JPH0128487B2 - - Google Patents
Info
- Publication number
- JPH0128487B2 JPH0128487B2 JP57080726A JP8072682A JPH0128487B2 JP H0128487 B2 JPH0128487 B2 JP H0128487B2 JP 57080726 A JP57080726 A JP 57080726A JP 8072682 A JP8072682 A JP 8072682A JP H0128487 B2 JPH0128487 B2 JP H0128487B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- zinc oxide
- varistor
- foreign particles
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 52
- 239000011787 zinc oxide Substances 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 22
- 239000012535 impurity Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 13
- 238000005245 sintering Methods 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 239000002002 slurry Substances 0.000 claims description 7
- 238000002156 mixing Methods 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 2
- 150000004706 metal oxides Chemical class 0.000 claims description 2
- 238000010298 pulverizing process Methods 0.000 claims 1
- 239000013078 crystal Substances 0.000 description 12
- 230000000630 rising effect Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 3
- -1 B 2 O 3 Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 1
- 229910005793 GeO 2 Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Description
本発明は、バリスタ組成物や焼結体厚さ又は焼
結条件を変えることなく、高い非直線係数αと高
い信頼性を維持し、任意の立上がり電圧が得られ
る電圧非直線抵抗体の製造方法に関する。
近年、IC、トランジスタ、サイリスタなどの
半導体素子及び半導体回路とその応用の急速な発
展にともない計測制御機器、通信機器及び電力機
器における半導体素子及び半導体回路の使用が普
及し、これらの機器の小形化、高性能化が急速に
進展している。しかしながら、これらの機器やそ
の部品の耐電圧、耐サージ及び耐ノイズ性能は必
ずしも十分と言えない状況にある。
このためこれらの機器や部品を異常なサージや
ノイズから保護することや回路電圧を安定化する
ことが極めて重要な課題になつてきている。この
課題達成のため、優れたバリスタとして酸化亜鉛
系バリスタが開発されている。
バリスタの電圧電流特性は一般に次の関係
I=(V/C)〓
で表示される。ここでVはバリスタに印加されて
いる電圧であり、Iはバリスタを流れる電流であ
る。また、Cは与えられた電流を流したときの電
圧に対応する定数である。ここではバリスタ特性
をCとαで表わすかわりに、1mAにおける立上
がり電圧V1mAとαで表わすこととなる。αは
非直線係数でα=1はオームの法則に従う普通の
抵抗体であり、αが大きいほど非直線が優れてい
ると言える。前記酸化亜鉛係バリスタはV1mA
の値の各種のものが製造されている。焼結体厚さ
1mmにおける立上がり電圧をV1mA/mmとする
と、おおよそV1mA/mm=22V,40V,100V,
200Vの4種類のバリスタが製造されている。こ
れらのV1mA/mmをもつ酸化亜鉛系バリスタに
おいてV1mA/mmは焼結体内の酸化亜鉛結晶粒
の大きさによつて決まる。低いV1mA/mmを得
るためにはこの結晶粒を大きく成長させ、また、
高いV1mA/mmを得るためには結晶粒の成長を
小さく抑えることが必要となる。
しかして、以上の内容を前提に高い非直線係数
αと高い信頼性を有し、かつ所望のV1mA/mm
をもつ酸化亜鉛系バリスタを得る手段として、従
来は次のような手段が考えられていた。
すなわち、バリスタ組成物の種類やその比率を
種々変更するか、焼結条件を変更するか、又は焼
結体を構成する成形体の厚さを変更するか、ある
いはこれらの要素を組合せるかなどである。
しかしながら、これらの手段を実施した場合、
製造条件が複雑化し、工業的な製造手段として好
ましいものとは言えず、実用上多くの問題をかか
える結果となつていた。
本発明は、上記のような問題を解消するために
種々検討を重ね完成したもので、バリスタ組成
物,焼結条件あるいは成形体の成形厚さを変える
ことなく、酸化亜鉛結晶粒界に所望のホウ化物か
らなる異物粒子を存在させて結晶粒界の移動を抑
制し酸化亜鉛結晶粒成長を抑制することによつて
高い非直線係数αと高い信頼性を維持し、任意の
立上がり電圧V1mA/mmをもつバリスタが得ら
れる電圧非直線抵抗体の製造方法を提供すること
を目的とするものである。
以下、本発明につき詳細に説明する。
すなわち、バリスタ組成物を構成する主成分と
しての酸化亜鉛と添加物としてのMgO,Bi2O3,
Sb2O3,CoO,MnO,Cr2O3,Fe2O3,Al2O3,
SiO2,TiO2,SnO2,CuO,BaO,CaO,NiO,
PbO,B2O3,MoO3,Li2O,V2O5,ZrO2,
In2O3,WO3,Ta2O5,SrO,Ga2O3,GeO2など
の他の金属酸化物を所定量秤量し、例えばボール
ミルで数時間混合・粉砕してスラリ化する。しか
