JPH01283908A - Co based amorphous magnetic film and magnetic head using the film - Google Patents
Co based amorphous magnetic film and magnetic head using the filmInfo
- Publication number
- JPH01283908A JPH01283908A JP11242688A JP11242688A JPH01283908A JP H01283908 A JPH01283908 A JP H01283908A JP 11242688 A JP11242688 A JP 11242688A JP 11242688 A JP11242688 A JP 11242688A JP H01283908 A JPH01283908 A JP H01283908A
- Authority
- JP
- Japan
- Prior art keywords
- film
- magnetic
- amorphous
- heat treatment
- flux density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Heads (AREA)
- Thin Magnetic Films (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、高密度磁気記録に適する磁気ヘッド用磁極に
用いる磁性膜に係わり、特に高飽和磁束密度、高結晶化
温度、低磁歪を有するGo系非晶質磁性膜及びそれを用
いた磁気ベツドに関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a magnetic film used for a magnetic head pole suitable for high-density magnetic recording, and in particular has a high saturation magnetic flux density, a high crystallization temperature, and a low magnetostriction. The present invention relates to a Go-based amorphous magnetic film and a magnetic bed using the same.
磁気記録の高密度化、高性能化の進歩には目覚ましいも
のがある。大型コンピュータ用の磁気ディスク装置の分
野に於いては、記録密度の大幅な向上により、大容量化
が図られてきた。磁気ディスク装置においては、従来の
フェライト型バルクヘッドに比べてインダクタンスが小
さく、高周波透磁率が大きくて、狭トラツク幅加工の可
能な薄膜ヘッドの使用が必須となっている。There has been remarkable progress in increasing the density and performance of magnetic recording. In the field of magnetic disk drives for large computers, large capacity improvements have been made due to significant improvements in recording density. In magnetic disk drives, it is essential to use thin-film heads that have lower inductance and higher high-frequency magnetic permeability than conventional ferrite bulk heads, and can be processed into narrow track widths.
薄膜ヘッドに於いては、記録の高密度化に伴って分解能
を向上するために磁極を薄膜化する必要があり、薄い磁
極先端で磁気飽和が起こりやすく。In thin-film heads, magnetic poles must be made thinner in order to improve resolution as recording density increases, and magnetic saturation is likely to occur at the tips of thin magnetic poles.
このため、高飽和磁束密度の磁性膜を用いた薄膜ヘッド
が必要になっている。Therefore, a thin film head using a magnetic film with a high saturation magnetic flux density is required.
従来、薄膜ヘッドの磁性膜としては、主に、N i −
F a系合金膜(パーマロイ膜)が用いられてきた*
N iF e合金は、耐蝕性に優れているが、飽和磁束
密度は1.0Tである。N1−Faでは、今後の高飽和
磁束密度化に対応しきれなくなっできている。Conventionally, magnetic films for thin film heads have mainly been made of N i −
Fa-based alloy film (permalloy film) has been used*
Although the N iFe alloy has excellent corrosion resistance, its saturation magnetic flux density is 1.0T. N1-Fa is no longer able to cope with future increases in saturation magnetic flux density.
近年高飽和磁束密度で高性能の磁性膜として非晶質スパ
ッタ膜が開発されつつある。この中でも特に、M a
T a Z rの組成式で表されるZr系非晶質合金は
、ガラス化元素が、B、Si、Pなどのメタロイド元素
からなる非晶質合金に比較して、耐熱性に優れており、
磁気ヘッド用磁性膜としてすぐれた特性を有している。In recent years, amorphous sputtered films have been developed as high-performance magnetic films with high saturation magnetic flux density. Among these, especially M a
Zr-based amorphous alloys represented by the composition formula T a Z r have superior heat resistance compared to amorphous alloys whose vitrification elements are metalloid elements such as B, Si, and P. ,
It has excellent properties as a magnetic film for magnetic heads.
