JPH01282154A - Production of fiber-reinforced silicon oxynitride sintered compact - Google Patents
Production of fiber-reinforced silicon oxynitride sintered compactInfo
- Publication number
- JPH01282154A JPH01282154A JP63112898A JP11289888A JPH01282154A JP H01282154 A JPH01282154 A JP H01282154A JP 63112898 A JP63112898 A JP 63112898A JP 11289888 A JP11289888 A JP 11289888A JP H01282154 A JPH01282154 A JP H01282154A
- Authority
- JP
- Japan
- Prior art keywords
- whiskers
- silicon oxynitride
- sintering
- sintered body
- sic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 43
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000010703 silicon Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims description 8
- 238000005245 sintering Methods 0.000 claims abstract description 42
- 239000000843 powder Substances 0.000 claims abstract description 20
- 239000012298 atmosphere Substances 0.000 claims abstract description 14
- 238000005121 nitriding Methods 0.000 claims abstract description 12
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 7
- 239000012299 nitrogen atmosphere Substances 0.000 claims abstract description 6
- 229910052706 scandium Inorganic materials 0.000 claims abstract description 6
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 18
- 238000000280 densification Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 230000001590 oxidative effect Effects 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 6
- 229910052727 yttrium Inorganic materials 0.000 abstract description 6
- 229910052681 coesite Inorganic materials 0.000 abstract description 5
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 5
- 239000000377 silicon dioxide Substances 0.000 abstract description 5
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 5
- 229910052682 stishovite Inorganic materials 0.000 abstract description 5
- 229910052905 tridymite Inorganic materials 0.000 abstract description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011226 reinforced ceramic Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000013201 Stress fracture Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920005822 acrylic binder Polymers 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000004513 dentition Anatomy 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
Landscapes
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ボイス力(whiskers)により強化し
た酸窒化珪素(S i21’ho)が主体の繊維強化セ
ラミックスの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing fiber-reinforced ceramics based on silicon oxynitride (S i21'ho) reinforced by whiskers.
[従来の技術]
近年、切削工具、セラミックバルブ等の自動車エンジン
部材、ガスタービンロータ等の熱機関部材に使用する高
強度、高靭性でかつ耐摩耗性、耐欠損性、耐酸化性、耐
熱性に優れたセラミック材料が求められている。[Prior art] In recent years, high strength, high toughness, wear resistance, chipping resistance, oxidation resistance, and heat resistance are being used in cutting tools, automobile engine parts such as ceramic valves, and heat engine parts such as gas turbine rotors. There is a need for excellent ceramic materials.
耐熱性、耐酸化性に優れたセラミック材料の一つとして
、酸窒化珪素(S 12N20)が知られている。Silicon oxynitride (S 12N20) is known as one of the ceramic materials with excellent heat resistance and oxidation resistance.
酸窒化珪素は、昭和62年窯業協会年会予稿集3A25
や、第25回窯業基礎討論会講演要旨集lA18にみら
れるように、5j3N4とS i 02とに金属酸化物
の粉末を焼結助剤として添加し、焼結して製造する方法
や、特開昭49−115999や窯業協会誌75(4)
、111〜119(1967)にみられるように珪素と
二酸化珪素との混合物を窒化処理して、酸窒化珪素の針
状結晶や粉末を得る方法が知られている。Silicon oxynitride is 1988 Ceramics Association Annual Meeting Proceedings 3A25
In addition, as seen in the 25th Ceramics Basics Conference Lecture Abstracts IA18, there is a method of manufacturing by adding metal oxide powder as a sintering aid to 5j3N4 and Si02 and sintering, and 49-115999 and Ceramics Association Journal 75 (4)
, 111-119 (1967), a method is known in which a mixture of silicon and silicon dioxide is nitrided to obtain acicular crystals or powder of silicon oxynitride.
また、特開昭54−123110にみられるようにSi
3N4と5i(hとにSiC粉末を加えて焼結し、高温
強度の高い酸窒化珪素焼結体を得ることが知られている
。In addition, Si
It is known that SiC powder is added to 3N4 and 5i(h) and sintered to obtain a silicon oxynitride sintered body with high high-temperature strength.
[発明が解決しようとする課題]
しかしながら、従来の酸窒化珪素焼結体は、耐熱性、耐
酸化性に優れ、比較的高強度であるが、十分な靭性を有
していない。[Problems to be Solved by the Invention] However, conventional silicon oxynitride sintered bodies have excellent heat resistance and oxidation resistance, and have relatively high strength, but do not have sufficient toughness.
