[go: up one dir, main page]

JPH0128283B2 - - Google Patents

Info

Publication number
JPH0128283B2
JPH0128283B2 JP54142119A JP14211979A JPH0128283B2 JP H0128283 B2 JPH0128283 B2 JP H0128283B2 JP 54142119 A JP54142119 A JP 54142119A JP 14211979 A JP14211979 A JP 14211979A JP H0128283 B2 JPH0128283 B2 JP H0128283B2
Authority
JP
Japan
Prior art keywords
fuel
burner
air
amount
main burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54142119A
Other languages
Japanese (ja)
Other versions
JPS5666607A (en
Inventor
Kunio Okiura
Iwao Akyama
Kijiro Arikawa
Akira Baba
Shigeki Morita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Babcock Hitachi KK
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP14211979A priority Critical patent/JPS5666607A/en
Publication of JPS5666607A publication Critical patent/JPS5666607A/en
Publication of JPH0128283B2 publication Critical patent/JPH0128283B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は低NOx燃焼方法に関する。従来、
公害問題から化石燃料燃焼ボイラにおける生成
NOxの低減法として種々の手段が施こされて来
た。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a low NOx combustion method. Conventionally,
Generation in fossil fuel combustion boilers due to pollution problems
Various methods have been used to reduce NOx.

しかし、それらは弊害としてCO、ダスト量が
増加するとか、装置が大きくなりコスト的に高く
つくなど不利な点が多かつた。したがつて燃焼方
法の改善だけで脱硝装置などを省略することがも
つとも望ましい手段である。
However, these methods have many disadvantages, such as an increase in the amount of CO and dust, and the large size of the equipment, resulting in high costs. Therefore, it would be desirable to omit the denitrification equipment by simply improving the combustion method.

発明者等はさきにバーナを2段に配置し、下段
では空燃比1以下の燃料過剰燃焼域を中段では空
燃比を同様1以下にし気相還元域を、その上方の
上段にには空気供給口を設け完全燃焼域を形成す
る低NOx燃焼方法を提案した。
The inventors first arranged burners in two stages, with the lower stage having an excess fuel combustion region with an air-fuel ratio of 1 or less, the middle stage having a gas phase reduction region with an air-fuel ratio of 1 or less, and the upper stage having air supply. We proposed a low NOx combustion method that creates a complete combustion zone by providing a vent.

この発明はさらにこの場合において下段の主バ
ーナと中段の副バーナとに供給する燃料量の関係
を規定するものである。
In this case, the present invention further defines the relationship between the amounts of fuel to be supplied to the lower stage main burner and the middle stage auxiliary burner.

要するにこの発明は、空燃比1以下で燃焼させ
る主バーナの燃焼ガス中の窒素酸化物を前記主バ
ーナの空燃比より低い空燃比の副バーナ燃焼ガス
で気相還元し、残余未燃分を空気供給口からの空
気で完全燃焼させ、前記副バーナに供給する燃料
量を主バーナに供給する燃料量よりも少なくした
低NOx燃焼方法であることを特徴とする。
In short, this invention reduces nitrogen oxides in the combustion gas of the main burner, which is burned at an air-fuel ratio of 1 or less, with the combustion gas of the auxiliary burner, which has an air-fuel ratio lower than the air-fuel ratio of the main burner, and removes the remaining unburned matter from the air. A low NOx combustion method is characterized in that complete combustion is carried out using air from the supply port, and the amount of fuel supplied to the auxiliary burner is smaller than the amount of fuel supplied to the main burner.

本発明を実施例によつてさらに詳細に説明す
る。
The present invention will be explained in more detail by way of examples.

実施例 第1図に本実施例を示す。Example FIG. 1 shows this embodiment.

実験炉は巾2m、奥行2m、高さ2.5mの箱型炉で
耐火材を内張りし、外側は水冷却方式である。
The experimental reactor is a box-shaped furnace with a width of 2 m, depth of 2 m, and height of 2.5 m, and the inside is lined with refractory material, and the outside is water-cooled.

