[go: up one dir, main page]

JPH01287167A - Production of high polymer composite material - Google Patents

Production of high polymer composite material

Info

Publication number
JPH01287167A
JPH01287167A JP11690188A JP11690188A JPH01287167A JP H01287167 A JPH01287167 A JP H01287167A JP 11690188 A JP11690188 A JP 11690188A JP 11690188 A JP11690188 A JP 11690188A JP H01287167 A JPH01287167 A JP H01287167A
Authority
JP
Japan
Prior art keywords
polymer
solution
high polymer
coagulation bath
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11690188A
Other languages
Japanese (ja)
Other versions
JPH0678440B2 (en
Inventor
Toshio Nishihara
西原 利雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP63116901A priority Critical patent/JPH0678440B2/en
Publication of JPH01287167A publication Critical patent/JPH01287167A/en
Publication of JPH0678440B2 publication Critical patent/JPH0678440B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a high polymer composite material, by dipping a high polymer solution, containing a reinforcing high polymer consisting of a polyazole and a matrix polymer and assuming optical anisotropy in a coagulating solution, passing the solution through an apparently optically isotropic phase and coagulating the solution. CONSTITUTION:A high polymer solution (preferably >=30% solvent concentration), prepared by dissolving (A) a reinforcing high polymer consisting of a polyazole (e.g. poly-p-phenylene benzobisthiazole) having a rodlike skeleton and (B) a matrix polymer (e.g. aromatic polyamide) having fusibility within a range so as to provide 5-45% ratio [A/(A+B)] in a solvent (e.g. methanesulfonic acid) and assuming optical anisotropy is introduced into a coagulation bath (e.g. aqueous solution of methanesulfonic acid) and composition, temperature conditions, etc., of the coagulation bath and regulated so that the above-mentioned high polymer solution may be passed through an apparent optical isotropic phase and then coagulated after dipping in the coagulation bath. Thereby, a film is formed to afford the aimed composite material.

Description

【発明の詳細な説明】 繊維強化プラスチックは、飛躍的に向上しl〔物性の故
に耐荷重構造用材料として重要視され各種各様の材料が
開発され、実用化されてぎた。かかる複合材料の製造に
は、別途製造された強化用繊維を一方向に並べる工程や
、更にマトリックスを含浸させる工程を要し、しかもそ
の際オートクレーブ中で行う工程が入る等の複雑な段階
的操作を必要とする。
DETAILED DESCRIPTION OF THE INVENTION Fiber-reinforced plastics have improved dramatically, and due to their physical properties, they have been regarded as important as load-bearing structural materials, and various materials have been developed and put into practical use. The production of such composite materials requires complicated step-by-step operations such as arranging separately manufactured reinforcing fibers in one direction and further impregnating a matrix, which also includes a step in an autoclave. Requires.

一方複合材料の強度と耐久度は、強化用繊維とマトリッ
クス高分子との界面の状態に大きく左右される。両者の
界面は繊維自体がマクロなため、そこに存在する欠陥は
マクロに伝播し、複合材料の破壊につながる。
On the other hand, the strength and durability of composite materials are largely influenced by the state of the interface between the reinforcing fibers and the matrix polymer. Since the fibers themselves are macroscopic at the interface between the two, defects existing there propagate macroscopically and lead to destruction of the composite material.

かかる欠点を解決するために、マクロな形状でしか分散
しえない繊維状強化材に代えて、高モジュラスの補強用
高分子とマトリックス高分子とを共通溶媒中に溶解して
、両者をミクロな分子的オーダで混合しこれを凝固・成
形することにより、補強用高分子が極めてミクロな状態
で分散、混合し、しかも補強用高分子が配向してなる高
分子複合体を製造することが検討されてきた。
In order to solve this drawback, instead of using fibrous reinforcing material that can only be dispersed in a macroscopic form, a high modulus reinforcing polymer and a matrix polymer are dissolved in a common solvent, and both can be dispersed in a microscopic form. We are considering manufacturing a polymer composite in which the reinforcing polymers are dispersed and mixed in an extremely microscopic state by mixing them in a molecular order, solidifying and molding them, and in which the reinforcing polymers are oriented. It has been.

本発明者らは、現在有機高分子繊維として、優れた引張
りモジュラスを与えるポリ−p−フェニレンベンゾビス
チアゾール等のポリアゾール系高分子を補強用高分子と
して用い、各種マトリックスボリマーどの各組合u系で
の高しジコラス化について検討を進めてぎたが、画商分
子成分が十分に配向した時に期待される加成性値に比べ
て例えば引張りモジコラスが低い等の欠点があった。ま
た、高分子複合体のフィルムを積層した成形物を得るた
めには、該フィルムの厚さを厚くした方が成形上右利で
あるが、従来の湿式成形では厚さを厚くすると凝固性が
悪化し、良好なフィルムが得られなかった。
The present inventors currently use polyazole-based polymers such as poly-p-phenylenebenzobisthiazole, which provide excellent tensile modulus, as reinforcing polymers as organic polymer fibers, and use various combinations of U-based polymers such as various matrix polymers. We have been studying the possibility of creating a high dicholus in the art, but there were drawbacks such as a low tensile modicolus compared to the additivity value expected when the molecular components of the art dealer are sufficiently oriented. In addition, in order to obtain a molded product in which polymer composite films are laminated, it is better to increase the thickness of the film, but in conventional wet molding, increasing the thickness causes coagulation. The condition deteriorated, and a good film could not be obtained.