ここで上記組成式のMは磁気モーメントを有するGo、
Fe、Niなとの少なくとも一種であり、TはMおよび
Zr以外の遷移金属である。このようなガラス化元素が
主にZrからなる非晶質合金については、特開昭55−
138049並びに特開昭56−84439等に述べら
れている。これらのZr系非晶質合金のなかでもMがc
oからなるC o −Z r系合金は、飽和磁束密度が
高く、優れた磁性材料である。Here, M in the above compositional formula is Go having a magnetic moment,
T is at least one of Fe and Ni, and T is a transition metal other than M and Zr. Regarding such amorphous alloys in which the vitrifying element is mainly Zr, Japanese Patent Application Laid-Open No. 1986-
138049 and JP-A-56-84439. Among these Zr-based amorphous alloys, M is c
The Co-Zr alloy consisting of o has a high saturation magnetic flux density and is an excellent magnetic material.
しかし、この非晶質合金の磁歪定数は、2〜4xio−
eと比較的大きな値を示すため、添加元素Tとして、非
晶質合金の磁歪定数に負の寄与を与えるV、Nb、Ta
9Mo、W、Rなどの元素を用いる事により磁歪定数が
ほぼ0の非晶質合金が得られる。この中でも、アイ イ
ー イー イートランザクションス オン マグネティ
クス、1985年、ボリュウム エム エージ−21゜
ナンバー5 (IEEE TRANSACTIONS
ON MAGNE丁IC31985Vo Q 、MAG
−21,N(15)の第2032〜2034頁に示され
ているように、Co Re Z r非晶質膜は、耐蝕性
にすぐれ、また、磁歪界において飽和磁束密度が1.3
Tえられることから、薄膜磁気ヘッドとして有望視され
ている。However, the magnetostriction constant of this amorphous alloy is 2~4xio-
V, Nb, and Ta, which make a negative contribution to the magnetostriction constant of the amorphous alloy, are added as additive elements T because they exhibit a relatively large value as e.
By using elements such as 9Mo, W, and R, an amorphous alloy with a magnetostriction constant of approximately 0 can be obtained. Among these, IEEE TRANSACTIONS on Magnetics, 1985, Volume 21° Number 5 (IEEE TRANSACTIONS
ON MAGNE Ding IC31985Vo Q, MAG
-21,N(15), pages 2032 to 2034, the CoReZr amorphous film has excellent corrosion resistance and has a saturation magnetic flux density of 1.3 in a magnetostrictive field.
It is considered to be promising as a thin film magnetic head because of its high T.
ところが、Co Re Z r非晶質膜は耐熱性に劣っ
ており、同一飽和磁束密度で比較した場合、磁歪界のC
o T a Z r非晶質磁性膜に比べて結晶化温度が
約50℃低く、磁気ヘッド作成時の高温プロセスに於い
て結晶化するという問題があった。However, the CoReZr amorphous film has poor heat resistance, and when compared at the same saturation magnetic flux density, the C of the magnetostrictive field
o T a Z r The crystallization temperature is about 50° C. lower than that of the amorphous magnetic film, and there is a problem that crystallization occurs during the high temperature process when manufacturing the magnetic head.
本発明は、Coの非晶質化元素としてZrの代わりに、
Hfを用いたCoReHfとすることにより、耐蝕性を
劣化させることなく、結晶化温度を約60℃上げる事が
でき、磁気ヘッド作製プロセスにおける高温処理に於い
ても結晶化しない、良好な磁気ヘッド材料を得たもので
ある。In the present invention, instead of Zr as an amorphous element of Co,
By using CoReHf using Hf, the crystallization temperature can be raised by approximately 60°C without deteriorating the corrosion resistance, making it a good magnetic head material that does not crystallize even during high-temperature treatment in the magnetic head manufacturing process. This is what I got.
