[go: up one dir, main page]

JPH01287493A - Waste water monitor - Google Patents

Waste water monitor

Info

Publication number
JPH01287493A
JPH01287493A JP63115989A JP11598988A JPH01287493A JP H01287493 A JPH01287493 A JP H01287493A JP 63115989 A JP63115989 A JP 63115989A JP 11598988 A JP11598988 A JP 11598988A JP H01287493 A JPH01287493 A JP H01287493A
Authority
JP
Japan
Prior art keywords
pulses
sample
radioactivity
measurement
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63115989A
Other languages
Japanese (ja)
Inventor
Hiroaki Ishikawa
石河 寛昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SCI KK
Original Assignee
NIPPON SCI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SCI KK filed Critical NIPPON SCI KK
Priority to JP63115989A priority Critical patent/JPH01287493A/en
Publication of JPH01287493A publication Critical patent/JPH01287493A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To automatically determine a radioactivity value by measuring the electrical pulses generated after radiations are detected by a scintillator in the plural measurement regions defined by the upper and lower limits of a pulse height analyzer. CONSTITUTION:A waste liquid sample transported by a pump from a waste liquid storage tank and the liquid scintillator sent from a storage vessel are automatically injected into a vessel 1 existing in a measurement position. Many photons are generated by radiation energy in a prepd. sample 2 which is the mixture composed of the waste liquid sample and the liquid scintillator. The photons are made incident to two pieces of photoelectron multipliers 3 and are converted to the electrical pulses. The pulses enter a simultaneous counter circuit 4 where noises are removed from the pulses. Only the pulses which are signals are sent to the ensuing stage. On the other hand, the pulses increases in pulse height by a SAM circuit 5 are passed through a gate 6 and are introduced into an automatic efficiency tracer device consisting of an AD converter 7 and a memory mechanism 8, by which the radioactivity concn. is automatically determined.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放射線モニターリングに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to radiation monitoring.

〔従来技術〕[Prior art]

放射性物質取扱施設において生ずる使用済みの放射性廃
液は一度貯留槽に溜めておき、廃液の放射能が許容濃度
以下であることを確認後一般下水に排水するよ5規制さ
れている。排水の場合には通常排水モニターにより測定
が行なわれるが、従来の排水モニターでは測定結果は単
に放射性廃液の計数値しか求められない。
It is regulated that used radioactive waste fluid generated in facilities handling radioactive materials must be stored in a storage tank and discharged into general sewage after confirming that the radioactivity of the waste fluid is below the permissible concentration. In the case of wastewater, measurements are usually carried out using wastewater monitors, but conventional wastewater monitors can only obtain measurement results based on counts of radioactive waste liquid.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の排水モニターの大きな欠点は計数効率が見出され
ないために測定結果が計数率(cpm )でしか求めら
れず、必要とする放射能の値が得られないことである。
A major drawback of conventional wastewater monitors is that counting efficiency cannot be determined, so measurement results can only be obtained in terms of count rate (cpm), and required radioactivity values cannot be obtained.

排水時には廃液の放射能濃度を求めなければならないが
、従来の排水モニターではこの点を満足させることがで
きず問題となっている。このような不完全な排水モニタ
ーが永年に亘り使用されてきた理由は、この欠点を解決
する方法が見出されなかったためである。
When draining water, it is necessary to determine the radioactivity concentration in the waste liquid, but conventional wastewater monitors are unable to satisfy this requirement, creating a problem. The reason such defective wastewater monitors have been in use for many years is that no solution to this shortcoming has been found.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

排水モニターに自動効率トレーサ技術(参照:特許出願
番号59−028678 : 62−254555:化
工shikawa 、 et al、 : Int、 
J、 Appl、 Radia 。
Automatic Efficiency Tracer Technology for Wastewater Monitoring (Reference: Patent Application No. 59-028678: 62-254555: Kako Shikawa, et al.: Int.
J, Appl, Radia.