また、S i 3N4+ S i 02−+2 S i
2N20C7)反応は緩慢なため、未反応のα−9i
3N4、SiO2が焼結体中に残留し易く、特にS i
02の残留は、焼結体の熱間特性に悪影響を与え易い
。Also, S i 3N4+ S i 02-+2 S i
2N20C7) Since the reaction is slow, unreacted α-9i
3N4 and SiO2 tend to remain in the sintered body, especially Si
Remaining 02 tends to adversely affect the hot properties of the sintered body.
一方、反応を促進するために反応焼結時間を長くすると
、酸窒化珪素の分解揮発により生じたボアや、粒成長し
すぎた酸窒化珪素粒により強度の低下を招き易い。On the other hand, if the reaction sintering time is increased in order to promote the reaction, the strength is likely to decrease due to bores caused by decomposition and volatilization of silicon oxynitride and silicon oxynitride grains that have grown too much.
[課題を解決するための手段]
本発明は上記課題を解決するために次の手段を採用した
。[Means for Solving the Problems] The present invention employs the following means to solve the above problems.
即ち、本願の要旨は、
SiCホイスカを含むSiC及び/又はβ−Si 31
’L4ホイスカを合計で5〜40重量%と、kQ、Sc
、Y及び希土類元素のなかから選ばれた1種または2種
以上の酸化物を合計で0.5〜30重量%と、
Slおよび5iOpからなる珪素成分残部とを主成分と
し、
該主成分中のSiCホイスカ及び/又はβ−Si 3
N aホイスカが合計で5重量%以上である原料粉末に
よる成形体を用いたm維強化酸窒化珪素焼結体の製造方
法であって、
前記成形体を1300〜1500℃の窒素雰囲気中で窒
化する窒化工程と、
前記窒化された成形体を1550〜1900℃、1〜1
0気圧の窒素を含む非酸化性雰囲気中で予備焼結体とす
る予備焼結工程と、
該予備焼結体を1600〜2000℃、30〜2000
気圧の窒素を含む非酸化性雰囲気中で焼結する徹密化工
程とを
備えたことを特徴とする繊維強化酸窒化珪素焼結体の製
造方法にある。That is, the gist of the present application is to provide SiC and/or β-Si 31 containing SiC whiskers.
'L4 whiskers totaling 5 to 40% by weight, kQ, Sc
, Y, and rare earth elements in a total of 0.5 to 30% by weight, and the remainder of the silicon component consisting of Sl and 5iOp; SiC whiskers and/or β-Si 3
A method for producing an m-fiber-reinforced silicon oxynitride sintered body using a compact made of raw material powder having a total content of Na whiskers of 5% by weight or more, the method comprising nitriding the compact in a nitrogen atmosphere at 1300 to 1500°C. A nitriding step of
a pre-sintering step of forming a pre-sintered body in a non-oxidizing atmosphere containing nitrogen at 0 atm;
The present invention provides a method for producing a fiber-reinforced silicon oxynitride sintered body, comprising a step of sintering in a non-oxidizing atmosphere containing nitrogen at atmospheric pressure.
ここで、SiCホイスカ、β−5i3N4ホイスカとし
ては、通常市販されるものを使用することができ、その
代表的形状は、平均直径0.2〜5μm、平均長さ2〜
200amである。:特に、AQ、Ca、Mg、Ni、
Fe、、Co、Mn、Cr、Y等のカチオン成分が少な
く、くびれ、枝分れ、面欠陥等の少ないひげ状結晶であ
ると好ましい。Here, as the SiC whiskers and β-5i3N4 whiskers, those that are normally commercially available can be used, and their typical shape is an average diameter of 0.2 to 5 μm and an average length of 2 to 5 μm.
It is 200am. : Especially AQ, Ca, Mg, Ni,
It is preferable that the crystal has a small amount of cationic components such as Fe, Co, Mn, Cr, Y, etc., and has a small amount of constrictions, branching, and surface defects.
また、このホイスカの表面にBN、カーボン等のコーテ
ィングが施してあってもよい。Furthermore, the surface of the whisker may be coated with BN, carbon, or the like.
なお、Si3N4ボイスカには本発明で使用するβ−3
i3N4ホイスカ以外に、α−9L3N4ホイスカが存
在する。しかし、α−9i3Ntホイスカを使用した場
合には、本繊維強化セラミックスの焼結時に溶融析出過
程を経て、β−513NAに転移する。そのため、焼結
後にボイス力が存在しなくなる。したがって、本発明で
は、α−913Naホイスカを使用することはできない
。Note that the Si3N4 voicer contains β-3 used in the present invention.