第1図に、CoReHf合金スパッタ膜の特性図を示し
ている。CoReHfは二極高周波スパッタ装置で形成
した。極間距離は50m、Ar圧力は5 X 10−3
Torr、投入電力は175Wであった。基板は水冷し
た。第2図に、CoReZr合金スパッタ膜の特性図を
示している。CoReHf合金スパッタ膜の磁歪並びに
飽和磁束密度の組成依存性はほぼCo Re Z rの
それとほぼ一致している。薄膜磁気ヘッドの磁極材料と
しては、飽和磁束密度が大きくして、磁歪が小さい事が
必要である。したがって、CoReHfの組成としては
、Co組成が90at%以上95at%未満、Re組成
は、Q、5at%以上5at%未満、Hf組成は、3a
t%以上9.5at%未滴が適当である。FIG. 1 shows a characteristic diagram of a CoReHf alloy sputtered film. CoReHf was formed using a two-pole high frequency sputtering device. Distance between poles is 50m, Ar pressure is 5 x 10-3
Torr, and the input power was 175W. The substrate was water cooled. FIG. 2 shows a characteristic diagram of the CoReZr alloy sputtered film. The composition dependence of the magnetostriction and saturation magnetic flux density of the CoReHf alloy sputtered film is almost the same as that of CoReZr. The magnetic pole material of a thin film magnetic head needs to have a high saturation magnetic flux density and a low magnetostriction. Therefore, as for the composition of CoReHf, the Co composition is 90 at% or more and less than 95 at%, the Re composition is Q, 5 at% or more and less than 5 at%, and the Hf composition is 3a
It is appropriate that t% or more and 9.5 at% not dropped.
第3図に、CoTaZry CoReZr、並びに、C
o Re Hf系合金スパッタ膜の磁歪をOにしたとき
の、飽和磁束密度と結晶化温度との関係を示している。FIG. 3 shows CoTaZry CoReZr and C
It shows the relationship between the saturation magnetic flux density and the crystallization temperature when the magnetostriction of the o Re Hf-based alloy sputtered film is set to O.
同一の飽和磁束密度で比較した場合、Co Re Hf
系合金スパッタ膜は、CoReZr系合金スパッタ膜に
比較して、結晶化温度が約60℃大きくなっており、は
ぼCo T a Z r系非晶質膜と同等以上の耐熱性
を有する事がわかった。When compared at the same saturation magnetic flux density, Co Re Hf
The crystallization temperature of the CoReZr-based alloy sputtered film is about 60°C higher than that of the CoReZr-based alloy sputtered film, and it has heat resistance that is equal to or higher than that of the CoTaZr-based amorphous film. Understood.
第4図に、Co T a Z r並びにCoReZr。FIG. 4 shows CoTaZr and CoReZr.
Co Re Hf非晶質合金スパッタ膜の磁歪を零にし
たときの飽和磁束密度と耐蝕性との関係を示す。The relationship between the saturation magnetic flux density and corrosion resistance when the magnetostriction of a CoReHf amorphous alloy sputtered film is made zero is shown.
耐蝕性は、塩水噴霧試験を行なつい、100時間放置し
た後の飽和磁化の変化量で示している。Corrosion resistance is shown by the amount of change in saturation magnetization after performing a salt spray test and leaving it for 100 hours.
すなわち、腐食量を(M s (0) M s (1
00))/M s (0)X 100(%)で定義した
。ここで、M s (t )は、を時間後の飽和磁化で
ある。いずれの合金型も、飽和磁束密度が大きいほど、
すなわちGo組成が大きいほど腐食量が大きくなってお
り、耐蝕性が悪くなっている。しかし、同一飽和磁束密
度を比べれば、Co Ra Hf 、 CoTa Zr
。In other words, the amount of corrosion is (M s (0) M s (1
00))/Ms(0)X100(%). Here, M s (t) is the saturation magnetization after time. For any alloy type, the larger the saturation magnetic flux density, the
That is, the larger the Go composition, the larger the amount of corrosion, and the worse the corrosion resistance. However, if we compare the same saturation magnetic flux density, CoRaHf, CoTaZr
.
CoReZrの順序で耐蝕性が優れている事がわかった
。It was found that the corrosion resistance was excellent in the order of CoReZr.
実施例2 Co Re Hfを用いて薄膜磁気ヘッドを形成した。Example 2 A thin film magnetic head was formed using Co Re Hf.
CoReHf非晶質合金は、高周波二極スパッタ装置で
形成した。到達真空度は8 X 10’″7torr、
A rガス圧は5 X 10 ”−’torrとした
。スパッタリング時の投入電力は175Wとし、基板は
水冷した。この時の膜形成の速度は100A/分であっ
た。膜形成直後では1面内に一軸異方性がついており、
その異方性磁界は約200eであった。The CoReHf amorphous alloy was formed using a high frequency two-pole sputtering device. The ultimate vacuum level is 8 x 10'''7 torr,
Ar gas pressure was 5 x 10''-'torr. Power input during sputtering was 175 W, and the substrate was water-cooled. The film formation rate at this time was 100 A/min. Immediately after film formation, one surface was It has uniaxial anisotropy inside,
The anisotropic magnetic field was about 200e.