バーナは4個とし片面2ケずつの対向燃焼方式
とし上段と下段のバーナを主バーナ40、副バー
ナ30として操作することとした。
There were four burners, two on each side, and an opposing combustion system, with the upper and lower burners operating as the main burner 40 and the auxiliary burner 30.

このバーナの上側に完全燃焼のための空気孔2
0を設けてある。
Air hole 2 on the top side of this burner for complete combustion
0 is set.

空気は300℃に予熱し、燃料はプロパンガスを
使用した。
The air was preheated to 300℃, and propane gas was used as fuel.

第1図は上述実験炉の火炉断面と燃焼ゾーンを
示しており、これによつて機能を説明する。
FIG. 1 shows the furnace cross section and combustion zone of the above-mentioned experimental reactor, and its functions will be explained using this figure.

火炉10において主バーナ30、副バーナ40
および完全燃焼用空気孔20によりA、Bおよび
Cのごとき反応ゾーンを形成させる。
In the furnace 10, a main burner 30 and a sub burner 40
and complete combustion air holes 20 to form reaction zones such as A, B and C.

A部の反応域は主バーナ40の空燃比を0.7〜
0.95とし、サーマルNOx(Thermal NOx)の生
成をなるべくおさえるようにする。
In the reaction zone of part A, the air-fuel ratio of the main burner 40 is set to 0.7~
0.95 to suppress the generation of thermal NOx as much as possible.

この領域では、NOx生成は、次式で代表され
ると考えられる。なお簡便のため燃料をメタンと
考える。
In this region, NOx production is considered to be represented by the following equation. For simplicity, the fuel is assumed to be methane.

O2→2・O (1) N2+・O→・N+NO (2) ・N+O2→・O+NO (3) H2O→・H+・OH (4) ・N+・OH→・H+NO (5) CH4→・CH3+・H (6) N2+・CH3→・NH2+HCN (7) ・H+HCN→・CN+H2 (8) ・CN+O2→CO+NO (9) ・NH2+O2→H2O+NO (10) ここで式(1)〜(5)はThermal NOx、(6)〜(10)は
Prompt NOxの生成を示している。
O 2 →2・O (1) N 2 +・O→・N+NO (2) ・N+O 2 →・O+NO (3) H 2 O→・H+・OH (4) ・N+・OH→・H+NO (5) CH 4 →・CH 3 +・H (6) N 2 +・CH 3 →・NH 2 +HCN (7) ・H+HCN→・CN+H 2 (8) ・CN+O 2 →CO+NO (9) ・NH 2 +O 2 →H 2 O+NO (10) Here, equations (1) to (5) are Thermal NOx, and (6) to (10) are
Prompt Indicates NOx generation.

発明者等は、これらの生成反応および分解反応
を種々検討したところ、単にCOガスのごとき還
元性ガスでは共存するO2によつて妨害され、ほ
とんどその効力を発揮できないことが判つた。さ
らに検討の結果、極端に燃料過剰とした燃焼火炎
内に生成するラジカルに代表される中間生成物が
NOxに対して選択的な還元能力を有することを
見出した。
The inventors conducted various studies on these production reactions and decomposition reactions, and found that a simple reducing gas such as CO gas would be hindered by the coexisting O 2 and would hardly exhibit its effectiveness. As a result of further investigation, it was found that intermediate products such as radicals generated in a combustion flame with extremely excessive fuel
It was discovered that it has a selective reducing ability for NOx.

B部は、上述の燃料過濃な還元燃焼ゾーンであ
り、副バーナとして上段バーナを空燃比0.2〜0.7
とし、しかもA部で燃焼する燃料量とB部で燃焼
する燃料量を調節するために次の操作条件とす
る。
Part B is the above-mentioned fuel-rich reductive combustion zone, and the upper stage burner is used as the auxiliary burner at an air-fuel ratio of 0.2 to 0.7.
In addition, the following operating conditions are used to adjust the amount of fuel combusted in section A and the amount of fuel combusted in section B.

