal light by changing the absorption coefficient of the wavelength of the signal light by irradiating signal light by control light having a shorter wavelength than the signal light has, to control intensity of light with another light. CONSTITUTION:The transmission intensity of signal light irradiated by control light having a wavelength shorter than that of the signal light in a state where a DC electric field is impressed upon a quantum well structure is modulated to control the intensity of transmitted signal light. Namely, the DC electric field impressed upon the quantum well structure is compensated by performing screening by means of carriers produced by optical excitation and light switching is performed by light by utilizing a change in absorption coefficient. Therefore, high-speed light switching is made possible with a simple element structure.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光通信や光情報処理に用いることができる光
スイッチング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical switching method that can be used in optical communications and optical information processing.

従来の技術 近年、量子井戸構造に光を照射して、その量子井戸構造
に変調電界を印加し、透過光及び反射光を変調する各種
デバイスが提案及び試作されている。以下、図を用いて
従来の透過型光変調器について説明する。第5図に光変
調器の原理図を示す。
BACKGROUND OF THE INVENTION In recent years, various devices have been proposed and prototyped that modulate transmitted light and reflected light by irradiating a quantum well structure with light and applying a modulating electric field to the quantum well structure. A conventional transmissive optical modulator will be described below with reference to the drawings. FIG. 5 shows a diagram of the principle of the optical modulator.

p −i −n構造の1層の部分に量子井戸構造をつく
り、量子井戸に電界を印加している。量子井戸構造はp
 −i −n構造のビルト・イン電圧と外部から印加さ
れる電圧の和か印加される。量子井戸構造に加わる電界
Eがゼロのときと、E)Oのときの量子井戸構造の吸収
係数スペクトルは、第2図の実線と破線で示される。各
スペクトルの2つのピークは、長波長側が重い正孔の第
1量子準位から電子の第1量子準位への遷移に付随する
1Sエキシトン遷移(1hh1e)の吸収端に相当し、
短波長側が軽い正孔の第1量子準位から電子の第1量子
準位への遷移に付随する1Sエキシトン遷移(fji!
h−16)の吸収端に相当する。量子井戸構造に電界を
印加すると量子閉じ込めシュタルク効果により各吸収端
が長波長側にシフトする。いま、第2図に示すように1
hh16遷移の吸収端よりも長波長λSの信号光を量子
井戸構造に照射する。波長λSでの吸収係数は、電界印
加時とゼロのときでそれぞれα1.α0とすると、α1
〉α0であるから信号光の透過率は電界を印加すること
により低くなっている。すなわち電界変調によって吸収
係数に変調を加えて透過光をスイッチングしている。
A quantum well structure is created in one layer of the p-i-n structure, and an electric field is applied to the quantum well. The quantum well structure is p
The sum of the built-in voltage of the -i-n structure and the externally applied voltage is applied. The absorption coefficient spectra of the quantum well structure when the electric field E applied to the quantum well structure is zero and when E)O are shown by solid lines and broken lines in FIG. The two peaks in each spectrum correspond to the absorption edge of the 1S exciton transition (1hh1e) that accompanies the transition from the first quantum level of holes to the first quantum level of electrons, where the longer wavelength side is heavier,
The 1S exciton transition (fji!
It corresponds to the absorption edge of h-16). When an electric field is applied to the quantum well structure, each absorption edge shifts to the longer wavelength side due to the quantum confined Stark effect. Now, as shown in Figure 2, 1
The quantum well structure is irradiated with signal light having a wavelength λS longer than the absorption edge of the hh16 transition. The absorption coefficient at wavelength λS is α1. If α0, α1
>α0, the transmittance of the signal light is lowered by applying an electric field. That is, the transmitted light is switched by modulating the absorption coefficient by electric field modulation.

発明が解決しようとする課題 しかしながら、上記のような構成では、光信号でシリア
ルに駆動をする場合、制御光を一度電気信号に変換しな
ければならない。そのためには変換部等が必要になるた
め、素子構造が複雑になる。
Problems to be Solved by the Invention However, in the above configuration, when driving serially using an optical signal, the control light must be converted into an electrical signal once. For this purpose, a converting section and the like are required, which makes the element structure complicated.

また動作速度も一度電気信号に変換をおこなうため、遅
くなる。
Also, the operating speed is slow because it is converted into an electrical signal once.