本発明者らは、かかる問題点を解決すべくポリ−p−フ
ェニレンベンゾビスチアゾール等のポリアゾール系高分
子を補強用高分子として用い、マトリックス高分子とし
て屈曲性高分子を用いた系での高モジユラス化及び厚膜
化について鋭意検討した結果、本発明に到達したもので
ある。
In order to solve this problem, the present inventors used a polyazole polymer such as poly-p-phenylenebenzobisthiazole as a reinforcing polymer, and developed a system using a flexible polymer as a matrix polymer. The present invention was arrived at as a result of intensive studies on making the film more modular and thicker.

発明の目的 本発明者は、高性能の機械的、熱的物性を有する高分子
複合体を得るべく鋭意研究の結果、i疑問前の光学的異
方性の溶液を、凝固過程で見掛1ノ」二光学的等方性溶
液を経由した後、実質的に凝固さぜると優れた高分子複
合体が得られることを児出し本発明に到達した。
Purpose of the Invention As a result of intensive research in order to obtain a polymer composite with high performance mechanical and thermal properties, the present inventor has discovered that an optically anisotropic solution with an optical anisotropy that has an apparent 1 The present inventors have discovered that an excellent polymer composite can be obtained by substantially solidifying the polymer after passing through an optically isotropic solution.

即ち、本発明は実質的に棒状骨格を有するボリアゾール
からなる補強用高分子(A)と融着性を右するマトリッ
クス高分子(B)とを主として含有する高分子溶液を、
凝固浴中に導入して製膜する高分子複合体の製造法に於
いて、当該高分子溶液が初め光学的異方性を呈しており
、凝固浴中に浸漬後見掛は上の光学iP9等方性相を経
由して後実質的に凝固を生じさせることを特徴とする高
分子複合体の製造法である。
That is, the present invention uses a polymer solution mainly containing a reinforcing polymer (A) consisting of polyazole having a substantially rod-like skeleton and a matrix polymer (B) that controls fusion properties.
In the method of manufacturing a polymer composite in which it is introduced into a coagulation bath and formed into a film, the polymer solution initially exhibits optical anisotropy, and after being immersed in the coagulation bath, the optical iP9 etc. shown above appear. This is a method for producing a polymer composite, which is characterized by substantially causing coagulation after passing through an isotropic phase.

本発明において用いる補強用高分子(A)としては、下
記式 [但し、式中Xは−s−、−o−又は−NH−を表わし
、結合手(イ]、(0)は、更にアゾール環又は炭化水
素環を形成する結合手であるか、或いはその一方に水素
原子が結合し、他ブラが結合手=3− であるものである。] で表わされるアゾール骨格を有する実質的に棒状骨格の
ポリアゾールが挙げられ、具体的には、米国特許第4,
207,407号明細書に記載されたポリマーがあり、
就中ポリ−p−フェニレンベンゾビスチアゾール、ポリ
−p−フェニレンベンゾオキリシール、ポリ−p−フェ
ニレンベンゾビスイミダゾール等のボリアゾール類が挙
げられる。
The reinforcing polymer (A) used in the present invention has the following formula [wherein X represents -s-, -o- or -NH-, and the bonds (a] and (0) are further azole a bond forming a ring or a hydrocarbon ring, or a hydrogen atom is bonded to one of them and the other bond is 3-.] A substantially rod-shaped substance having an azole skeleton represented by Examples include backbone polyazoles, specifically those described in U.S. Pat.
There are polymers described in US Pat. No. 207,407,
Among them, polyazoles such as poly-p-phenylenebenzobisthiazole, poly-p-phenylenebenzokylysyl, and poly-p-phenylenebenzobisimidazole are mentioned.

補強用高分子(A>の分子量は通富分子量の1]安とな
る固有粘度が1以上であり、好ましくは1.5以上、特
に好ましくは2以上である。一方、固有粘度が高すぎる
ものは好ましくなく、30になると良好なものは得られ
ない。本発明の効果を充用するためには補強用高分子の
固有粘度は25以下が好ましく特に好ましくは20以下
にするのがよい。
The reinforcing polymer (the molecular weight of A> is 1 of the total molecular weight) has an intrinsic viscosity of 1 or more, preferably 1.5 or more, particularly preferably 2 or more.On the other hand, those whose intrinsic viscosity is too high is not preferable, and if it is 30, a good product cannot be obtained.In order to fully utilize the effects of the present invention, the intrinsic viscosity of the reinforcing polymer is preferably 25 or less, particularly preferably 20 or less.