IaotoMol、35 、463 (1984) )
 、を適用すると測定試料中に存在している樵々の放射
性物質の全放射能の値が容易に得られる。自動効率トレ
ーサ技術を排水モニターに導入することにより自動的に
廃液の放射能11[が求まり1問題点が解決された。
IaotoMol, 35, 463 (1984))
By applying , the value of the total radioactivity of the woodcutter's radioactive substances present in the measurement sample can be easily obtained. By introducing automatic efficiency tracer technology into the wastewater monitor, radioactivity 11[ of the waste liquid was automatically determined, and one problem was solved.

〔実施例〕〔Example〕

廃液貯留槽からポンプで輸送された廃液試料と貯留容器
から送られた液体シンチレータは測定位置にある容器l
内に自動的に注入される。廃液試料ト液体シンチレータ
の混合体である調製試料2中では放射線エネルギーによ
り多数の光子が発生し、光子がそれぞれ2本の光電子増
倍管3に入射して電気的パルスに変換される。ノくシス
11同時計数回路4に入り、ここで雑音は除かれて信号
であるパルスだけ次段に送られる。一方ノ(ルスit 
v ム回路5により)くルス波高の高くなったノ(ルス
カtゲート6を通して自動効率トレーサ装置に4力)れ
る。
The waste liquid sample transported by a pump from the waste liquid storage tank and the liquid scintillator sent from the storage container are placed in the container l at the measurement position.
automatically injected into the In the prepared sample 2, which is a mixture of a waste liquid sample and a liquid scintillator, a large number of photons are generated by radiation energy, and each photon enters two photomultiplier tubes 3 and is converted into an electrical pulse. The signal enters the Noxys 11 coincidence circuit 4, where noise is removed and only the pulse signal is sent to the next stage. On the other hand
The increased pulse wave height (by the V system circuit 5) is transmitted to the automatic efficiency tracer device through the Ruska T gate 6.

自動効率トレーサ装置はノ(ルス波高分析器とデータ処
理装置9から構成されるが、ノクルス波高分析器はさら
にAD変換器7とメモリー機構8より成る。AD変換器
7ではアナログ量である)くルス波高がデジタル量であ
るクロックツくルス数に変換される。すなわち、AD変
換が行なわれるクロックパルスは次段のメモリー機構8
においてクロックパルス数に等しいチャネル番号に位置
し、第2図で示す放射線スペクトルが形成される。
The automatic efficiency tracer device consists of a Nockles wave height analyzer and a data processing device 9, but the Nockles wave height analyzer further consists of an AD converter 7 and a memory mechanism 8. The pulse wave height is converted into a clock pulse number, which is a digital quantity. In other words, the clock pulse for AD conversion is sent to the next stage memory mechanism 8.
at a channel number equal to the number of clock pulses, and the radiation spectrum shown in FIG. 2 is formed.

第2図には標準試料のスペクトルlOと放射能を求めよ
うとする測定試料(廃液試料)のスペクトルll’Y示
しである。ここで測定領域の下限tLII玩−Liとし
、上限をLuとする。各測定領域YL1〜Lu 、 L
、 〜Lu 、−・−Li−Luとする。これらの測定
領域において、標準試料の計数効率をそれぞれE、 、
 E、 、・・・Kiとし、これらの値は同時に得られ
、またバックグラウンドを差引いた測定試料の正味の計
数率tそれぞれn、 e ”*・・・niとし。
FIG. 2 shows the spectrum 10 of the standard sample and the spectrum 11'Y of the measurement sample (waste liquid sample) whose radioactivity is to be determined. Here, the lower limit of the measurement area is defined as tLII-Li, and the upper limit is defined as Lu. Each measurement area YL1~Lu, L
, ~Lu, --.-Li-Lu. In these measurement regions, the counting efficiency of the standard sample is expressed as E, , and
E, ,...Ki, these values are obtained simultaneously, and the net counting rate t of the measurement sample after subtracting the background is n, e''*...ni, respectively.

これらの値も同時に得られる。得られたEとnの関係か
ら次の2次回帰式を定める。
These values can also be obtained at the same time. The following quadratic regression equation is determined from the relationship between E and n obtained.

n = &E” + bE 十e     α)ここで
a、b、cは定数である。
n = &E'' + bE 10e α) Here, a, b, and c are constants.