軟磁気特性を向上させる、すなわち異方性磁界を低減す
るために、磁場中熱処理あるいは回転磁場中熱処理を行
なった。第5図は、Co s x Re 2 Hf e
(at%)非晶質合金を、膜の磁化容易軸方向に1kO
eの直流磁場をかけて400℃1時間の熱処理を行なっ
た後、困薙軸方向にIKOeの直流磁場をかけて380
℃、を分間の熱処理を行なった時の異方性磁界Hkの熱
処理時間依存性を示したものである。In order to improve the soft magnetic properties, that is, to reduce the anisotropic magnetic field, heat treatment in a magnetic field or heat treatment in a rotating magnetic field was performed. FIG. 5 shows Co s x Re 2 Hf e
(at%) amorphous alloy at 1kO in the direction of the easy magnetization axis of the film.
After heat treatment at 400°C for 1 hour by applying a DC magnetic field of 380°C, a DC magnetic field of IKOe was applied in the axial direction
This figure shows the dependence of the anisotropic magnetic field Hk on the heat treatment time when the heat treatment was performed at .degree. C. for minutes.
第6図は、CoezRezHfe(a t%)非晶質合
金を磁界の大きさI K Oe 、回転数50Orpm
、熱処理温度400℃、を分間の熱処理を行なった時の
異方性磁界Hkの熱処理時間依存性を示している。Figure 6 shows a CoezRezHfe (at%) amorphous alloy under magnetic field magnitude I K Oe and rotation speed 50 Orpm.
, which shows the dependence of the anisotropic magnetic field Hk on the heat treatment time when heat treatment was performed at a heat treatment temperature of 400° C. for minutes.
上記何れの場合も、熱処理によって、異方性磁界を変え
る事ができる。ただし、再現性よく制御できるHkの値
は、5 K Oeであった。また、磁性膜の組成、膜厚
を変えても、同様の結果が得られた。In any of the above cases, the anisotropic magnetic field can be changed by heat treatment. However, the value of Hk that could be controlled with good reproducibility was 5 K Oe. Furthermore, similar results were obtained even when the composition and thickness of the magnetic film were changed.
Co Re Hf非晶質膜を磁極に用いて作製した薄膜
磁気ヘッドの主要部の断面図を第7図に示す。FIG. 7 shows a cross-sectional view of the main parts of a thin-film magnetic head manufactured using a CoReHf amorphous film as a magnetic pole.
薄膜磁気ヘッドはAQz○δ−TiCの非磁性基板1上
に、前記Co e z Re z Hf e非晶質膜の
下部磁性層2を形成し、AQzOδのギャップ層3、C
u。The thin film magnetic head includes a lower magnetic layer 2 of the Co ez Re z Hf e amorphous film formed on a nonmagnetic substrate 1 of AQz○δ-TiC, a gap layer 3 of AQzOδ, and a C
u.
AQ等の導体コイル4.PIQ (日立化成社製ポリイ
ミド系樹脂の商標)等のポリイミド系樹脂からなる有機
絶縁層5、前記CoI+zRetHfe非晶質膜の上部
磁性層6からなる。薄膜ヘッドの膜形成加工には、半導
体作製プロセスで公知の技術を使用した。Conductor coil such as AQ 4. It consists of an organic insulating layer 5 made of a polyimide resin such as PIQ (a trademark of polyimide resin manufactured by Hitachi Chemical Co., Ltd.), and an upper magnetic layer 6 of the CoI+zRetHfe amorphous film. For film formation of the thin film head, techniques known in the semiconductor manufacturing process were used.
ところで、有機絶縁層にPIQを使用すると、PIQの
硬化処理のために熱処理が必要である。By the way, when PIQ is used for the organic insulating layer, heat treatment is required to harden the PIQ.
この熱処理温度は最高350℃が必要で、しかも熱処理
時間が、最低10時間必要であるとされている。It is said that the heat treatment temperature requires a maximum of 350° C., and the heat treatment time requires a minimum of 10 hours.