課題を解決するだめの手段 この課題を解決するために、本発明の光スイッチング方
法は、量子井戸構造にDC電界が印加された状態で照射
されている信号光を、前記信号光よシ短波長の制御光を
照射上て透過強度を変調し、透過される信号光の強度を
制御することから構成されている。
Means for Solving the Problem In order to solve this problem, the optical switching method of the present invention uses a signal light that is irradiated with a DC electric field applied to a quantum well structure to have a wavelength shorter than that of the signal light. The control light beam is irradiated with control light, the transmitted intensity is modulated, and the transmitted signal light intensity is controlled.

作用 本構成により量子井戸構造に印加したDC電界を、光励
起によって生じるキャリアでスクリーニングしてDC電
界を打ち消し、その結果吸収係数が変化するのを利用し
て光により光をスイッチングすることができる。
Effect: With this configuration, the DC electric field applied to the quantum well structure is screened with carriers generated by photoexcitation to cancel the DC electric field, and the resulting change in absorption coefficient can be used to switch light.

実施例 本発明では制御光を電気信号に変換することなく、スク
リーニング効果を用いて、制御光で直接信号光を変調を
おこなう。以下、図を用いて説明する。第1図に本発明
の原理図を示す。本発明が従来の技術と大きく異なる点
は、(1)量子井戸構造に加える電界はDC電界のみで
あり、ムC電界成分を必要としないこと、(2)光−光
直接変調であることである。
Embodiment In the present invention, the control light is used to directly modulate the signal light using the screening effect without converting the control light into an electrical signal. This will be explained below using figures. FIG. 1 shows a diagram of the principle of the present invention. The present invention differs greatly from conventional technology in that (1) the electric field applied to the quantum well structure is only a DC electric field and does not require a muC electric field component, and (2) it is light-light direct modulation. be.

また、従来の技術と同一の点は、量子井戸構造の井戸面
に対して1hh1eエキシトン遷移の吸収端より長波長
側に設定された波長λSなる信号光を垂直に照射し、そ
の透過光量の変化を利用するか、あるいは、量子井戸構
造で導波路を形成し波長λSなる信号光を導びいて、そ
の透過光量の変化を利用する点である。ここで量子井戸
構造の透過率、すなわち、波長λSにおける吸収係数を
変化させる方法として、以下のような方法をとる。
In addition, the same point as the conventional technology is that the well surface of the quantum well structure is vertically irradiated with signal light having a wavelength λS set on the longer wavelength side than the absorption edge of the 1hh1e exciton transition, and the amount of transmitted light changes. Alternatively, a waveguide may be formed with a quantum well structure to guide signal light having a wavelength λS, and changes in the amount of transmitted light may be utilized. Here, as a method of changing the transmittance of the quantum well structure, that is, the absorption coefficient at the wavelength λS, the following method is used.

■まず、p −i −n構造の1層の部分を量子井戸構
造とし、p −i −n構造に逆方向電圧を印加するこ
とにより、量子井戸構造に電界を印加する。
(2) First, one layer of the p-i-n structure is made into a quantum well structure, and an electric field is applied to the quantum well structure by applying a reverse voltage to the p-i-n structure.

量子井戸構造に電界が印加されていない状態と、印加さ
れている状態での吸収スペクトルは、第2図の実線と破
線で示される。量子井戸構造に電界を印加すると、量子
閉じ込めシュタルク効果により、吸収端が長波長側にシ
フトした状態になる。
Absorption spectra in a state in which no electric field is applied to the quantum well structure and in a state in which an electric field is applied are shown by solid lines and broken lines in FIG. When an electric field is applied to the quantum well structure, the absorption edge shifts to the longer wavelength side due to the quantum-confined Stark effect.

この状態では、波長λSでの吸収係数は、電界が印加さ
れていない状態での吸収係数に比べて大きいので、透過
光強度は、弱い状態にある。(第2図破線OFF状態)
■そこへ、電界を印加していない状態での1 hh 1
 eエキシトン遷移の吸収端に相当する波長に設定され
た波長λCなる制御光を、量子井戸構造に照射すると、
波長λCなる制御光によって励起されたキャリアが、量
子井戸構造に印加されている電界を、スクリーニング効
果で打ち消す。しかも、電界が打ち消されると吸収端が
短波長側にシフトするため、波長λGでの吸収係数は増
加し正のフィードバックが加わり、さらに量子井戸内に
キャリアが生じるため急激に電界がゼロの状態になり、
波長λSでの吸収係数は小さくなる。そのため透過光強
度は強い状態になる。
In this state, the absorption coefficient at the wavelength λS is larger than the absorption coefficient when no electric field is applied, so the transmitted light intensity is in a weak state. (Figure 2 broken line OFF state)
■1 hh 1 when no electric field is applied there
When the quantum well structure is irradiated with a control light having a wavelength λC set to a wavelength corresponding to the absorption edge of the e-exciton transition,
Carriers excited by the control light having wavelength λC cancel the electric field applied to the quantum well structure by a screening effect. Moreover, when the electric field is canceled out, the absorption edge shifts to the short wavelength side, so the absorption coefficient at wavelength λG increases and positive feedback is added. Furthermore, carriers are generated in the quantum well, so the electric field suddenly becomes zero. Become,
The absorption coefficient at wavelength λS becomes small. Therefore, the transmitted light intensity becomes strong.