住)式において計数効率100 %における計数率は、
即ち測定試料の放射能を意味する。何故ならば、標準試
料について100−の計数効率の値が得られるならば、
同一測定条件においては、測定試料も計数効率Zoo 
%の値、即ち、放射能値が求められることになる。
In the formula, the counting rate at 100% counting efficiency is:
In other words, it means the radioactivity of the measurement sample. This is because if a counting efficiency value of 100- is obtained for the standard sample,
Under the same measurement conditions, the measurement sample also has a low counting efficiency.
% value, that is, the radioactivity value will be determined.

本排水モニターに内蔵されているデータ処理装置のソフ
トウェアの70−チャートは、第3図に示されており、
各ステップの説明は次のごとくである。
The 70-chart of the software of the data processing device built into this drainage monitor is shown in Figure 3.
The explanation of each step is as follows.

Sl: L、NLu 、 L、 〜Lu・−・Li 〜
LuLuノミ測定領域を定める。また標準試料の崩壊数
dpm4人カする。
Sl: L, NLu, L, 〜Lu・-・Li〜
Define the LuLu chisel measurement area. In addition, the number of decays dpm of the standard sample is 4 people.

S、:標準試料の1分間測定を行なう。S: Measure the standard sample for 1 minute.

S、:標準試料の計数率cpmとdpmの比から計数効
率E、 、 E、・・・Eiを求める。
S: Calculate the counting efficiency E, , E, . . . Ei from the ratio of the standard sample's counting rate cpm and dpm.

S4二パツクグラウンドを測定する。S4 Measure the two pack ground.

S霞:測定試料の測定ン行なう。S-haze: Measure the measurement sample.

S@:測定試料の各領域の計数率からパックグラウンド
のそれらを差引く。
S@: Subtract those of the pack ground from the counting rate of each area of the measurement sample.

Sフ:正味の計数率”J + ”*・・・ni y2読
込む。
S: Read the net counting rate "J + "*...ni y2.

S、 : Eとnの関係を表わ丁2次回帰式を決定し。S: Determine the quadratic regression equation that represents the relationship between E and n.

この回帰式のE=100%におけるnの値からdpmを
決定する。
The dpm is determined from the value of n at E=100% in this regression equation.

S、 : dpm値’k(Z22XIO’)x測定試料
容積で除して放射能濃度馨決定する。
S: Determine the radioactivity concentration by dividing the dpm value 'k (Z22XIO') x the measurement sample volume.

測定試料には種々の放射性核種が混在しているが、この
よ5な場合でも単一核種の試料の場合と全く同様にして
自動的に放射能濃度が求まり、使用する標準試料も1種
類だけで丁む。
Although various radionuclides are mixed in the measurement sample, even in such cases, the radioactivity concentration is automatically determined in exactly the same way as in the case of a sample of a single nuclide, and only one type of standard sample is used. Dimensions.

第1図には放射性廃液と液体シンチレータの混合体であ
る調製試料2が容器l中で静止状態で測定される例が示
されている。しかし、静止状態とは限らず、*製試料が
両光電子増倍管3の間に設置したパイプ中を流動してい
る間に測定されるように設計されたフロ一方式?とるこ
ともできる。
FIG. 1 shows an example in which a prepared sample 2, which is a mixture of a radioactive waste liquid and a liquid scintillator, is measured in a stationary state in a container l. However, this is not necessarily a static state; instead, it is a flow type system designed to take measurements while the sample is flowing through a pipe installed between both photomultiplier tubes 3. You can also take it.

しかし、いずれの方式をとるにしても、測定試料中に存
在している全放射性核種の放射能値を自動的に決定する
ためには自動効率トレーサ技術は必須のものである。
However, whichever method is adopted, automatic efficient tracer technology is essential in order to automatically determine the radioactivity values of all radionuclides present in the measurement sample.

〔発明の効果〕〔Effect of the invention〕

非密封放射性物質の取扱施設に於いて、使用済み放射性
物質の放射能製置が許容@度以下であることの確認後に
一般下水に放水するように規制されている。しかし、従
来の排水モニターを使用した場合には、測定結果は単に
計数値でしか得られず、必要とする放射能−度が求めら
れない。このような状態では許容濃度以上の放射性廃液
を一般下水に放水するような場合も生じ問題である。
Facilities that handle unsealed radioactive materials are regulated to discharge water into general sewage after confirming that the radioactivity of used radioactive materials is below the permissible level. However, when conventional wastewater monitors are used, measurement results are obtained only as counted values, and the necessary radioactivity level cannot be obtained. Under such conditions, radioactive waste liquid with a concentration higher than the permissible level may be discharged into general sewage, which is a problem.