第8図にGo9zTaaZra、 Co5zRazZr
e+Co5zRe2Hfe非晶質膜を350℃で熱処理
した時の、保磁力の熱処理時間依存性を示している。Figure 8 shows Go9zTaaZra and Co5zRazZr.
It shows the dependence of coercive force on heat treatment time when an e+Co5zRe2Hfe amorphous film is heat treated at 350°C.
CoezTaaZra、Co5zRezHfsは、35
0℃20時間の熱処理でも保磁力には変化がないのに対
し 。CoezTaaZra, Co5zRezHfs is 35
There was no change in coercive force even after heat treatment at 0°C for 20 hours.
てCoexRezZreは約5時間あたりから保磁力が
増大しはじめている。X線回折による解析によると、保
磁力の増大は、CoezRezZreの結晶化に対応し
ている事かやかった。したがって、CoexRexZr
eは薄膜磁気ヘッドの作製プロセス中に結晶化してしま
うが、CoszTagZrδ。The coercive force of CoexRezZre begins to increase after about 5 hours. According to X-ray diffraction analysis, the increase in coercive force likely corresponds to the crystallization of CoezRezZre. Therefore, CoexRexZr
CoszTagZrδ crystallizes during the manufacturing process of the thin film magnetic head.
CoezReIIHfeは、結晶化せず、薄膜ヘッド作
製プロセス中にも軟磁気特性が保たれる事が分かった。It was found that CoezReIIHfe does not crystallize and maintains its soft magnetic properties even during the thin film head manufacturing process.
磁性膜の膜厚は上部磁性層を1.5μm、下部磁性層を
1.1 、トラック幅を12μmとした。The thickness of the magnetic film was 1.5 μm for the upper magnetic layer, 1.1 μm for the lower magnetic layer, and 12 μm for the track width.
試作ヘッドを浮上高さ0.3μm、ヘッド媒体相対速度
を40m/sとし、y−FezOa媒体(保磁力450
0s)を用いて、記録再生特性を調べた。再生出力は、
300μV p −pが得られた。The flying height of the prototype head was 0.3 μm, the head medium relative speed was 40 m/s, and the y-FezOa medium (coercive force 450
0s) to investigate the recording and reproducing characteristics. The playback output is
300 μV p-p was obtained.
本発明によれば、飽和磁束密度が大きく、結晶化温度が
高く、かつ磁歪の小さいco系非晶質膜が得られ、これ
を用いたヘッドでは、優れた記録再生特性を示す効果が
ある。According to the present invention, a co-based amorphous film having a high saturation magnetic flux density, a high crystallization temperature, and a low magnetostriction can be obtained, and a head using this film exhibits excellent recording and reproducing characteristics.
第1図は、Co Re Hf合金スパッタ膜の磁気特性
を示す図、第2図はCoRaZr合金スパッタ膜の磁気
特性を示す図、第3図は、Co T a Z r 。
Co Re Z r 、 Co Re Hf系合金スパ
ッタ膜の磁歪をOにしたと°きの、飽和磁束密度と結晶
化温度との関係を示す図、第4図は、Co T a Z
r 。
Co Re Z r 、 Co Re Hf系合金スパ
ッタ膜の磁歪をOにしたときの、飽和磁束密度と耐食性
との関係を示す図、第5図は、CoezRasHfa非
晶質合金を直流磁場中熱処理した時の、異方性磁塀と熱
処理時間との関係を示す図、第6図は、CoexRez
Hfe非晶質合金を回転磁場中熱処理した時の、異方性
磁界と熱処理時間との関係を示した図、第7図は、試作
した薄膜磁気ヘッドの主像断面概略図、第8図は、Co
ezT a eZrs。
CoezRazHfs、Co5zRezZrs非晶質膜
の保磁力の熱処理時間依存性を示す図である。FIG. 1 is a diagram showing the magnetic properties of a CoReHf alloy sputtered film, FIG. 2 is a diagram showing the magnetic properties of a CoRaZr alloy sputtered film, and FIG. 3 is a diagram showing the magnetic properties of a CoTa Zr alloy sputtered film. Figure 4 shows the relationship between the saturation magnetic flux density and the crystallization temperature when the magnetostriction of the CoReZr, CoReHf based alloy sputtered film is set to O.
r. Figure 5 shows the relationship between saturation magnetic flux density and corrosion resistance when the magnetostriction of a CoReZr, CoReHf based alloy sputtered film is set to O. Figure 6 is a diagram showing the relationship between the anisotropic magnetic fence and the heat treatment time.