る後、このスラリに焼結過程において前記バリス
タ組成物と反応せず、焼結体中の酸化亜鉛結晶粒
界に最後まで異物粒子として存在するZrB,
WB,TiB2,MoB,TaB,NbB又はVB2などの
ホウ化物からなる不純物を所定量粉砕しないで混
入し分散混合する。
次にこの混合物を乾燥した後、例えばポリビニ
ルアルコールを加え造粒し、しかる後、所定の形
状に成形し1000〜1450℃の高温で焼結し焼結体中
の酸化亜鉛結晶粒界に前記したホウ化物からなる
異物粒子を存在させるようにしてなるものであ
る。
なお、この場合酸化亜鉛結晶粒界に異物粒子を
存在させるために混入するホウ化物からなる不純
物をバリスタ組成物といつしよに混合・粉砕しな
いのは、例えばバリスタ組成特性原料と同時に秤
量し、これら原料といつしよに混合・粉砕しスラ
リ化した場合、粉砕過程で不純物が粉砕されて微
粒子となり、焼結過程においてバリスタ組成物と
反応(添加物と同じ作用によるバリスタ組成の変
質)し、焼結体の酸化亜鉛結晶粒界に異物粒子と
して存在できなくなり、本発明の目的を達成し得
なくなるためである。
また、この場合の前記ホウ化物からなる不純物
の粒径は、特別な手段によつてコントロールする
ことなく、一般的な原料状態である。
次に具体的な実験結果に基づき説明する。
まず、V1mA/mm=22V,40V,100V,200V
それぞれのバリスタを得る場合の本発明による実
施例と不純物を一切混入しない従来の参考例との
製造条件について検討した結果を表1に示す。
表1に示す実施例(A),(B),(C)はバリスタ組成物
の構成及び焼結温度を一定にしてホウ化物からな
る不純物の混入量を適宜選定し、得られたバリス
タにおける立上がり電圧(V1mA/mm)と焼結
体の酸化亜鉛結晶粒界に存在する焼結体1cm3中の
異物粒子の個数の関係を明らかにしたものであ
る。試料に用いた成形体(焼結前)は実施例及び
参考例とも直径15mmで、厚さは1mmの寸法をもつ
円板形である。
なお、焼結体の酸化亜鉛結晶粒界に存在する異
物粒子の確認は、電子顕微鏡で行つた。
また、酸化亜鉛結晶粒界に存在する異物粒子の
個数については、スラリに混入する不純物の重量
(W)を求める次式から換算した。
W=N×ρ2×4/3π(D/―/2)3×10-12×WG
K/ρ1
上式は次の手順によつて求めた式に式を代
入して得たものである。すなわち、焼結体1cm3中
の異物粒子個数をNとし不純物の比重をρ2とした
とき、焼結体1cm3当りの重量は
N×ρ2×4/3π(D/―/2)3×10-12 ……式
は不純物の平均粒子量
焼結体1cm3を構成するための必要バリスタ組成
物重量は
WG×K=WS ……式
WGはバリスタ組成物重量
Kは焼結減量系数
WSは焼結体重量
ここで式を焼結体比重(ρ1)で割ると焼結体
の体積(VS)が算出される。
WS/ρ1=VS
WS=VS・ρ1 ……式
式にを代入し
WG×K=VS・ρ1
VS=WGK/ρ1 ……式
ここで式に焼結体体積をかけることによつて
必要不純物重量(W)が求められる。
W=N×ρ2×4/3π(D/―/2)3×10-12×VS
……式
The present invention provides a method for manufacturing a voltage nonlinear resistor that maintains a high nonlinear coefficient α and high reliability and can obtain any desired rise voltage without changing the varistor composition, sintered body thickness, or sintering conditions. Regarding. In recent years, with the rapid development of semiconductor elements and circuits such as ICs, transistors, and thyristors, and their applications, the use of semiconductor elements and circuits in measurement control equipment, communication equipment, and power equipment has become widespread, and the miniaturization of these equipment has increased. , high performance is progressing rapidly. However, the voltage resistance, surge resistance, and noise resistance of these devices and their components are not necessarily sufficient. Therefore, protecting these devices and components from abnormal surges and noise and stabilizing circuit voltages have become extremely important issues. To achieve this goal, a zinc oxide varistor has been developed as an excellent varistor. The voltage-current characteristics of a varistor are generally expressed by the following relationship: I=(V/C). Here, V is the voltage applied to the varistor and I is the current flowing through the varistor. Further, C is a constant corresponding to the voltage when a given current is passed. Here, instead of expressing the varistor characteristics by C and α, it will be expressed by the rising voltage V1mA at 1 mA and α. α is a nonlinear coefficient, and α=1 is an ordinary resistor that follows Ohm's law, and it can be said that the larger α is, the better the nonlinearity is. The zinc oxide varistor has V1mA