(第2図実線ON状態)このとき生じた余分のキャリア
は、光電流として流れる。■制御光λGの照射をやめる
と、印加されている電界により、すみやかに■の状態に
もどる。
(FIG. 2 solid line ON state) The extra carriers generated at this time flow as photocurrent. (2) When the irradiation of the control light λG is stopped, the state immediately returns to (2) due to the applied electric field.

以上のように■、■、■の状態を繰り返えすことにより
、光をスイッチングすることができる。
By repeating the states (1), (2), and (2) as described above, light can be switched.

すなわち、制御光がONのときに、信号光もON状態に
なり、制御光がOFFのとき信号光もOFF状態になる
ことがわかる。
That is, it can be seen that when the control light is ON, the signal light is also in the ON state, and when the control light is OFF, the signal light is also in the OFF state.

ただし、制御光の強度と照射時間は、電界をスクリーニ
ングするのに十分な密度のキャリアを励起する強度と時
間でなければならない。一般にそのキャリアの面密度N
sはNs=εSεOE/6(εS:量子井戸構造の比誘
電率、C0:真空の誘電率、Σ:量子井戸構造に印加さ
れる電界、e:電子の電荷量)以上のキャリア密度であ
る。
However, the intensity and irradiation time of the control light must be such that it excites a sufficient density of carriers to screen the electric field. In general, the areal density of the carrier N
s is a carrier density greater than or equal to Ns=εSεOE/6 (εS: relative dielectric constant of the quantum well structure, C0: dielectric constant of vacuum, Σ: electric field applied to the quantum well structure, e: charge amount of electrons).

以下、本発明の具体的な実施例について、図面を参照し
ながら説明する。
Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

第3図は本発明に用いる導波路型の一例である。FIG. 3 shows an example of a waveguide type used in the present invention.

第3図において、1はn−GaAs基板(キャリア密度
N〜10 cm、厚さt 〜200 μm ) 、 2
はn −GaAgバッファ層(N 〜5 X 10  
Cm   、t:〜0.1 μTB ) 、 3はn−
人7!x Gal −X As (X = 0.5 )
クラッド層(N 〜5 X 10”C111−3,t=
1 μm )、 Jt。
In FIG. 3, 1 is an n-GaAs substrate (carrier density N ~ 10 cm, thickness t ~ 200 μm), 2
is an n-GaAg buffer layer (N ~ 5 × 10
Cm, t: ~0.1 μTB), 3 is n-
Person 7! x Gal −X As (X = 0.5)
Cladding layer (N ~5 x 10"C111-3, t=
1 μm), Jt.

i −M Q Wガイド層(GaAsウェル層100人
と人1x Ga、 −x As (X = 0.5 )
バリア層100人を20周期、 N 〜10  cm 
 、 t==4000人)、6はP−ムlz Ga+−
2As (X 〜0.5 ) り7 ッ)’i (N 
〜5X10  cllll、 t 〜1 μm ) 、
 6はP−GaAsキャップ層(N 〜1019cm 
’、 t= 1 pm )、 7はTi/ムU。
i -MQW guide layer (GaAs well layer 100 people and 1x Ga, -x As (X = 0.5)
Barrier layer 100 people, 20 cycles, N ~ 10 cm
, t==4000 people), 6 is P-mulz Ga+-
2As (X ~ 0.5) ri7)'i (N
~5X10 cllll, t ~1 μm),
6 is a P-GaAs cap layer (N ~ 1019 cm
', t=1 pm), 7 is Ti/muU.

8はAuGeNi/Auのオーミックコンタクトである
8 is an AuGeNi/Au ohmic contact.

導波路の長さL:100μrn @w = 2μmであ
る。
Length L of the waveguide: 100 μrn @w = 2 μm.

また、信号光の入力及び出力の両端面には、無反射コー
ティングがほどこしである。
Furthermore, anti-reflection coatings are applied to both end faces of the input and output sides of the signal light.