A diagram showing the relationship between the anisotropic magnetic field and the heat treatment time when an Hfe amorphous alloy is heat treated in a rotating magnetic field. Figure 7 is a schematic cross-sectional view of the main image of the prototype thin-film magnetic head. Figure 8 is a diagram showing the relationship between the anisotropic magnetic field and the heat treatment time. ,Co
ezT a eZrs. FIG. 3 is a diagram showing the heat treatment time dependence of coercive force of CoezRazHfs and Co5zRezZrs amorphous films.
Claims (1)
特徴とする、Co系非晶質磁性膜。 Co_ARe_BHf_C…(1) ただし、90≦A≦95 0.5≦B≦5 3≦C≦9.5 かつA+B+C=100 なる条件を満足する。(ただし、単位はat%)2.請
求項第1項記載の磁性膜を用いた磁気ヘッド。1. A Co-based amorphous magnetic film characterized by having a component composition represented by the following formula (1). Co_ARe_BHf_C...(1) However, the following conditions are satisfied: 90≦A≦95, 0.5≦B≦5, 3≦C≦9.5, and A+B+C=100. (However, the unit is at%)2. A magnetic head using the magnetic film according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11242688A JPH01283908A (en) | 1988-05-11 | 1988-05-11 | Co based amorphous magnetic film and magnetic head using the film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11242688A JPH01283908A (en) | 1988-05-11 | 1988-05-11 | Co based amorphous magnetic film and magnetic head using the film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01283908A true JPH01283908A (en) | 1989-11-15 |
Family
ID=14586343
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11242688A Pending JPH01283908A (en) | 1988-05-11 | 1988-05-11 | Co based amorphous magnetic film and magnetic head using the film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01283908A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019192750A (en) * | 2018-04-24 | 2019-10-31 | 株式会社アルバック | Formation method of magnetic film and thermoelectric element |
-
1988
- 1988-05-11 JP JP11242688A patent/JPH01283908A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019192750A (en) * | 2018-04-24 | 2019-10-31 | 株式会社アルバック | Formation method of magnetic film and thermoelectric element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6635367B2 (en) | Magnetic recording medium | |
JPH0722235A (en) | Thin film and magnetic head of multilayer ferromagnetic material using common material | |
JP2003077113A (en) | Perpendicular magnetic recording medium and method of manufacturing the same | |
JP2000113441A (en) | Vertical magnetic recording medium | |
EP0105705B1 (en) | Perpendicular magnetic recording medium | |
JPH07116563B2 (en) | Fe-based soft magnetic alloy | |
US4609593A (en) | Magnetic recording medium | |
JPH01283908A (en) | Co based amorphous magnetic film and magnetic head using the film | |
JPH0329104A (en) | thin film magnetic head | |
JP2579184B2 (en) | Magnetic recording media | |
JP3127075B2 (en) | Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film | |
JPH0517608B2 (en) | ||
JPH0283809A (en) | Manufacturing method of thin film magnetic head | |
JP3232592B2 (en) | Magnetic head | |
JP3204252B2 (en) | Thin film magnetic head | |
JP3030279B2 (en) | Magnetic recording medium and magnetic recording / reproducing device | |
JP3386270B2 (en) | Magnetic head and magnetic recording device | |
JP2979557B2 (en) | Soft magnetic film | |
JP3279591B2 (en) | Ferromagnetic thin film and manufacturing method thereof | |
JPH01150211A (en) | thin film magnetic head | |
JP2842918B2 (en) | Magnetic thin film, thin film magnetic head, and magnetic storage device | |
JPS63809A (en) | Formation of thin film magnetic head core | |
JP3152647B2 (en) | Magnetic head | |
JPH05234751A (en) | Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head | |
JPH02308408A (en) | Thin-film magnetic head |