本発明において用いられる71ヘリックス高分子(B)
は、補強用高分子(△)と同一溶媒に溶解づ−るもので
あり、ナイロン6、ナイロン6G、ナイロン610.ナ
イロン12.ナイ1」ン11等脂肪族ポリアミド;ポリ
へキサメヂレンイソフタルアミド等の芳香族ポリアミド
;エーテル基等の屈曲性基を導入した屈曲性芳香族ポリ
アミド;ポリエステル:ボリカーボネー1へ;ポリ酢酸
ビニル;ボリサルフAン;ポリ]二−テルザルフ4ン;
ポリエーテルイミド、ポリ]二−テルケ1〜ン:ボリフ
エニレン→ナルノアイド等があげられる。
71 helix polymer (B) used in the present invention
are dissolved in the same solvent as the reinforcing polymer (△); nylon 6, nylon 6G, nylon 610. Nylon 12. Aliphatic polyamides such as N1'11; aromatic polyamides such as polyhexamethylene isophthalamide; flexible aromatic polyamides into which flexible groups such as ether groups have been introduced; polyester: to polycarbonate 1; polyvinyl acetate; borisulf A; poly] di-terzalf4;
Examples include polyetherimide, poly]2-terkene, polyphenylene, and narnoide.

共通溶媒どしては、構成ポリマーを溶解するものであれ
ばよく、例えば濃硫酸、メタンスルボン酸、り[」ルス
ルホン酸、ポリリン酸、トリフ1][]醋酸、リン酸等
の酸性溶媒が挙げられる。これらは適宜混合して用いて
も良い。また溶解した高分子の加水分解を押えるため、
溶媒中の水の量をできるだけ少くするための添加剤を導
入してもよい。
The common solvent may be one that dissolves the constituent polymers, and examples thereof include acidic solvents such as concentrated sulfuric acid, methanesulfonic acid, polysulfonic acid, polyphosphoric acid, triphyl acetic acid, and phosphoric acid. . These may be mixed and used as appropriate. In addition, to suppress the hydrolysis of dissolved polymers,
Additives may be introduced to minimize the amount of water in the solvent.

例えば発煙硫酸、クロルスルホン酸等の添加があげられ
る。
For example, addition of fuming sulfuric acid, chlorosulfonic acid, etc. may be mentioned.

高分子複合体形成用の原液は、上記共通溶媒に補強用高
分子と71ヘリックス高分子とを溶解した高分子溶液で
あり、該高分子溶液は光学的異方性を有Jることか必要
でHつ該高分子溶液は凝固液に浸漬後は見掛り上の光学
的等方性相を経由して凝固が行われることが必要である
The stock solution for forming a polymer composite is a polymer solution in which a reinforcing polymer and a 71-helix polymer are dissolved in the above-mentioned common solvent, and it is necessary that the polymer solution has optical anisotropy. After the polymer solution is immersed in a coagulation solution, it is necessary that the polymer solution is coagulated through an apparent optically isotropic phase.

即ち、所定の高分子溶液を調製し、それをスライドガラ
ス上に薄くのばして配置し、高分子溶液の厚さが0.5
mmになるようにプレパラートでJ5さえる。かくして
調製されたサンプルをクロス二]ルを有する偏光顕微鏡
の観察下におく。スライドガラス上の高分子溶液をサン
プル台の上に載せ、サンプル台を回転させても視野が明
るいならば、高分子溶液は光学的異方性を示している。
That is, a predetermined polymer solution is prepared, spread thinly on a slide glass, and placed so that the thickness of the polymer solution is 0.5.
Adjust J5 with a slide so that it is mm. The sample thus prepared is placed under observation using a polarizing microscope with a cross-hole. If a polymer solution on a slide glass is placed on a sample stage and the field of view remains bright even when the sample stage is rotated, the polymer solution exhibits optical anisotropy.

高分子溶液が凝固浴に浸漬後の相の状態を決めるために
は、以下の測定方法によった。
The following measurement method was used to determine the phase state of the polymer solution after it was immersed in the coagulation bath.

融点測定装置(YANAG IMOTO■)を用い、高
分子溶液をプレパラ−1〜に厚さが0.5mmになるよ
うに塗布し、それを直径約17mmのシャーレ容器に設
置するが、この容器は前もって銀製の加熱ヒータ台に載
せ、加熱ヒータで加熱し、凝固浴温度と同一になるまで
加熱しておく。この段階で、あらかじめ別途同一の温度
に加熱された凝固液を上記シャーレ容器に注ぎ込む。
Using a melting point measuring device (YANAG IMOTO■), apply a polymer solution to Prepara-1 to a thickness of 0.5 mm, and place it in a petri dish container with a diameter of approximately 17 mm. Place it on a silver heater stand and heat it with a heater until it reaches the same temperature as the coagulation bath. At this stage, a coagulating liquid that has been separately heated to the same temperature in advance is poured into the petri dish container.