(1) 投入燃料量比=副バーナ/主バーナ=1.0〜
0.1 (2) 主バーナ投入燃料量に対して副バーナと主バ
ーナの空気量の和が量論空気量より小さい。全
燃料量についての空燃比を1以下にする。
(1) Input fuel amount ratio = auxiliary burner/main burner = 1.0~
0.1 (2) The sum of the air amounts in the auxiliary burner and the main burner is smaller than the stoichiometric air amount relative to the amount of fuel input to the main burner. The air-fuel ratio for the total amount of fuel is 1 or less.

この様にすることによりB部の生反応は次式に
代表される。
By doing this, the bioreaction of part B is represented by the following formula.

CH4→・CH3+・H (11) N2+・CH3→・NH2++HCN (12) ・H+HCN→・CN+H2 (13) NO+・NH2→N2+H2O (14) NO+・CN→N2+CO (15) NO+CO→N2+O2 (16) 式(11)〜(13)は副バーナにおける部分酸化、熱分
解反応、式(14)〜(16)は気相還元反応である。特
に注目されるのは式(14)、(15)による分解であつ
て式(9)、(10)に示したPrompt NOxの生成反応に
おけるO2とこれらNO分解のNOが・NH2、・CN
などのラジカルと反応するのに競合する点にあ
る。
CH 4 →・CH 3 +・H (11) N 2 +・CH 3 →・NH 2 ++HCN (12) ・H+HCN→・CN+H 2 (13) NO+・NH 2 →N 2 +H 2 O (14) NO+・CN→N 2 +CO (15) NO+CO→N 2 +O 2 (16) Equations (11) to (13) are partial oxidation and thermal decomposition reactions in the secondary burner, and Equations (14) to (16) are gas phase reduction reactions. be. What is particularly noteworthy is the decomposition according to equations (14) and (15), in which the O 2 in the prompt NOx production reaction shown in equations (9) and (10) and the NO of these NO decompositions are ・NH 2 , ・CN
This is due to the fact that it competes with other radicals such as

これらは、結果的にN―N結合はN―O反応に
比して選択的に反応することが本発明の基本をな
すもので、上述の燃焼調節によつて著しくNOx
生成が低減する。
As a result, the basis of the present invention is that the N--N bond reacts selectively compared to the N--O reaction.
generation is reduced.

なお副バーナと主バーナの燃料量比(FQR:
FUEL QUANTITY RATIO)を1にすると燃
焼排ガス中のCOが例えばFQRが0.8のとき80ppm
であつたものが510ppmにも急増することになり、
実用に際しては副バーナの燃料量は主バーナより
も少くすることが必要である。またNO低減率か
らみるとFQRを0.1以下にすると排ガス中のNO
が急増するためFQRは0.1以上にすることが好ま
しい。
Furthermore, the fuel quantity ratio between the sub burner and the main burner (FQR:
If FUEL QUANTITY RATIO) is set to 1, CO in the combustion exhaust gas will be 80ppm when FQR is 0.8.
The amount of hot water suddenly increased to 510ppm,
In practical use, it is necessary that the amount of fuel in the auxiliary burner is smaller than that in the main burner. In addition, looking at the NO reduction rate, when FQR is set to 0.1 or less, NO in the exhaust gas decreases.
, it is preferable to set FQR to 0.1 or more.

C部は、AおよびB部において不完全燃焼した
CO、H2、ハイドロカーボンおよびその他未燃カ
ーボン等を完全燃焼空気孔20として設けた部分
から、火炉出口ガスのO2濃度が0.1%以上になる
ような空気を供給し、燃焼される領域である。
Part C was incompletely burned in parts A and B.
CO, H 2 , hydrocarbons, and other unburnt carbon are completely combusted. Air is supplied from the part provided as the air hole 20 so that the O 2 concentration of the furnace outlet gas is 0.1% or more, and the area where the combustion is performed is performed. be.