量子井戸構造に電界を印加するためにp −i −n接
合に対して逆方向になるように3vの電圧を印加してお
り、i層にはこのとき、ビルトイン電圧(〜27)とあ
わせて〜5vが印加されている。
In order to apply an electric field to the quantum well structure, a voltage of 3V is applied in the opposite direction to the p-i-n junction, and at this time, in addition to the built-in voltage (~27), ~5v is applied.

i層の厚さは40oo人であるから、各量子井戸には〜
1.2 X I Q5V /crnの電界が印加されて
いる。
Since the thickness of the i-layer is 400 mm, each quantum well has ~
An electric field of 1.2 X I Q5V /crn is applied.

また信号光として波長858nm、パワー密度10W/
−のTK波を第4図に示すように導波路の一方向から入
射している。以上のよう電界を印加した状態のところに
波長11348nm、パワー密度1KN、、/al!I
、 T E波の制御光を導波路の側面から照射し、第5
図aに示すように巾1 n560.繰り返し周期4ns
ecでスイッチングをおこなったところ、出力光は第6
図すに示すような応答をした。
In addition, the signal light has a wavelength of 858 nm and a power density of 10 W/
- TK waves are incident on the waveguide from one direction as shown in FIG. When an electric field is applied as described above, the wavelength is 11348 nm, the power density is 1 KN, /al! I
, TE wave control light is irradiated from the side of the waveguide, and the fifth
Width 1 n560. Repetition period 4ns
When switching was performed using EC, the output light was the 6th
The response was as shown in the figure.

出力光のON10 F F比は〜3であり、ON時の損
失は〜30俤であった。
The ON10 FF ratio of the output light was ~3, and the loss when ON was ~30.

また、信号光、制御光を量子井戸面に垂直に照射した組
合せにおいても、同様の効果が得られた。
Similar effects were also obtained in a combination in which signal light and control light were irradiated perpendicularly to the quantum well surface.

なお、本発明において、実施例中の量子井戸構造として
、ウェル層中50人〜200人、バリア層巾6oÅ以上
、ウェル数1〜6oのいずれの組合せにおいても、同様
の効果が得られた。また、動作波長は、ウェル層中、ム
lのモル比、印加電界を選ぶことで、本実施例に示した
850nm前後にかぎらず680nm 〜880nl!
lのGaAjJAs系量子井戸構造において、同様の効
果が得られた。
In addition, in the present invention, the same effect was obtained in any combination of the quantum well structure in the example with 50 to 200 well layers, a barrier layer width of 6 Å or more, and 1 to 6 wells. Moreover, the operating wavelength is not limited to around 850 nm as shown in this example, but can be changed from 680 nm to 880 nm by selecting the molar ratio of Mul in the well layer and the applied electric field!
A similar effect was obtained in the GaAjJAs-based quantum well structure.

本発明のスイッチング装置は、AlG5lG5人外系以
外、例えばrnGaAsPやInGaA4Pの材料に対
しても適用できる。
The switching device of the present invention can also be applied to materials other than AlG51G5, such as rnGaAsP and InGaA4P.

なお、上記実施例において、導電形を全べて反対にした
構造においても、同様の効果を得た。
Incidentally, in the above embodiment, a similar effect was obtained even in a structure in which all the conductivity types were reversed.

発明の効果 本発明によれば、光信号を制御用の別の光信号で直接ス
イッチングすることができる。そのため、簡単な素子構
造で、高速なスイッチングが可能になり、光IC等の応
用を考えるとその効果は大なるものがある。
Effects of the Invention According to the present invention, an optical signal can be directly switched using another optical signal for control. Therefore, high-speed switching is possible with a simple element structure, and the effect is significant when considering applications such as optical ICs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するだめの図、第2図は量
子井戸構造の吸収係数スペクトルの量子閉じ込めシュタ
ルク効果を説明するだめの図、第3図は本発明の詳細な
説明するだめの図、第4図は本発明の制御光と出力光の
応答特性を示す図、第6図は従来の光スイッチング素子
の原理図である。 1・・・・・・n−GaAS 基板、2・・・・・・n
 −Ga As バッファ層、3・・・・・・n−ムパ
AASクラッド層、4・・・・・・i −M Q Wガ
イド層、5・・・・・・P−人I Ga Asクラッド
層、6・・・・・・P−GaAs キャップ層、7・・
・・・・Ti/ムU電極、8・・・・・・ムuGeNi
/Au IE極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名派 
        派
Figure 1 is a diagram for explaining the present invention in detail, Figure 2 is a diagram for explaining the quantum confined Stark effect of the absorption coefficient spectrum of a quantum well structure, and Figure 3 is a diagram for explaining the invention in detail. FIG. 4 is a diagram showing the response characteristics of the control light and output light of the present invention, and FIG. 6 is a diagram showing the principle of a conventional optical switching element. 1...n-GaAS substrate, 2...n
-GaAs buffer layer, 3...n-Mupa AAS cladding layer, 4...i -MQW guide layer, 5...P-I GaAs cladding layer , 6... P-GaAs cap layer, 7...
...Ti/muU electrode, 8...muGeNi
/Au IE pole. Name of agent: Patent attorney Toshio Nakao and one other person
sect