A variety of values are manufactured. If the rising voltage at a sintered body thickness of 1 mm is V1mA/mm, approximately V1mA/mm=22V, 40V, 100V,
Four types of 200V varistors are manufactured. In these zinc oxide varistors having V1mA/mm, V1mA/mm is determined by the size of zinc oxide crystal grains within the sintered body. In order to obtain a low V1mA/mm, this crystal grain must be grown large, and
In order to obtain a high V1mA/mm, it is necessary to suppress the growth of crystal grains. Therefore, on the premise of the above contents, it is possible to have a high non-linear coefficient α and high reliability, and to achieve the desired V1mA/mm.
Conventionally, the following methods have been considered as means for obtaining a zinc oxide-based varistor with In other words, the types of varistor compositions and their ratios should be changed, the sintering conditions should be changed, the thickness of the compact forming the sintered body should be changed, or these elements should be combined. It is. However, if these measures are implemented;
The manufacturing conditions are complicated, and this method cannot be said to be suitable as an industrial manufacturing method, resulting in many practical problems. The present invention was completed after various studies in order to solve the above-mentioned problems.The present invention has been completed by carrying out various studies to solve the above-mentioned problems. By suppressing the movement of grain boundaries and suppressing the growth of zinc oxide crystal grains by the presence of foreign particles made of boride, a high nonlinear coefficient α and high reliability are maintained, and any rising voltage V1mA/mm is maintained. It is an object of the present invention to provide a method for manufacturing a voltage nonlinear resistor that allows a varistor to be obtained. Hereinafter, the present invention will be explained in detail. That is, zinc oxide as the main component constituting the varistor composition and MgO, Bi 2 O 3 as additives,
Sb 2 O 3 , CoO, MnO, Cr 2 O 3 , Fe 2 O 3 , Al 2 O 3 ,
SiO 2 , TiO 2 , SnO 2 , CuO, BaO, CaO, NiO,
PbO, B 2 O 3 , MoO 3 , Li 2 O, V 2 O 5 , ZrO 2 ,
A predetermined amount of other metal oxides such as In 2 O 3 , WO 3 , Ta 2 O 5 , SrO, Ga 2 O 3 , GeO 2 is weighed out, and mixed and ground in a ball mill for several hours to form a slurry. Thereafter, this slurry contains ZrB, which does not react with the varistor composition during the sintering process and remains as foreign particles at the zinc oxide grain boundaries in the sintered body.