In addition to i3N4 whiskers, α-9L3N4 whiskers exist. However, when α-9i3Nt whiskers are used, they undergo a melting and precipitation process during sintering of the present fiber-reinforced ceramic and transform into β-513NA. Therefore, no voice force exists after sintering. Therefore, α-913Na whiskers cannot be used in the present invention.
本発明では、このボイス力が、原料粉末の5重量%より
少ないと、得られた繊維強化酸窒化珪素焼結体の靭性が
十分ではない。In the present invention, if this voice force is less than 5% by weight of the raw material powder, the resulting fiber-reinforced silicon oxynitride sintered body will not have sufficient toughness.
また、SiCホイスカを含むSiC及び/又はβ−9i
iN4ホイスカが合計で5重量%より少ないと、焼結時
に酸窒化珪素の分解を抑えることができず、粒成長抑制
による焼結体の高強度化に対する効果もほとんど無い。Additionally, SiC containing SiC whiskers and/or β-9i
If the total amount of iN4 whiskers is less than 5% by weight, it is impossible to suppress the decomposition of silicon oxynitride during sintering, and there is almost no effect on increasing the strength of the sintered body by suppressing grain growth.
一方、これらが40重量%を超えると焼結性が悪くなり
、所望の繊維強化酸窒化珪素焼結体を得ることができな
い。On the other hand, if the content exceeds 40% by weight, sinterability deteriorates, making it impossible to obtain the desired fiber-reinforced silicon oxynitride sintered body.
特に、これらの成分が10〜30重量%であると、靭性
が高く、また焼結性が良好であり好ましい。In particular, it is preferable that these components be contained in an amount of 10 to 30% by weight because the toughness is high and the sinterability is good.
また、AQ、Sc、Y及び希土類元素のなかから選ばれ
た1種または2種以上の酸化物が合計で0.5重量%よ
り少ないと、焼結性が悪くなり所望の繊維強化酸窒化珪
素焼結体を得ることができない。一方、この酸化物が3
0重量%を超えると、繊維強化酸窒化珪素焼結体中のガ
ラス成分が多くなり過ぎて、強度、耐熱性、耐酸化性の
低下がみられる。Furthermore, if the total amount of one or more oxides selected from AQ, Sc, Y, and rare earth elements is less than 0.5% by weight, sinterability will deteriorate and the desired fiber-reinforced silicon oxynitride It is not possible to obtain a sintered body. On the other hand, this oxide
If it exceeds 0% by weight, the glass component in the fiber-reinforced silicon oxynitride sintered body becomes too large, resulting in a decrease in strength, heat resistance, and oxidation resistance.
Si及びS i 02は、できるだけ高純度で微細な粉
末を用い、また、Siと5iChとの混合比はモル比で
Si: 5iCh =3: 1程度とすることが、徹密
で高特性な酸窒化珪素焼結体を得る上で望ましい。For Si and S i 02, it is recommended to use as high purity and fine powder as possible, and to set the mixing ratio of Si and 5iCh to a molar ratio of about 3: 1 to obtain a thorough and high-performance acid. This is desirable for obtaining a silicon nitride sintered body.
前記kQ−,Sc、Y及び希土類元素の酸化物や、S
i 02は初めから粉末形態で添加してもよいが、それ
ぞれ金属アルコキシド溶液及びコロイダルシリカ(シリ
カゾル)の形態で混合し、加水分解等の後、仮焼し、こ
れを本発明の原料粉末としてもよい。The kQ-, Sc, Y and rare earth element oxides, S
i02 may be added in powder form from the beginning, but it can also be mixed in the form of a metal alkoxide solution and colloidal silica (silica sol), respectively, and then calcined after hydrolysis, etc., and then used as the raw material powder of the present invention. good.
上記のようにして得られた原料粉末は、必要に応じてバ
インダーを添加し、プレス成形等の通常成形に使用され
る方法で成形体とされる。The raw material powder obtained as described above is formed into a molded body by a method commonly used for molding such as press molding, with the addition of a binder if necessary.
窒化工程は、前記成形体中のSi、SiO2及び窒素雰
囲気中の窒素ガスを反応させて、酸窒化珪素とする工程
である。The nitriding step is a step in which Si, SiO2 in the molded body and nitrogen gas in the nitrogen atmosphere are reacted to form silicon oxynitride.