凝固液を注入後、クロスニコル下で観測しているとプレ
パラート上の高分子溶液はその条件に応じて種々の状態
をとる。
After injecting the coagulation liquid, the polymer solution on the preparation takes various states depending on the conditions when observed under crossed Nicols conditions.

当所光学的異方性を示す高分子溶液を用い、視野が明る
かったものが、上記操作により、■ 凝固液が浸入して
も、そのまま視野が明るいまま経時するケース、 ■ 見掛は状光学的等方性状態を呈して視野が暗くなる
ケース、及び ■ 見掛り状光学的等方性状態を呈して視野が暗くなっ
た後再び明るくなるケース が得られる。
When we use a polymer solution that exhibits optical anisotropy and the field of view is bright, the above procedure results in: ■ Cases in which the field of view remains bright over time even after the coagulation liquid enters; ■ The apparent optical anisotropy There are two cases: (1) an isotropic state in which the visual field becomes dark; and (2) an apparent optically isotropic state in which the visual field darkens and then becomes bright again.

本発明に於ける凝固過程で一時的に光学的等方性を出現
さゼる製膜条件とは■、■に該当する場合である。
In the present invention, film forming conditions that temporarily cause optical isotropy to appear during the solidification process are cases that correspond to (1) and (2).

尚光学的異方性は、高分子がいわゆる液晶を形成するこ
とによって生ずる場合と、高分子が配向J−ることによ
って出現する場合とがある。本発明で言う光学的異方性
とは前者の場合を指す。配向によって生ずる異方性はサ
ンプル台を回転することで、視野が明暗の周期が生ずる
ことで判別出来一方液晶から由来するものはサンプル台
の回転によって視野の明るさに実質的な変化がないとい
うことで判別可能である。
Optical anisotropy may be caused by polymers forming so-called liquid crystals, or may be caused by alignment of polymers. Optical anisotropy in the present invention refers to the former case. Anisotropy caused by orientation can be identified by rotating the sample stage, which produces periods of brightness and darkness in the field of view, whereas anisotropy derived from liquid crystals does not substantially change the brightness of the field of view when the sample stage is rotated. It can be determined by this.

見掛は状光学的−等方性の状態とは、偏光顕微鏡下で所
定の高分子溶液を観察していると最初、各棟包あいの模
様を呈していたものが均一の色に変わり、しだいにその
光の弾痕は減少して暗くなるが、この時の均一の色から
しだいにその光の強度が減少して一定の暗さになるまで
の間の状態を示す。この状態を肉眼観察すると、外観的
には透明で光学的等方性のように見える。従ってこの状
態を見掛は状光学的等方性の状態ど呼ぶことにする。
An apparently optically isotropic state is when a given polymer solution is observed under a polarizing microscope. Initially, it exhibits a pattern between each ridge, but it gradually changes to a uniform color. The bullet holes of the light decrease and become darker, and this shows the state between the uniform color at this time and the time when the intensity of the light gradually decreases and becomes a constant darkness. When this state is observed with the naked eye, it appears to be transparent and optically isotropic. Therefore, this state will be called an apparently optically isotropic state.

高分子溶液は凝固液との相互拡散により凝固を開始する
が、凝固液の組成として、高分子を溶解する溶媒が適当
に含まれているものは凝固液が相互拡散によって高分子
溶液系内に浸透し、その凝固過渡状態に於いて、高分子
溶液中のポリマー濃度か相対的に低下し、その結果、光
学的等方性を示すことが可能となる。
A polymer solution starts coagulating through interdiffusion with a coagulating liquid, but if the coagulating liquid contains an appropriate amount of solvent that dissolves the polymer, the coagulating liquid will coagulate into the polymer solution system through interdiffusion. During the permeation and solidification transient state, the polymer concentration in the polymer solution decreases relatively, and as a result, it becomes possible to exhibit optical isotropy.

さらには、高分子溶液の温度による相転移の現象を利用
してこの凝固過程における見掛けの光学的等方性の出現
を強めることができる。即ち、例えば室温で押し出され
た光学的異方性の溶液をさらに高温の凝固浴中に浸漬す
ることで見掛は土兄学的等方性へ転移することが可能と
なる。
Furthermore, the appearance of apparent optical isotropy in this solidification process can be enhanced by utilizing the phenomenon of phase transition due to temperature of the polymer solution. That is, for example, by immersing an optically anisotropic solution extruded at room temperature into a coagulation bath at a higher temperature, the appearance can be transformed to optically isotropic solution.

該高分子溶液を凝固するための凝固浴は、本発明に於い
て重要な因子である。
The coagulation bath for coagulating the polymer solution is an important factor in the present invention.