しかしながら1本発明の排水モニターを使用すると自動
的に廃液試料の放射能11&が得られ、許容濃度以上で
あることがIN認できるので、−股下水に放射性廃gv
放水しても環境上の安全が保証される。
However, when the drainage monitor of the present invention is used, the radioactivity of the waste liquid sample is automatically obtained and it can be confirmed that the concentration is above the permissible concentration.
Environmental safety is guaranteed even when water is released.

一般に測定試料中にα放出体、純β放出体、β−r放出
体が混在している場合でも1本モニターを使用すると試
料中の全放射能の値が自動的に求まり完全なモニターリ
ングが可能である。しかし。
In general, even when α-emitters, pure β-emitters, and β-r emitters are mixed in the measurement sample, if one monitor is used, the total radioactivity value in the sample is automatically determined and complete monitoring is possible. It is possible. but.

現存する他の放射線測定技術をもってしてはこのことは
不可能である。
This is not possible with other existing radiation measurement techniques.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る排水モニターの構成図。 第2図は自動効率トレーサ技術の原理図、第3図はデー
タ処理装置のフローチャートである。 l・・・容器、2・・・調製試料、3・・・光電子増倍
管。 4・・・同時計数回路、5・・・サム回路、6・・・ゲ
ート。 7・・・AD変換器、8・・・メモリー機構、9・・・
データ処理装置、10・・・標準試料のスペクトル、1
1・・・測定試料のスペクトル。 特許出願人 日本サイエンス株式会社 代表者石 河 寛 昭 第1図 第2図 チャネル番号
FIG. 1 is a configuration diagram of a drainage monitor according to the present invention. FIG. 2 is a principle diagram of the automatic efficiency tracer technology, and FIG. 3 is a flowchart of the data processing device. l... Container, 2... Prepared sample, 3... Photomultiplier tube. 4... Coincidence circuit, 5... Sum circuit, 6... Gate. 7...AD converter, 8...memory mechanism, 9...
Data processing device, 10... Spectrum of standard sample, 1
1... Spectrum of the measurement sample. Patent applicant Nippon Science Co., Ltd. Representative Hiroshi Ishikawa Figure 1 Figure 2 Channel number

Claims (1)

【特許請求の範囲】[Claims] 放射線がシンチレータによって検出された後に生じた電
気的パルスを、パルス波高分析器の下限と上限で規定さ
れる複数の測定領域において測定し、標準試料に関し各
測定領域で同時に得られた各計数効率と、放射能を求め
ようとする測定試料に関し、標準試料の場合と同一の各
測定領域で同時に得られた計数率とを求め、各計数効率
と各計数率から成るデータ群より、データ処理装置の手
段を用いて計数効率と計数率の関係を表わす回帰式を定
め、この回帰式から計数効率100%における計数率を
測定試料の放射能とする排水モニターの放射能測定方法
The electrical pulses generated after the radiation is detected by the scintillator are measured in multiple measurement regions defined by the lower and upper limits of the pulse height analyzer, and each counting efficiency and each measurement region obtained simultaneously for the standard sample are calculated. , for the measurement sample whose radioactivity is to be determined, calculate the counting rate obtained simultaneously in each measurement area that is the same as for the standard sample, and from the data group consisting of each counting efficiency and each counting rate, calculate the counting rate of the data processing device. A method for measuring radioactivity in a wastewater monitor, in which a regression equation expressing the relationship between counting efficiency and counting rate is determined using a method, and the counting rate at 100% counting efficiency is determined as the radioactivity of a measurement sample from this regression equation.
JP63115989A 1988-05-14 1988-05-14 Waste water monitor Pending JPH01287493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115989A JPH01287493A (en) 1988-05-14 1988-05-14 Waste water monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63115989A JPH01287493A (en) 1988-05-14 1988-05-14 Waste water monitor

Publications (1)