Claims (1)

【特許請求の範囲】[Claims] バンドギャップの異なる半導体材料を交互に積み重ねて
作った量子井戸構造に、前記量子井戸構造の重い正孔の
第1量子井戸準位から電子の第1量子井戸準位への遷移
に付随する1Sエキシトン遷移の吸収端に相当する波長
よりも長波長側の波長をもつ信号光が照射され、かつ前
記量子井戸構造に井戸面に対して垂直方向にDC電界が
印加された状態で、変調した前記信号光よりも短波長の
制御光を照射することによって、前記信号光の波長にお
ける吸収係数を変化させて、前記信号光の透過強度を変
調し光によって光の強度を制御することを特徴とする光
スイッチング方法。
In a quantum well structure made by alternately stacking semiconductor materials with different bandgaps, 1S excitons are generated that accompany the transition from the first quantum well level of heavy holes to the first quantum well level of electrons in the quantum well structure. The modulated signal is irradiated with signal light having a wavelength longer than the wavelength corresponding to the absorption edge of the transition, and a DC electric field is applied to the quantum well structure in a direction perpendicular to the well surface. A light characterized in that by irradiating control light with a shorter wavelength than the light, the absorption coefficient at the wavelength of the signal light is changed, the transmission intensity of the signal light is modulated, and the intensity of the light is controlled by the light. Switching method.
JP11852688A 1988-05-16 1988-05-16 Light switching method Pending JPH01287627A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11852688A JPH01287627A (en) 1988-05-16 1988-05-16 Light switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11852688A JPH01287627A (en) 1988-05-16 1988-05-16 Light switching method

Publications (1)

Publication Number Publication Date
JPH01287627A true JPH01287627A (en) 1989-11-20

Family

ID=14738789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11852688A Pending JPH01287627A (en) 1988-05-16 1988-05-16 Light switching method

Country Status (1)

Country Link
JP (1) JPH01287627A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247387A (en) * 1990-09-05 1993-09-21 Minolta Camera Kabushiki Kaisha Method and device for driving electro-optical light shutter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247387A (en) * 1990-09-05 1993-09-21 Minolta Camera Kabushiki Kaisha Method and device for driving electro-optical light shutter

Similar Documents

Publication Publication Date Title
JP2928532B2 (en) Quantum interference optical device
US5059001A (en) Non-linear optical device with quantum micro hetero structure
US5047822A (en) Electro-optic quantum well device
JPH02129616A (en) Light modulation apparatus and method
US5016990A (en) Method of modulating an optical beam
US4826295A (en) Controlled Optical signal absorber apparatus and method using quantum well layer structure
US5359617A (en) Nonlinear optical device
US4900134A (en) Optical device
EP0131042B1 (en) Intensity of a light beam applied to a layered semiconductor structure controls the beam
US5952683A (en) Functional semiconductor element with avalanche multiplication
JPH02103021A (en) Quantum well optical device
US5153688A (en) Method and device for controlling interference of electron waves by light in which a transverse magnetic wave is applied
JPH01287627A (en) Light switching method
JPH07142816A (en) Optical pulse generator
JP3001365B2 (en) Optical semiconductor element and optical communication device
US5208695A (en) Optical modulator based on gamma -X valley mixing in GaAs-AlAs
JPH01179124A (en) Optical space modulating element
JPH11109298A (en) Semiconductor element
EP0361651A2 (en) Optical element and method of modulating light by using the same
JPH0263024A (en) Optical element
Livescu et al. Invited Paper Quantum Wells For Optical Processing Applications
Ebeling et al. Electroabsorption in low-dimensional and bulk-like Zn1− xCdxSe
Cunningham Recent Developments and Applications in Electroabsorption Semiconductor Modulators
JPS63127226A (en) Optical switch
Mares Modelling of quantum well electrooptical devices