凝固液としては、高分子溶液に用いた溶媒に非溶解性の
溶媒を混合した系、例えば、硫酸水溶液。
The coagulating liquid is a system in which a non-dissolving solvent is mixed with the solvent used for the polymer solution, such as a sulfuric acid aqueous solution.

メタンスルボン酸水溶液、リン酸水溶液等が挙げられる
Examples include a methanesulfonic acid aqueous solution and a phosphoric acid aqueous solution.

凝固過程に於いて、本発明の効果をより実現さけやすく
するためには、高分子溶液に用いる溶媒の濃度を30%
以上するのが好ましい。又高分子溶液の光学的異方性か
ら等方性への転移温度よりも凝固浴温度を高くした方が
、厚膜のフィルム等に対しては好ましい。凝固浴中の溶
媒濃度が低い場合には、高分子溶液はただちに凝固して
しまい、異方性の状態のまま固化する。又凝固浴温度が
高すぎる場合にも、凝固速度が速くなり異方性の状態で
固まってしまう。
In order to more easily achieve the effects of the present invention during the coagulation process, the concentration of the solvent used in the polymer solution should be reduced to 30%.
It is preferable to do the above. Further, it is preferable for thick films to have a coagulation bath temperature higher than the transition temperature of the polymer solution from optical anisotropy to isotropy. When the solvent concentration in the coagulation bath is low, the polymer solution immediately coagulates and remains anisotropic. Also, if the temperature of the coagulation bath is too high, the coagulation rate will increase and the material will solidify in an anisotropic state.

このように本発明の効果を山川させる上で、凝固浴の組
成、温度条件を適切にすることが必要である。
In order to maximize the effects of the present invention as described above, it is necessary to appropriate the composition and temperature conditions of the coagulation bath.

又凝固浴は、二段以−にに分けて用いることも好ましく
、本発明の効果をより出現させるためには、少くとも二
段以上の方式の方が好ましい。第一段の凝固浴では、主
に光学的異方性溶液を見掛り十の光学的等方性溶液に転
移させることを主眼どし、第二段の凝固浴で実質的凝固
を促進さける方式である。
It is also preferable to use the coagulation bath in two or more stages, and in order to bring out the effects of the present invention more effectively, it is preferable to use at least two or more stages. In the first stage coagulation bath, the main purpose is to transform the optically anisotropic solution into an apparently optically isotropic solution, and in the second stage coagulation bath, substantial coagulation is promoted. It is.

成膜方法どじでは、Tダイ等から押出された高分子溶液
を凝固浴中に直接浸漬しても良いし、或いはドラム上に
流延後、そのドラムを凝固浴中に浸漬させても良い。凝
固上りの未延伸フィルムは、残存溶媒を十分に除いた後
、特に酸溶媒系ではアンモニアあるいは水酸化す1ヘリ
ウム等で中和処理することが必要である。
In the film forming method, the polymer solution extruded from a T-die or the like may be directly immersed in a coagulation bath, or after being cast onto a drum, the drum may be immersed in the coagulation bath. After the solidified unstretched film has sufficiently removed the remaining solvent, it is necessary to neutralize it with ammonia or helium hydroxide, especially in the case of an acid solvent system.

光学的異方性の高分子溶液を、凝固浴中に浸漬し、それ
が見掛は土兄学的等方性を経由することなく凝固したも
のは、その後の延伸時に於りる両成分ポリマーの配向度
が十分に高い値に達せず、その力学特性値は低い値のも
のである。それに反して、凝固過程で見掛けの光学的等
方性相を経由したものは、その後の延伸がづ−みやかに
進行し、優れた力学特性を有する高分子複合体フィルム
を得ることができる。
If an optically anisotropic polymer solution is immersed in a coagulation bath and it solidifies without undergoing apparent isotropy, both component polymers will form during subsequent stretching. The degree of orientation of the material does not reach a sufficiently high value, and its mechanical property values are of low values. On the other hand, if the polymer passes through an apparent optically isotropic phase during the solidification process, the subsequent stretching will proceed smoothly, making it possible to obtain a polymer composite film with excellent mechanical properties.

この理由は定かではないが、本発明にお(Jる如く異方
性溶液にa5いて流延し、その後凝固過程で見掛は上の
等方性溶液にもっていったものは、補強用ポリマーの7
1〜リンクスボリマーへのミクロ分散がより性能発現し
やすい形で分散しているためと思われる。
The reason for this is not clear, but in the present invention (J), the reinforcing polymer is cast in an anisotropic solution and then transferred to the isotropic solution in the solidification process. 7
This is thought to be because the microdispersion into the 1 to Lynx polymers is dispersed in a form that facilitates performance development.

乾燥フィルムは、その後フィルム等の延伸で用いられて
いる通常の延伸操作によって高モジュラスなフィルムど
なる。
The dried film is then subjected to a conventional stretching operation used for stretching films and the like to form a high modulus film.