この窒化工程の処理温度が、1300℃よりも低いと窒
化が十分に進まず、十分な性能の繊維強化酸窒化珪素焼
結体を得ることはできない。If the treatment temperature in this nitriding step is lower than 1300° C., nitriding will not proceed sufficiently, making it impossible to obtain a fiber-reinforced silicon oxynitride sintered body with sufficient performance.
一方、窒化工程の処理温度が1500℃を越えると原料
粉末中のSiが融けてしまい、成形体の形状を保持する
ことができなくなる。On the other hand, if the treatment temperature in the nitriding step exceeds 1500° C., Si in the raw material powder will melt, making it impossible to maintain the shape of the molded product.
また、窒化工程における窒素雰囲気の圧力については特
に限定はないが、1気圧程度が好ましい。Further, the pressure of the nitrogen atmosphere in the nitriding step is not particularly limited, but is preferably about 1 atmosphere.
予備焼結工程は、窒化工程で生成した酸窒化珪素を含む
焼結体を理論密度比で約70%以上とし、続く緻密化工
程での厳密化を可能とする。The preliminary sintering process makes the sintered body containing silicon oxynitride produced in the nitriding process about 70% or more in terms of theoretical density ratio, and allows for stricter densification in the subsequent densification process.
なお、理論密度とは、焼結体の各成分はそのモル比に相
当する体積を占めると仮定した時の各成分の体積の割合
と各成分の真密度との積の和である。そして、理論密度
比とは、この様に算出された理論密度に対する焼結体の
実際の密度の比を百分率で表したものである。Note that the theoretical density is the sum of the products of the volume ratio of each component and the true density of each component, assuming that each component of the sintered body occupies a volume corresponding to its molar ratio. The theoretical density ratio is the ratio of the actual density of the sintered body to the theoretical density calculated in this way, expressed as a percentage.
この予備焼結工程では、1550〜1900℃の範囲で
焼結するが、この温度範囲より、焼結温度が低いと必要
とされる程度まで厳密化せず、また逆にこの温度範囲よ
り高いと前記成形体中の酸窒化珪素が分解してしまう。In this pre-sintering step, sintering is carried out in the range of 1550 to 1900 °C, but if the sintering temperature is lower than this temperature range, the sintering temperature will not be as strict as required, and if it is higher than this temperature range, conversely The silicon oxynitride in the molded body will decompose.
また、予備焼結工程における非酸化性雰囲気は酸窒化珪
素の分解を防ぐために窒素を含むことが必要である。Further, the non-oxidizing atmosphere in the preliminary sintering step needs to contain nitrogen to prevent decomposition of silicon oxynitride.
そして、非酸化性雰囲気の圧力が1〜10気圧の範囲で
焼結することにより、所望の理論密度とすることができ
ると共に、酸窒化珪素の分解を防ぐことができる。By sintering in a non-oxidizing atmosphere with a pressure in the range of 1 to 10 atmospheres, it is possible to obtain a desired theoretical density and to prevent decomposition of silicon oxynitride.
緻密化工程は、前記予備焼結工程で得られた予via焼
結体を、さらに1600〜2000℃、30〜2000
気圧の窒素を含む非酸化性雰囲気中で焼結することによ
り、理論密度比が97%以上の繊維強化酸窒化珪素焼結
体を得る。In the densification step, the pre-via sintered body obtained in the pre-sintering step is further heated at 1600-2000°C and 30-2000°C.
By sintering in a non-oxidizing atmosphere containing nitrogen at atmospheric pressure, a fiber-reinforced silicon oxynitride sintered body having a theoretical density ratio of 97% or more is obtained.
この緻密化工程の温度、圧力の範囲外であると、所望の
特性の繊維強化酸窒化珪素焼結体を得ることはできない
。If the temperature and pressure of this densification step are outside the range, a fiber-reinforced silicon oxynitride sintered body with desired characteristics cannot be obtained.
なお、予備焼結工程、緻密化工程で使用される非酸化性
雰囲気としては、窒素のみあるいは窒素とアルゴンの混
合ガスを用いればよい。Note that as the non-oxidizing atmosphere used in the preliminary sintering step and the densification step, only nitrogen gas or a mixed gas of nitrogen and argon may be used.
また、窒化工程、予備焼結工程、緻密化工程は各々独立
して行ってもよいが、温度、圧力等の焼結条件を変更し
ながら、冷却することなく連続して行ってもよい。Further, the nitriding step, the preliminary sintering step, and the densification step may be performed independently, or may be performed continuously without cooling while changing the sintering conditions such as temperature and pressure.