Impurities consisting of borides such as WB, TiB 2 , MoB, TaB, NbB, or VB 2 are mixed in and dispersed in a predetermined amount without being crushed. Next, after drying this mixture, for example, polyvinyl alcohol is added and granulated, after which it is formed into a predetermined shape and sintered at a high temperature of 1000 to 1450°C, so that the zinc oxide crystal grain boundaries in the sintered body are granulated. It is made in such a way that foreign particles made of boride are present. In this case, the impurity consisting of boride mixed in to make foreign particles exist in the zinc oxide crystal grain boundaries is not mixed and pulverized with the varistor composition at the same time, for example, because it is weighed at the same time as the varistor composition characteristic raw material, If these raw materials are mixed and ground into a slurry at any time, impurities will be ground into fine particles during the grinding process, and will react with the varistor composition during the sintering process (altering the varistor composition due to the same effect as additives). This is because the particles cannot exist as foreign particles at the zinc oxide grain boundaries of the sintered body, making it impossible to achieve the object of the present invention. Further, in this case, the particle size of the impurity made of the boride is not controlled by any special means and is in a general raw material state. Next, explanation will be given based on specific experimental results. First, V1mA/mm=22V, 40V, 100V, 200V
Table 1 shows the results of examining the manufacturing conditions of the embodiment according to the present invention and the conventional reference example in which no impurities are mixed when obtaining each varistor. In Examples (A), (B), and (C) shown in Table 1, the composition of the varistor composition and the sintering temperature were kept constant, and the amount of impurities made of boride was appropriately selected. The relationship between the voltage (V1 mA/mm) and the number of foreign particles in 1 cm 3 of the sintered body existing at the zinc oxide grain boundaries of the sintered body is clarified. The molded bodies (before sintering) used as samples were disk-shaped in both Examples and Reference Examples with a diameter of 15 mm and a thickness of 1 mm. Note that foreign particles present in the zinc oxide grain boundaries of the sintered body were confirmed using an electron microscope. Furthermore, the number of foreign particles present at the zinc oxide crystal grain boundaries was calculated using the following formula for calculating the weight (W) of impurities mixed into the slurry. W=N×ρ 2 ×4/3π(D/-/2) 3 ×10 -12 ×W G
K/ρ 1 The above equation was obtained by substituting the equation into the equation obtained by the following procedure. That is, when the number of foreign particles in 1 cm 3 of the sintered body is N and the specific gravity of impurities is ρ 2 , the weight per 1 cm 3 of the sintered body is N×ρ 2 ×4/3π (D/-/2) 3 ×10 -12 ...Formula is the average particle amount of impurities The required weight of the varistor composition to constitute 1 cm3 of sintered body is W G ×K=W S ...Formula W G is the weight of the varistor composition K is the sintered The weight loss series W S is the weight of the sintered body. Here, the volume of the sintered body (V S ) is calculated by dividing the formula by the specific gravity of the sintered body (ρ 1 ). W S /ρ 1 =V S W S =V S・ρ 1 ...Formula Substitute into the equation W G ×K=V S・ρ 1 V S =W G K/ρ 1 ...Formula Now, in the equation The required impurity weight (W) is determined by multiplying by the volume of the sintered body. W=N×ρ 2 ×4/3π(D/-/2) 3 ×10 -12 ×V S
……formula
【表】
表1から明らかなように、任意の立上がり電圧
V1mA/mmのバリスタを得るために従来例では
成形体厚さを一定にした場合、バリスタ組成物及
び焼結温度を都度変更しなければならず、工程が
複雑化して工業的な製造手段としては好ましくな
いのに対し、実施例(A),(B),(C)はバリスタ組成物
及び焼結温度を変えることなく、焼結体の酸化亜
鉛結晶粒界に存在させるホウ化物からなる異物粒
子の個数を変えるだけで可能となることにより、
バリスタ組成物のスラリに所望のV1mA/mmに
応じた所定のホウ化物からなる不純物を混入する
のみのきわめて簡単な手段でよいことがわかる。
以上のことは次に述べる実験結果によつて一層
明瞭となる。すなわち、焼結体の酸化亜鉛結晶粒
界に存在する異物粒子の個数を変えたときの酸化
亜鉛結晶粒子の平均粒径の変化とV1mA/mmの
変化を調べた結果、第1図及び第2図に示すとお
りであつた。
第1図及び第2図から明らかなように、焼結体
の酸化亜鉛結晶粒界に存在する異物粒子の存在率
によつて酸化亜鉛結晶粒子の成長が抑制でき、よ
つてV1mA/mmを任意にコントロールできるこ
とがわかる。
次に表1の参考例と実施例(A)とのV1mA/mm
に対応する非直線係数αと電流波形が8×20μsで
1000Aの衝撃電流を10回印加したときのV1m