Publication Number Publication Date
JPH01287493A true JPH01287493A (en) 1989-11-20

Family

ID=14676113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115989A Pending JPH01287493A (en) 1988-05-14 1988-05-14 Waste water monitor

Country Status (1)

Country Link
JP (1) JPH01287493A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184290A (en) * 1990-11-19 1992-07-01 Aloka Co Ltd Monitoring device for radioactive substance in water
US5783828A (en) * 1995-02-02 1998-07-21 European Atomic Energy Community (Euratom) Apparatus and method for tritium measurement by gas scintillation
CN106054233A (en) * 2016-05-20 2016-10-26 清华大学 Method of monitoring radionuclides in water
JPWO2015019515A1 (en) * 2013-08-08 2017-03-02 三菱電機株式会社 Radiation measurement equipment
JP2020094981A (en) * 2018-12-14 2020-06-18 清水建設株式会社 Method for estimating level of radioactive waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123987A (en) * 1978-03-20 1979-09-26 Toshiba Corp Radiation detector
JPS60173489A (en) * 1984-02-20 1985-09-06 Ishikawa Sangyo:Kk Automatic radioactivity measurement method and device using efficient tracer method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54123987A (en) * 1978-03-20 1979-09-26 Toshiba Corp Radiation detector
JPS60173489A (en) * 1984-02-20 1985-09-06 Ishikawa Sangyo:Kk Automatic radioactivity measurement method and device using efficient tracer method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184290A (en) * 1990-11-19 1992-07-01 Aloka Co Ltd Monitoring device for radioactive substance in water
US5783828A (en) * 1995-02-02 1998-07-21 European Atomic Energy Community (Euratom) Apparatus and method for tritium measurement by gas scintillation
JPWO2015019515A1 (en) * 2013-08-08 2017-03-02 三菱電機株式会社 Radiation measurement equipment
CN106054233A (en) * 2016-05-20 2016-10-26 清华大学 Method of monitoring radionuclides in water
JP2020094981A (en) * 2018-12-14 2020-06-18 清水建設株式会社 Method for estimating level of radioactive waste

Similar Documents

Publication Publication Date Title
KR100665508B1 (en) Liquid Mixed Beta Nuclide Automatic Radioactivity Analyzer
US4528450A (en) Method and apparatus for measuring radioactive decay
JPH01287493A (en) Waste water monitor
JP4659612B2 (en) Water monitor
CN108877970A (en) A kind of presurized water reactor primary Ioops boundary leaking monitoring method, system and monitor
Halevy et al. The determination of aquifer parameters with the aid of radioactive tracers
JPH05333155A (en) Radioactive concentration measuring method for artificial radioactive nuclide in concrete
CN110146914B (en) Online activity measuring instrument and method thereof
JPS62179684A (en) System for evaluating and measuring radioactive nuclide contained in low level solid waste
DeVol et al. Development of an on-line scintillation flow-cell detection system with pulse shape discrimination for quantification of actinides at environmental levels
Moav The determination of manganese in urine by neutron activation analysis
Rolfs et al. Spins and gamma decay of excited states in 26Si
JP4241633B2 (en) Artificial radioactivity measuring apparatus and measuring method
Goddard Development of a real-time detection strategy for material accountancy and process monitoring during nuclear fuel reprocessing using the UREX+ 3a method
D'imperio et al. The SABRE experiment for dark matter search
Sasaki et al. High Sensitivity On-Line Monitor for Radioactive Effluent
Higgins Jr et al. Methods for Determining Radon‐222 and Radium‐226
Cue et al. Structure of states in the mass-90 region by (p, p′ γ) angular correlations at the 52+(gs) analog resonances:(I). The 94Mo (p, p′ γ) reaction
Ushakov et al. A new Baksan Large Neutrino Telescope: the project’s status
Raywood et al. A trigger for the identification of pions stopped in an active target
JPH04326095A (en) Criticality surveillance monitor for neutron multiplication system
Wingfield A Beta-gamma Monitor for Liquid Streams
Yasuda Conditional polarity correlation method for improved reactor noise analysis
Falter et al. Tritium monitoring system for near ambient measurements
SU716419A1 (en) Device for determining concentration of fissionable matter in fuel specimens without their destruction