本発明にa′3い−C用いられる補強用高分子(A)と
71〜リックス高分子(B)の割合はA/A+Bが5〜
4;)%の範囲にあるのがよい。補強用高分子(A)が
5%よりも小さい場合には、補強効果が=11− 小さく45%を越すと、補強用高分子(A>の配向性が
低下し本発明の特徴を発現することができない。
The ratio of the reinforcing polymer (A) and the 71~lix polymer (B) used in the present invention is A/A+B of 5~
It is preferably within the range of 4;)%. When the reinforcing polymer (A) is smaller than 5%, the reinforcing effect is =11- and when it exceeds 45%, the orientation of the reinforcing polymer (A> decreases, and the characteristics of the present invention are expressed. I can't.

本発明において用いられる固有粘度とは、100%硫酸
もしくはメタンスルホン酸もしくはクロルスルホン酸に
補強用高分子(△)の濃度が0.2!?/ 100cc
になるように溶解後、30’Cで常法により求めたηi
nhである。補強用高分子(△)が上記の溶媒のいずれ
にも溶解する時は、その中でもつども低い値をその補強
用高分子(Δ)の固有粘度とする。
The intrinsic viscosity used in the present invention means that the concentration of reinforcing polymer (△) in 100% sulfuric acid, methanesulfonic acid, or chlorosulfonic acid is 0.2! ? / 100cc
After dissolving so that
It is nh. When the reinforcing polymer (Δ) is dissolved in any of the above solvents, the lowest value among them is taken as the intrinsic viscosity of the reinforcing polymer (Δ).

以下に本発明の効果を実施例をもって示すが、実施例中
の百分率は、ことわらない限り重量基準である。繊維・
フィルムの機械的性質は、サンプル長4 cmを毎分1
0%の伸長速度で測定したものである。
The effects of the present invention will be illustrated below with examples, and the percentages in the examples are based on weight unless otherwise specified. fiber·
The mechanical properties of the film were measured at 1 min per minute for a sample length of 4 cm.
Measurements were taken at an elongation rate of 0%.

実施例1 補強高分子(A)として、ポリ−p−フェニレンベンゾ
チアゾール(PPBTと略す)を常法に−12= 従って重合し、メタンスルホン酸溶媒におりる固有粘度
が4.1のものを得た。
Example 1 As a reinforcing polymer (A), poly-p-phenylenebenzothiazole (abbreviated as PPBT) was polymerized according to a conventional method, and a polymer having an intrinsic viscosity of 4.1 in a methanesulfonic acid solvent was obtained. Obtained.

71ヘリックス高分子(B)は、3,4′ −ジアミノ
ジフェニルエーテル(50モル%)とパラフェニレンジ
アミン(50モル%)とをN−メチルピロリドンに濃度
が6%になるようにして、乾燥窒素雰囲気下に溶解せし
め、5°Cに冷却した後、激しく撹拌しながらプレフタ
ル酸ジクロライドの粉末(100モル%)を当該溶液に
すみやかに添加し、35°Cで1時間重合反応を行ない
、これを水にて沈澱し中和して得た。以下該ポリマーを
PP0T−50ど略す。P P OT−50のηinh
は硫酸溶媒で3.6であった。PPBTとP P OT
 −50の成分比が30/ 70になるようにしてメタ
ンスルボン酸に溶解し、ポリマー全濃度が6%のものを
作成した。
71 helix polymer (B) was prepared by adding 3,4'-diaminodiphenyl ether (50 mol%) and para-phenylene diamine (50 mol%) to N-methylpyrrolidone at a concentration of 6%, and placing it in a dry nitrogen atmosphere. After cooling to 5°C, prephthalic acid dichloride powder (100 mol%) was immediately added to the solution with vigorous stirring, a polymerization reaction was carried out at 35°C for 1 hour, and this was dissolved in water. It was precipitated and neutralized. Hereinafter, this polymer will be abbreviated as PPOT-50. ηinh of P P OT-50
was 3.6 in sulfuric acid solvent. PPBT and PPOT
-50 was dissolved in methanesulfonic acid at a component ratio of 30/70 to create a polymer with a total polymer concentration of 6%.

該高分子複合体溶液は光学的異方性を室温で呈し異方性
から等方性に転移する温度(相転移温度)は65℃であ
った。
The polymer composite solution exhibited optical anisotropy at room temperature, and the temperature at which it transitioned from anisotropy to isotropy (phase transition temperature) was 65°C.

該高分子溶液をプランジャーに押し込み、室温で空気層
を介して凝固浴中に押し出した。Tダイはスリット巾0
.3mを用いた。
The polymer solution was forced into a plunger and extruded through an air space into a coagulation bath at room temperature. T-die has slit width 0
.. 3m was used.

又凝固浴はメタンスルホン酸60%、60℃とした。The coagulation bath was 60% methanesulfonic acid at 60°C.