さらに、酸化物としてAQ203を選択した場合、焼結
体のS 12N20中にAQ2o3の一部または全部が
固溶してS 12−xk Q *0l−xN2−xで示
される0′−サイアロンとなっていても差し支えない。Furthermore, when AQ203 is selected as the oxide, part or all of AQ2o3 becomes a solid solution in S12N20 of the sintered body, forming 0'-sialon represented by S12-xk Q*0l-xN2-x. It's okay to stay.
また、焼結体特性に影響を与えない程度のY2S 12
07、Ce5i207、Ce4.ay (S i O4
) 30等を含んでもよい。In addition, Y2S 12 to the extent that it does not affect the properties of the sintered body
07, Ce5i207, Ce4. ay (S i O4
) 30 etc. may be included.
[作用・効果]
本発明の繊維強化酸窒化珪素焼結体の製造方法では、
S ich +35 j+2N2→2S 12N20
で示される化学反応により、成形体中のSi、5i(h
より酸窒化珪素を生成する。[Operations/Effects] In the method for producing a fiber-reinforced silicon oxynitride sintered body of the present invention, S ich +35 j+2N2→2S 12N20
Due to the chemical reaction shown, Si, 5i (h
This produces more silicon oxynitride.
そのため、成形体中で酸窒化珪素と、AQ、Sc、 Y
及び希土類元素のなかから選ばれた1種または2種以上
の酸化物とが十分接触し、酸窒化珪素の焼結を促進され
、十分緻密な繊維強化酸窒化珪素焼結体を得ることがで
きる。Therefore, silicon oxynitride, AQ, Sc, Y
and one or more oxides selected from rare earth elements are in sufficient contact with each other to promote sintering of silicon oxynitride, and a sufficiently dense fiber-reinforced silicon oxynitride sintered body can be obtained. .
また、酸窒化珪素は、1700℃を越えると3512N
20→S i:qN4+3s io+N2の反応によっ
て急速に分解する。In addition, silicon oxynitride is 3512N at temperatures exceeding 1700℃.
20→S i: Rapidly decomposes by the reaction of qN4+3s io+N2.
しかし、本発明では、成形体中のボイス力および加圧さ
れた窒素を含む非酸化性雰囲気によフて512N20の
分解が抑制される。However, in the present invention, the decomposition of 512N20 is suppressed by the voice force in the compact and the pressurized non-oxidizing atmosphere containing nitrogen.
さらに、ボイス力成分が焼結時における酸窒化珪素粒の
粒成長を抑制し、高強度化に寄与している。Furthermore, the voice force component suppresses grain growth of silicon oxynitride grains during sintering, contributing to higher strength.
そして、SiCホイスカあるいはβ−913Nsホイス
カのクラックディフレクション、プルアウト効果(引き
抜き)効果により、本発明により製造された繊維強化酸
窒化珪素焼結体は高い靭性を有する。The fiber-reinforced silicon oxynitride sintered body produced according to the present invention has high toughness due to the crack deflection and pullout effect of the SiC whiskers or β-913Ns whiskers.
なお、プルアウト効果とは、マトリックスに発生したク
ラック先端の応力場において、マトリックスからホイス
カが引き抜かれることにより、クラック先端の応力集中
を著しく低下させ、靭性な向上させる効果である。Note that the pull-out effect is an effect that, in the stress field at the tip of a crack generated in the matrix, whiskers are pulled out of the matrix, thereby significantly reducing stress concentration at the tip of the crack and improving toughness.
そして、上記構成によって、本発明は、高強度、高靭性
でかつ耐摩耗性、耐欠損性、耐酸化性、耐熱性、耐食性
及び電気絶縁性に優れたセラミック材料である繊維強化
酸窒化珪素焼結体を製造することを可能とした。With the above structure, the present invention is made of fiber-reinforced silicon oxynitride sintered material, which is a ceramic material with high strength, high toughness, and excellent wear resistance, chipping resistance, oxidation resistance, heat resistance, corrosion resistance, and electrical insulation. This made it possible to produce solids.
[実施例コ 本発明の実施例について説明する。[Example code] Examples of the present invention will be described.
以下に示す各原料を第1衷に示す割合で配合し、ボール
ミルを用いエタノール中で16時間均一に分散混合した
後、5重量%のアクリル系バインダを添加し、乾燥し、
造粒して素地粉末を得た。The raw materials listed below were blended in the proportions shown in the first batch, uniformly dispersed and mixed in ethanol for 16 hours using a ball mill, and then 5% by weight of an acrylic binder was added and dried.