A/mmに対応する立上がり電圧の変化率を比較し
た結果、第3図及び第4図に示すとおりであつ
た。これによれば、実施例(A)はバリスタ組成物及
び焼結温度を変えないで焼結体の酸化亜鉛結晶粒
界に所望の異物粒子の個数を存在させるように、
単にホウ化物からなる不純物の混入量を変えるだ
けで参考例と同じ特性のバリスタが得られること
がわかる。
なお、焼結体の酸化亜鉛結晶粒界に存在する異
物粒子が105個/cm3未満では、バリスタ組成物及
び焼結条件を一定にしてV1mA/mm=22Vを確
保することは困難で、また2×107個/cm3を越え
ると焼結体の焼結性が悪く、本発明の主旨に反す
ることが実験上確認された。
以上詳述したように、本発明によればバリスタ
組成物、焼結温度あるいは成形体厚さなどの複雑
な製造条件を変えることなく、酸化亜鉛結晶粒界
に所望のホウ化物からなる異物粒子を存在させて
結晶粒界の移動を抑制し酸化亜鉛結晶粒成長を抑
制することによつて高い非直線係数αと高い信頼
性を維持し、任意の立上がり電圧V1mA/mmを
もつバリスタが得られる電圧非直線抵抗体の製造
方法を得ることができる。[Table] As is clear from Table 1, any rising voltage
In order to obtain a V1 mA/mm varistor, in the conventional example, when the thickness of the molded body was kept constant, the varistor composition and sintering temperature had to be changed each time, making the process complicated and making it difficult to use as an industrial manufacturing method. On the other hand, in Examples (A), (B), and (C), foreign particles made of boride are allowed to exist in the zinc oxide grain boundaries of the sintered body without changing the varistor composition or sintering temperature. By simply changing the number of
It can be seen that an extremely simple method of simply mixing a predetermined boride impurity corresponding to the desired V1mA/mm into the slurry of the varistor composition is sufficient. The above will become clearer from the experimental results described below. That is, as a result of investigating the change in the average grain size of zinc oxide crystal particles and the change in V1mA/mm when the number of foreign particles existing in the zinc oxide crystal grain boundaries of the sintered body was changed, the results shown in Figs. 1 and 2 It was as shown in the figure. As is clear from Figures 1 and 2, the growth of zinc oxide crystal grains can be suppressed depending on the abundance of foreign particles present at the zinc oxide grain boundaries of the sintered body, and therefore V1mA/mm can be set arbitrarily. It can be seen that it can be controlled. Next, V1mA/mm of the reference example and Example (A) in Table 1
The nonlinear coefficient α and current waveform corresponding to are 8 × 20 μs.
V1m when applying 1000A impact current 10 times
The results of comparing the rate of change in rising voltage corresponding to A/mm were as shown in FIGS. 3 and 4. According to this, in Example (A), the desired number of foreign particles is made to exist at the zinc oxide grain boundaries of the sintered body without changing the varistor composition and sintering temperature.
It can be seen that a varistor with the same characteristics as the reference example can be obtained by simply changing the amount of impurity made of boride. In addition, if the number of foreign particles existing in the zinc oxide grain boundaries of the sintered body is less than 10 5 /cm 3 , it is difficult to maintain V1mA/mm = 22V by keeping the varistor composition and sintering conditions constant. Furthermore, it has been experimentally confirmed that if the number exceeds 2×10 7 pieces/cm 3 , the sinterability of the sintered body is poor, which is contrary to the spirit of the present invention. As described in detail above, according to the present invention, foreign particles made of desired boride are added to the zinc oxide grain boundaries without changing complicated manufacturing conditions such as the varistor composition, sintering temperature, or compact thickness. A voltage that maintains a high nonlinear coefficient α and high reliability by suppressing the movement of grain boundaries and suppressing the growth of zinc oxide crystal grains, and provides a varistor with an arbitrary rise voltage of V1mA/mm. A method for manufacturing a non-linear resistor can be obtained.
第1図は異物粒子の存在量に対する酸化亜鉛結
晶粒子の平均粒径を示す曲線図、第2図は異物粒
子の存在量に対するV1mA/mmの変化を示す曲
線図、第3図はV1mA/mmに対する非直線係数
αの比較を示す曲線図、第4図は衝撃電流を印加
したときのV1mA/mmに対する立上がり電圧の
変化率比較を示す曲線図である。
Figure 1 is a curve diagram showing the average particle size of zinc oxide crystal particles versus the amount of foreign particles present, Figure 2 is a curve diagram showing the change in V1mA/mm versus the amount of foreign particles present, and Figure 3 is a curve diagram showing V1mA/mm. FIG. 4 is a curve diagram showing a comparison of the rate of change in the rising voltage with respect to V1 mA/mm when an impact current is applied.