該高分子溶液は、融点測定装置(YANAGIMOTO
■)で測定すると、凝固過程で見掛(プ上の光学的等方
性を経由することが確認された凝固上りフィルムは、水
で十分に洗浄し水酸化ナトリウム水溶液で中和後さらに
24時間水で洗浄した。フィルムは固定枠にはめて自然
乾燥後、温度3508C,470℃でそれぞれ最大延伸
倍率に0.8を乗じた延伸比で引張り一軸配向フィルム
を得た。
The polymer solution was measured using a melting point measuring device (YANAGIMOTO).
The solidified film, which was confirmed to undergo apparent optical isotropy during the solidification process, was thoroughly washed with water and neutralized with an aqueous sodium hydroxide solution for an additional 24 hours. The film was placed in a fixed frame, air-dried, and then stretched to obtain a uniaxially oriented film at a temperature of 3508°C and 470°C, respectively, at a stretching ratio equal to the maximum stretching ratio multiplied by 0.8.

フィルムの力学特性は、フィルム厚み(μm、)/モジ
ュラス(GPa)/伸度(%)7強度(GPa ) =
21/ 121/ 1.2/ 1.1であった。
The mechanical properties of the film are: film thickness (μm) / modulus (GPa) / elongation (%) 7 strength (GPa) =
It was 21/121/1.2/1.1.

実施例2〜4 実施例1において、ドクターナイフのスリット幅を50
0μ瓦、800μm、 1200μ瓦に変えた以外は同
様の条件で製膜し、−軸配向フィルムを得た。
Examples 2 to 4 In Example 1, the slit width of the doctor knife was set to 50
Films were formed under the same conditions except that the tiles were changed to 0 μm tiles, 800 μm tiles, and 1200 μm tiles to obtain -axis oriented films.

フィルムの力学特性は表1に示す通りで良好なものが得
られた。
The mechanical properties of the film were as shown in Table 1, and good ones were obtained.

表I  PPBT/PP0T−50(30/70)のフ
ィルムの力学特性比較例1.2 実施例1と同じようにして作られたPPBT/PP0T
−50の高分子溶液をメタンスルホン酸水溶液10%、
温度30°Cの凝固浴中へ浸漬した。該高分子溶液は、
凝固浴中で光学的異方性を呈するだけで、見掛けの光学
的等方性を示さなかった。Tダイ0.3mmで押し出し
たフィルムの最終力学特性は、膜厚くμm)/モジュラ
ス/伸度(%)7強度(GPa ) =25/72/ 
2.0/ 0.78であった。
Table I Comparative example of mechanical properties of PPBT/PP0T-50 (30/70) film 1.2 PPBT/PP0T made in the same manner as in Example 1
-50 polymer solution with 10% methanesulfonic acid aqueous solution,
It was immersed in a coagulation bath at a temperature of 30°C. The polymer solution is
It exhibited only optical anisotropy in the coagulation bath, but no apparent optical isotropy. The final mechanical properties of the film extruded with a T-die of 0.3 mm are: film thickness (μm)/modulus/elongation (%)7 strength (GPa) =25/72/
It was 2.0/0.78.

Tダイ 1.2mmから押し出したものは、乾燥後の延
伸が十分でなく力学特性は −15= モジュラス(GPa)/伸度(%)7強度(GPa )
 =48/ 1.5/ 0.43と不良であった。
The product extruded from T-die 1.2mm was not stretched enough after drying, and the mechanical properties were -15 = Modulus (GPa) / Elongation (%) 7 Strength (GPa)
=48/1.5/0.43, which was poor.

特許出願人 工 業 技 術 院 長Patent applicant: Institute of Technology Director

Claims (1)

【特許請求の範囲】[Claims] 実質的に棒状骨格を有するポリアゾールからなる補強高
分子(A)と融着性を有するマトリックスポリマー(B
)とを主として含有する高分子溶液を、凝固浴中に導入
し、製膜することからなる高分子複合体の製造法におい
て、当該高分子溶液が光学的異方性を呈するものであり
、当該高分子溶液が凝固浴中に浸漬後見掛け上光学的等
方性相を経由して後凝固することを特徴とする高分子複
合体の製造法。
A reinforcing polymer (A) consisting of a polyazole having a substantially rod-like skeleton and a matrix polymer (B) having fusion properties.
) is introduced into a coagulation bath and formed into a film, in which the polymer solution exhibits optical anisotropy, and the polymer solution exhibits optical anisotropy. A method for producing a polymer composite, characterized in that a polymer solution is immersed in a coagulation bath and then post-solidified via an apparently optically isotropic phase.
JP63116901A 1988-05-16 1988-05-16 Polymer composite manufacturing method Expired - Lifetime JPH0678440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116901A JPH0678440B2 (en) 1988-05-16 1988-05-16 Polymer composite manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116901A JPH0678440B2 (en) 1988-05-16 1988-05-16 Polymer composite manufacturing method

Publications (2)