Granulation was performed to obtain a base powder.
5iyJ末:
平均粒径 2um
純度 99.9%
S j 02粉末:
平均粒径 15%m
純度 99.9%
見掛比重 約50g/Q
AQ、Sc、Y及び希土類元素の酸化物:平均粒径 2
LLm以下
SiC扮末:
平均粒径 1.6L1.m ・
純度 96%
SiCホイスカ:
平均直径 0.6 am
長さ 1(]〜80LLm
β−5i3N4ホイスカ:
平均直径 1um、
長さ 5〜50μm。5iyJ powder: Average particle size 2um Purity 99.9% S j 02 powder: Average particle size 15%m Purity 99.9% Apparent specific gravity Approx. 50g/Q Oxides of AQ, Sc, Y and rare earth elements: Average particle size 2
SiC powder below LLm: Average particle size 1.6L1. m ・Purity 96% SiC whisker: Average diameter 0.6 am Length 1(] ~ 80 LLm β-5i3N4 Whisker: Average diameter 1 um, length 5 ~ 50 μm.
上記素地粉末を50X50X7mmの寸法に成形圧1゜
5t/ctn’で一軸ブレス成形して、800℃にて1
時間窒素雰囲気中で脱脂した。The above base powder was uniaxial press molded into a size of 50 x 50 x 7 mm at a molding pressure of 1°5t/ctn', and then
Degreased in a nitrogen atmosphere for an hour.
ついで、窒化処理として、1気圧の窒素雰囲気中で14
20℃で20時間保持した。Then, as a nitriding treatment, 14
It was held at 20°C for 20 hours.
続いて、予備焼結工程として、第1表に示す雰囲気、圧
力、焼結温度で4時間焼結を行い、予備焼結体を得た。Subsequently, as a preliminary sintering step, sintering was performed for 4 hours at the atmosphere, pressure, and sintering temperature shown in Table 1 to obtain a preliminary sintered body.
さらに、鷹密化工程として、この予備焼結体を第1表に
示す雰囲気、圧力、焼結温度で2時間焼結し、最終的な
焼結体を得た。Further, as a densification step, this preliminary sintered body was sintered for 2 hours at the atmosphere, pressure, and sintering temperature shown in Table 1 to obtain a final sintered body.
得られた焼結体は4 mm X 3 mm X 40m
mの寸法に研廖加工して試料とした。The size of the obtained sintered body is 4 mm x 3 mm x 40 m
A sample was prepared by grinding to a size of m.
この試料について、室温における抗折強度をJIS−R
1601により、高温(1000℃)における抗折強度
をJIS−R1604により、破壊靭性を荷重10kg
テインデンティションマイクロフラクチャー法により破
壊靭性を測定し、結果を第1表に記した。For this sample, the bending strength at room temperature was determined by JIS-R
According to JIS-R1604, the fracture toughness at a load of 10 kg is determined according to JIS-R1604.
Fracture toughness was measured by the dentition microfracture method, and the results are shown in Table 1.
なお、本実施例では、原料中にボイス力を含むために、
−軸ブしス成形による成形体中でボイス力が配向する。In addition, in this example, in order to include voice force in the raw material,
-Voice force is oriented in the molded product by shaft bushing molding.
その影響を調べるために、プレス成形の加圧方向の破壊
靭性(第1表中では加圧と記す)と、それに対して垂直
な方向の破壊靭性(第1表中では垂直と記す)を各々調
べた。In order to investigate the influence, the fracture toughness in the pressurizing direction of press forming (denoted as pressurization in Table 1) and the fracture toughness in the direction perpendicular to it (denoted as vertical in Table 1) were determined. Examined.
試料中の結晶相はX線回折を用いて同定し、その結果を
第1表に併せて記した。The crystal phase in the sample was identified using X-ray diffraction, and the results are also listed in Table 1.
また、各試料中のボイス力についてはXvA回折及び光
学顕微鏡、走査型電子顕微鏡による観察の結果、殆どな
く、他の成分と反応することなく、−焼結体中に残留、
分散していることが判明した。Regarding the voice force in each sample, as a result of XvA diffraction and observation using an optical microscope and a scanning electron microscope, it was found that there was almost no voice force, and it did not react with other components - remained in the sintered body.
It turned out to be dispersed.
さらに、本実施例である試料NnA−1〜A−10の理
論密度比は、いずれも98.5%以上であった。Furthermore, the theoretical density ratios of samples NnA-1 to A-10 of this example were all 98.5% or more.