本発明は実施例において上段を副、下段を主バ
ーナとして説明したが、これを逆に上段を主、下
段を副とし、機能させた場合も、若干効果は低減
するが低NOx化できる。特に未燃カーボン等が
問題になる場合は、この方法が有効である。
In the embodiments of the present invention, the upper stage is used as a secondary burner and the lower stage is used as a main burner. However, if the upper stage is used as a main burner and the lower stage is used as a secondary burner, NOx can be reduced, although the effect is slightly reduced. This method is particularly effective when unburned carbon is a problem.

他の低NOx化手段として用いられる不活性ガ
ス例えば排ガスを燃焼用空気に混入させる方法
は、相剰効果を持つており有効である。
Other methods of reducing NOx, such as mixing an inert gas, such as exhaust gas, into the combustion air have a mutually beneficial effect and are effective.

完全燃焼用空気ポートは、実施例は一段である
がこれを二段以上に分けることもサーマルNOx
生成防止上から好ましい。なお、この発明にかか
る方法は他の工業用炉、ガスタービン等の燃焼装
置における低NOx手段として適用することがで
きる。
The air port for complete combustion is one stage in the example, but it can also be divided into two or more stages to prevent thermal NOx.
It is preferable from the viewpoint of prevention of formation. Note that the method according to the present invention can be applied as a means for reducing NOx in combustion devices such as other industrial furnaces and gas turbines.

本発明を実施することにより、排煙脱硝設備等
の設置なしにNOxの低減化がなされ、しかも
NH3などの使用の必要もなく燃焼改善のみで
NOx低減の実施ができる。さらに既設ボイラへ
の適用も完全燃焼空気ポートの増設程度ですむた
め手軽に適用できる等の効果を奏するものであ
る。
By implementing the present invention, NOx can be reduced without installing flue gas denitrification equipment, etc.
There is no need to use NH 3 , just combustion improvement
NOx reduction can be implemented. Furthermore, the present invention can be easily applied to existing boilers because it only requires the addition of a complete combustion air port.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる装置の一例を示す縦断
面図である。 10…炉、11…耐火壁、12…水冷壁、13
…冷却水、20…完全燃焼用空気孔、30…副バ
ーナ、40…主バーナ、50…空気配管、51…
ダンパ、60…燃料配管、61…バルブ。
FIG. 1 is a longitudinal sectional view showing an example of the device according to the present invention. 10...Furnace, 11...Fireproof wall, 12...Water cooling wall, 13
...Cooling water, 20...Air hole for complete combustion, 30...Sub-burner, 40...Main burner, 50...Air piping, 51...
Damper, 60...Fuel pipe, 61...Valve.

Claims (1)

【特許請求の範囲】 1 空燃比1以下で燃焼させる主バーナの燃焼ガ
ス中の窒素酸化物を前記主バーナの空燃比より低
い空燃比の副バーナ燃焼ガスで気相還元し、残余
未燃分を空気供給口からの空気で完全燃焼させ、
前記副バーナに供給する燃料量を主バーナに供給
する燃料量よりも少なくしたことを特徴とする低
NOx燃焼方法。 2 前記副バーナに供給する燃料量と主バーナに
供給する燃料量との比を0.1以上にすることを特
徴とする特許請求の範囲第1項に記載の低NOx
燃焼方法。 3 主バーナと副バーナの合計燃料量に対する理
論空気量より少ない空気量を分割して主バーナと
副バーナに供給することを特徴とする特許請求の
範囲第1項又は第2項に記載の低NOx燃焼方法。
[Claims] 1. Nitrogen oxides in the combustion gas of the main burner, which is burned at an air-fuel ratio of 1 or less, are reduced in the gas phase with the combustion gas of the auxiliary burner, which has an air-fuel ratio lower than the air-fuel ratio of the main burner, and the remaining unburned gas is reduced. is completely combusted with air from the air supply port,
A low fuel burner characterized in that the amount of fuel supplied to the auxiliary burner is smaller than the amount of fuel supplied to the main burner.
NOx combustion method. 2. Low NOx according to claim 1, characterized in that the ratio of the amount of fuel supplied to the auxiliary burner and the amount of fuel supplied to the main burner is 0.1 or more.
Combustion method. 3. The fuel cell according to claim 1 or 2, characterized in that an air amount smaller than the theoretical air amount relative to the total fuel amount of the main burner and the auxiliary burner is divided and supplied to the main burner and the auxiliary burner. NOx combustion method.
JP14211979A 1979-11-05 1979-11-05 Combustion method with low nox Granted JPS5666607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14211979A JPS5666607A (en) 1979-11-05 1979-11-05 Combustion method with low nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14211979A JPS5666607A (en) 1979-11-05 1979-11-05 Combustion method with low nox