Claims (1)
物を添加してなるバリスタ組成物を混合・粉砕し
スラリを作る手段と、このスラリに焼結過程で前
記バリスタ組成物と反応せず焼結体の酸化亜鉛結
晶粒界に最後まで異物粒子として存在するホウ化
物からなる不純物を混入し分散混合する手段と、
この混合物を成形焼結し焼結体を得る手段からな
ることを特徴とする電圧非直線抵抗体の製造方
法。 2 ホウ化物がZrB,WB,TiB2,MoB,TaB,
NbB又はVB2であることを特徴とする特許請求
の範囲第1項記載の電圧非直線抵抗体の製造方
法。 3 不純物の混入量として焼結体1cm3中の異物粒
子の個数が105〜2×107個になるようにしたこと
を特徴とする特許請求の範囲第1項又は第2項記
載の電圧非直線抵抗体の製造方法。[Scope of Claims] 1. A means for preparing a slurry by mixing and pulverizing a varistor composition comprising zinc oxide as a main component and adding several other metal oxides, and adding the varistor composition to this slurry in a sintering process. means for mixing and dispersing an impurity consisting of a boride that does not react with the zinc oxide grain boundary of the sintered body and exists as foreign particles until the end;
A method for producing a voltage nonlinear resistor, comprising means for forming and sintering this mixture to obtain a sintered body. 2 Borides include ZrB, WB, TiB 2 , MoB, TaB,
The method for manufacturing a voltage nonlinear resistor according to claim 1, wherein the voltage nonlinear resistor is made of NbB or VB2 . 3. The voltage according to claim 1 or 2, characterized in that the amount of impurities mixed in is such that the number of foreign particles in 1 cm 3 of the sintered body is 10 5 to 2 × 10 7 . A method of manufacturing a nonlinear resistor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57080726A JPS58197702A (en) | 1982-05-12 | 1982-05-12 | Method of producing voltage nonlinear resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57080726A JPS58197702A (en) | 1982-05-12 | 1982-05-12 | Method of producing voltage nonlinear resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58197702A JPS58197702A (en) | 1983-11-17 |
JPH0128487B2 true JPH0128487B2 (en) | 1989-06-02 |
Family
ID=13726365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57080726A Granted JPS58197702A (en) | 1982-05-12 | 1982-05-12 | Method of producing voltage nonlinear resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58197702A (en) |
-
1982
- 1982-05-12 JP JP57080726A patent/JPS58197702A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS58197702A (en) | 1983-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2940486B2 (en) | Voltage nonlinear resistor, method for manufacturing voltage nonlinear resistor, and lightning arrester | |
JPH0128481B2 (en) | ||
JPH0128487B2 (en) | ||
US3836483A (en) | Oxide varistor | |
JPH0128485B2 (en) | ||
JPH0128486B2 (en) | ||
JPH0128482B2 (en) | ||
JPH0128483B2 (en) | ||
JPH0128484B2 (en) | ||
JP3323701B2 (en) | Method for producing zinc oxide based porcelain composition | |
JP2623188B2 (en) | Varistor and manufacturing method thereof | |
JPH0249521B2 (en) | ||
JPH0552642B2 (en) | ||
JPH1131605A (en) | Voltage nonlinear resistor | |
JPS6249961B2 (en) | ||
JPH02114603A (en) | Manufacture of glaze varistor | |
JPH0383846A (en) | Production of varistor | |
JP3286515B2 (en) | Voltage non-linear resistor | |
JPH03195003A (en) | Voltage-dependent nonlinear resistor | |
JPS6028121B2 (en) | Manufacturing method of voltage nonlinear resistor | |
JP2572882B2 (en) | Voltage nonlinear resistor and manufacturing method thereof | |
JPS6322602B2 (en) | ||
JPH038765A (en) | Production of voltage-dependent nonlinear resistor porcelain composition and varistor | |
JPH03178101A (en) | Voltage non-linear resistor | |
JPS648442B2 (en) |