なお、表中で「緻密化せず」と記載されている試料の理
論密度比は、いずれも90%以下である。Note that the theoretical density ratios of the samples described as "not densified" in the table are all 90% or less.
第1表から、以下のことが分かった。From Table 1, the following was found.
■ 試料NnB−1のようtこ、焼結助剤及びSiCホ
イスカを含むSiC及び/又はβ−5i3N4ボイスカ
が、含まれないと、成形体は予備焼結工程で分解揮発し
てしまい、良好な焼結体を得ることはできない。■ If SiC and/or β-5i3N4 voices containing sintering aids and SiC whiskers are not included, as in sample NnB-1, the compact will decompose and volatilize during the preliminary sintering process, resulting in poor quality. It is not possible to obtain a sintered body.
■ 試料NnB−2〜B−5のよう乞こ、SiCホイス
カを含むSiC及び/又はβ−Si3N4ホイスカが、
本願の範囲外であると、予備焼結工程で分解揮発したり
、あるいは緻密化工程において十分緻密化せず、良好な
焼結体を得ることはできない。■As in samples NnB-2 to B-5, SiC and/or β-Si3N4 whiskers, including SiC whiskers,
If it is outside the scope of the present application, it may decompose and volatilize in the preliminary sintering step, or it will not be sufficiently densified in the densification step, making it impossible to obtain a good sintered body.
■ 試料NnB−6〜B−8のように、焼結助剤成分が
本願の範囲外であると、緻密化しなかったり、あるいは
高温における抗折強度が大きく低下し、良好な焼結体を
得ることはできない。■ As in samples NnB-6 to B-8, if the sintering aid component is outside the range specified in this application, densification may not be achieved or the bending strength at high temperatures will be significantly reduced, making it impossible to obtain a good sintered body. It is not possible.
■ 試料NnB−10〜B−11のように、ボイス力の
量が本願の範囲外であると、十分な靭性を発揮せず、良
好な焼結体を得るととはできない。(2) If the amount of voice force is outside the range specified in the present application, as in samples NnB-10 to B-11, sufficient toughness will not be exhibited and a good sintered body cannot be obtained.
■ 試料NαC−1〜C−3のように、緻密化工程にお
ける圧力、焼結温度が本願の範囲外であると、焼結中に
分解揮発したり、あるいは緻密化せず、良好な焼結体を
得ることはできない。■ As in samples NαC-1 to C-3, if the pressure and sintering temperature in the densification process are outside the range specified in this application, it may decompose and volatilize during sintering, or densification may not occur, resulting in poor sintering. You can't get a body.
■ 試料NnD−1〜D−3のように、予備焼結工程に
おける圧力、焼結温度が本願の範囲外であると、焼結中
に分解揮発したり、あるいは緻密化せず、良好な焼結体
を得ることはできない。■ As in Samples NnD-1 to D-3, if the pressure and sintering temperature in the preliminary sintering step are outside the range specified in this application, it may decompose and volatilize during sintering, or it may not be densified, resulting in poor sintering. You can't get a body.
■ 試料NnA−1〜A−10のように、配合組成、各
焼結条件を本願の範囲内にすることによって、良好な焼
結体を得ることができることが確認された。(2) As in samples NnA-1 to A-10, it was confirmed that a good sintered body could be obtained by keeping the compounding composition and each sintering condition within the range of the present application.