Publications (2)

Publication Number Publication Date
JPS5666607A JPS5666607A (en) 1981-06-05
JPH0128283B2 true JPH0128283B2 (en) 1989-06-01

Family

ID=15307837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14211979A Granted JPS5666607A (en) 1979-11-05 1979-11-05 Combustion method with low nox

Country Status (1)

Country Link
JP (1) JPS5666607A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197712A (en) * 1983-04-25 1984-11-09 Toyota Motor Corp Nox controller for incinerator
US4973346A (en) * 1989-10-30 1990-11-27 Union Carbide Corporation Glassmelting method with reduced nox generation
CN105318323A (en) * 2015-11-03 2016-02-10 广西桂晟新能源科技有限公司 Method for applying biomass gasification gas in coal combustion process

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225927A (en) * 1985-07-12 1987-02-03 ノルデイシエル・マシ−ネンバウ・ルド・バアデル・ゲ−エムベ−ハ−・ウント・コンパニ・カ−ゲ− Fish fillet treatment apparatus for visual inspection

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225927A (en) * 1985-07-12 1987-02-03 ノルデイシエル・マシ−ネンバウ・ルド・バアデル・ゲ−エムベ−ハ−・ウント・コンパニ・カ−ゲ− Fish fillet treatment apparatus for visual inspection

Also Published As

Publication number Publication date
JPS5666607A (en) 1981-06-05

Similar Documents

Publication Publication Date Title
US4403941A (en) Combustion process for reducing nitrogen oxides
EP1572327B1 (en) System and method for controlling nox emissions from boilers combusting carbonaceous fuels without using external reagent
CA2410086C (en) Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
Li et al. Influence of operating parameters on N2O emission in O2/CO2 combustion with high oxygen concentration in circulating fluidized bed
JP2693101B2 (en) A method for reducing the amount of nitrogen oxides generated during combustion
AU2001265303A1 (en) Low nitrogen oxides emissions using three stages of fuel oxidation and in-situ furnace flue gas recirculation
KR0164586B1 (en) Method and apparatus for reducing emission of n2o when burning nitrogen containing fuels in fluidized bed reactors
JP2020112280A (en) Boiler device and thermal power generation facility capable of co-firing ammonia
CA1169710A (en) Apparatus and method for reduction of no.sub.x emissions from a fluid bed combustion system through staged combustion
JP2006023076A (en) Method and system for operating combustion system
Teng et al. Control of NOx emissions through combustion modifications for reheating furnaces in steel plants
JPH0128283B2 (en)
JPH05340509A (en) N2 and nox reducing method in fluidized bed combustion
JPS6249521B2 (en)
KR101910122B1 (en) Low nitrogen monoxide scrubber and method for reducing nitrogen monoxide using the same
KR840000354B1 (en) Combustion method for low nox
JPS6026923B2 (en) Low NOx combustion equipment
JPH0130044B2 (en)
Teng Combustion modifications of batch annealing furnaces and ammonia combustion ovens for NOx abatement in steel plants
JP2667607B2 (en) Structure of low NOx boiler
UA14845U (en) Method for decontamination of smoke gases from fuel-burning units
JPS6362645B2 (en)
JPS6176814A (en) Low NO↓x combustion method
JPS5813906A (en) Low nitrogen oxide combustion method
JPS60122809A (en) Low nox combustion device burning fine coal powder