Publication Number Publication Date
JPH01287167A true JPH01287167A (en) 1989-11-17
JPH0678440B2 JPH0678440B2 (en) 1994-10-05

Family

ID=14698446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116901A Expired - Lifetime JPH0678440B2 (en) 1988-05-16 1988-05-16 Polymer composite manufacturing method

Country Status (1)

Country Link
JP (1) JPH0678440B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501751A (en) * 1988-10-11 1991-04-18 東洋紡績株式会社 Copolymers containing polybenzoxazole, polybenzothiazole and polybenzimidazole components
EP0514157A2 (en) * 1991-05-13 1992-11-19 Honda Giken Kogyo Kabushiki Kaisha Composite material
US5192480A (en) * 1990-09-03 1993-03-09 Honda Giken Kogyo Kabushiki Kaisha Method of producing molecular composite material including aromatic polythiazole
WO1994015773A1 (en) * 1993-01-05 1994-07-21 The Dow Chemical Company Improved process for coagulation, washing and leaching of shaped polybenzazole articles
US5561201A (en) * 1993-03-17 1996-10-01 Honda Giken Kogyo Kabushiki Kaisha Molecular composite material including aromatic polythiazole and method of producing same
US5571874A (en) * 1993-11-26 1996-11-05 Honda Giken Kogyo Kabushiki Kaisha Method of producing molecular composite material including rigid aromatic polymer
EP0754716A3 (en) * 1995-07-13 1998-11-18 Honda Giken Kogyo Kabushiki Kaisha Aromatic copolymer

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03501751A (en) * 1988-10-11 1991-04-18 東洋紡績株式会社 Copolymers containing polybenzoxazole, polybenzothiazole and polybenzimidazole components
US5192480A (en) * 1990-09-03 1993-03-09 Honda Giken Kogyo Kabushiki Kaisha Method of producing molecular composite material including aromatic polythiazole
EP0514157A2 (en) * 1991-05-13 1992-11-19 Honda Giken Kogyo Kabushiki Kaisha Composite material
US5248759A (en) * 1991-05-13 1993-09-28 Honda Giken Kogyo Kabushiki Kaisha Method of producing aromatic heterocyclic copolymer and molecular composite material containing same
US5350831A (en) * 1991-05-13 1994-09-27 Honda Giken Kogyo Kabushiki Kaisha Method of producing aromatic heterocyclic copolymer and molecular composite material containing same
EP0514157A3 (en) * 1991-05-13 1995-04-26 Honda Motor Co Ltd Composite material
WO1994015773A1 (en) * 1993-01-05 1994-07-21 The Dow Chemical Company Improved process for coagulation, washing and leaching of shaped polybenzazole articles
US5561201A (en) * 1993-03-17 1996-10-01 Honda Giken Kogyo Kabushiki Kaisha Molecular composite material including aromatic polythiazole and method of producing same
US5571874A (en) * 1993-11-26 1996-11-05 Honda Giken Kogyo Kabushiki Kaisha Method of producing molecular composite material including rigid aromatic polymer
EP0754716A3 (en) * 1995-07-13 1998-11-18 Honda Giken Kogyo Kabushiki Kaisha Aromatic copolymer

Also Published As

Publication number Publication date
JPH0678440B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
US5286833A (en) Polybenzazole fiber with ultra-high physical properties
US5178812A (en) Method of making composites having improved surface properties
JPS62223316A (en) Polyvinyl alcohol yarn having high strength and high modulus of elasticity and production thereof
KR101067338B1 (en) Molecular miscible blend solution of aromatic polyamide and amorphous polymer, preparation method thereof, aromatic polyamide blend fiber and dyeing method using same
US5011643A (en) Process for making oriented, shaped articles of para-aramid/thermally-consolidatable polymer blends
JPH01287167A (en) Production of high polymer composite material
US5366781A (en) Oriented, shape articles of lyotropic/thermally-consolidatable polymer blends
JPH0353336B2 (en)
EP0560922A1 (en) Matrix composites in which the matrix contains polybenzoxazole or polybenzothiazole
JPH0135090B2 (en)
JP2936676B2 (en) Heat resistant film
JP2897312B2 (en) Heat resistant film
JPS63308040A (en) Production of polymer composite
JPH01287141A (en) Production of biaxially oriented film of polyazole
JPS6237124A (en) Manufacture of linear coordination properties aromatic polyamide film
JPH0749528B2 (en) Polymer composite manufacturing method
JP2732879B2 (en) Wholly aromatic copolymer polyamide
JPH0450333B2 (en)
RU2011701C1 (en) Composition for fiber forming
JPH02281077A (en) Production of polymer composite material
JPH0136785B2 (en)
JP3486653B2 (en) Method for producing aromatic polyamide film
JPH0476055A (en) Polymer composite and its preparation
JPH0434023A (en) Preparation of para-oriented aromatic polyamide fiber
JPH04298330A (en) Seamless belt and its manufacture

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term