代理人 弁理士 定立 勉(仙2名)Agent: Patent attorney Tsutomu Sadatsu (2 Sen)
Claims (1)
_4ホイスカを合計で5〜40重量%と、Al,Sc,
Y及び希土類元素のなかから選ばれた1種または2種以
上の酸化物を合計で0.5〜30重量%と、 SiおよびSiO_2からなる珪素成分残部とを主成分
とし、 該主成分中のSiCホイスカ及び/又はβ−Si_3N
_4ホイスカが合計で5重量%以上である原料粉末によ
る成形体を用いた繊維強化酸窒化珪素焼結体の製造方法
であって、 前記成形体を1300〜1500℃の窒素雰囲気中で窒
化する窒化工程と、 前記窒化された成形体を1550〜1900℃、1〜1
0気圧の窒素を含む非酸化性雰囲気中で予備焼結体とす
る予備焼結工程と、 該予備焼結体を1600〜2000℃、30〜2000
気圧の窒素を含む非酸化性雰囲気中で焼結する緻密化工
程とを 備えたことを特徴とする繊維強化酸窒化珪素焼結体の製
造方法。[Claims] SiC and/or β-Si_3N containing SiC whiskers
_4 Whiskers totaling 5 to 40% by weight, Al, Sc,
The main components are a total of 0.5 to 30% by weight of one or more oxides selected from Y and rare earth elements, and the remainder of the silicon component consists of Si and SiO_2, SiC whiskers and/or β-Si_3N
_4 A method for producing a fiber-reinforced silicon oxynitride sintered body using a compact made of raw material powder containing 5% by weight or more of whiskers in total, the method comprising nitriding the compact in a nitrogen atmosphere at 1300 to 1500°C. Step: The nitrided molded body is heated at 1550 to 1900°C for 1 to 1
a pre-sintering step of forming a pre-sintered body in a non-oxidizing atmosphere containing nitrogen at 0 atm;
1. A method for producing a fiber-reinforced silicon oxynitride sintered body, comprising a densification step of sintering in a non-oxidizing atmosphere containing nitrogen at atmospheric pressure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63112898A JPH07115928B2 (en) | 1988-05-10 | 1988-05-10 | Method for producing fiber-reinforced silicon oxynitride sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63112898A JPH07115928B2 (en) | 1988-05-10 | 1988-05-10 | Method for producing fiber-reinforced silicon oxynitride sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01282154A true JPH01282154A (en) | 1989-11-14 |
JPH07115928B2 JPH07115928B2 (en) | 1995-12-13 |
Family
ID=14598262
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63112898A Expired - Fee Related JPH07115928B2 (en) | 1988-05-10 | 1988-05-10 | Method for producing fiber-reinforced silicon oxynitride sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07115928B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105297129A (en) * | 2015-10-23 | 2016-02-03 | 南昌大学 | Method for synthesizing silicon oxynitride whiskers |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3023961A1 (en) * | 2014-07-17 | 2016-01-22 | Herakles | PROCESS FOR MANUFACTURING A COMPOSITE MATERIAL PART BY HIGH-TEMPERATURE SELF-CARRIED REACTION SYNTHESIS |
-
1988
- 1988-05-10 JP JP63112898A patent/JPH07115928B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105297129A (en) * | 2015-10-23 | 2016-02-03 | 南昌大学 | Method for synthesizing silicon oxynitride whiskers |
Also Published As
Publication number | Publication date |
---|---|
JPH07115928B2 (en) | 1995-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2507479B2 (en) | SiC-Al Lower 2 O Lower 3 Composite Sintered Body and Manufacturing Method Thereof | |
KR900005511B1 (en) | Silicon - carbide sintering body and thereof manufacture | |
US4956317A (en) | Whisker-reinforced ceramics | |
JPH02160669A (en) | Silicon nitride-silicon carbide multiple sintered compact and production thereof | |
JP3149827B2 (en) | Silicon nitride based sintered body and method for producing the same | |
JPH01282154A (en) | Production of fiber-reinforced silicon oxynitride sintered compact | |
RU2239613C1 (en) | Method of manufacturing silicon nitride-based products | |
JP2649220B2 (en) | Silicon nitride / silicon carbide composite powder, composite compact, method for producing them, and method for producing silicon nitride / silicon carbide composite sintered body | |
JPH02302368A (en) | Silicon carbide sintered compact having high toughness and its production thereof | |
JP2519076B2 (en) | Method for manufacturing silicon carbide whisker-reinforced ceramics | |
JP2524635B2 (en) | Fiber reinforced ceramics | |
JP2826080B2 (en) | Silicon nitride / silicon carbide composite sintered body and method for producing composite powder | |
JP3124867B2 (en) | Silicon nitride sintered body and method for producing the same | |
JPH06116045A (en) | Silicon nitride sintered compact and its production | |
JPH01145380A (en) | Production of silicon nitride sintered form | |
JPH01290566A (en) | Production of fiber-reinforced ceramic | |
JPS63256572A (en) | Sic base ceramics and manufacture | |
JPH06128052A (en) | Sintered compact of silicon nitride and its production | |
JP3124862B2 (en) | Method for producing silicon nitride based sintered body | |
JPH06116038A (en) | Production of silicon nitride-silicon carbide composite sintered compact | |
JP2777051B2 (en) | Method for producing silicon nitride based sintered body | |
JPH08208337A (en) | Fiber reinforced ceramic material | |
JPH05105520A (en) | Production of silicon nitride-based sintered compact | |
JPH03141163A (en) | Method for manufacturing silicon nitride sintered body | |
JPH0741367A (en) | Silicon nitride sintered compact and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |