JPH01282149A - Composition for mullite sintered body and production of mullite sintered body utilizing the same - Google Patents
Composition for mullite sintered body and production of mullite sintered body utilizing the sameInfo
- Publication number
- JPH01282149A JPH01282149A JP63112970A JP11297088A JPH01282149A JP H01282149 A JPH01282149 A JP H01282149A JP 63112970 A JP63112970 A JP 63112970A JP 11297088 A JP11297088 A JP 11297088A JP H01282149 A JPH01282149 A JP H01282149A
- Authority
- JP
- Japan
- Prior art keywords
- mullite
- cerium oxide
- sintered body
- powder
- raw material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 title claims abstract description 69
- 229910052863 mullite Inorganic materials 0.000 title claims abstract description 69
- 239000000203 mixture Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 44
- 229910000420 cerium oxide Inorganic materials 0.000 claims abstract description 26
- BMMGVYCKOGBVEV-UHFFFAOYSA-N oxo(oxoceriooxy)cerium Chemical compound [Ce]=O.O=[Ce]=O BMMGVYCKOGBVEV-UHFFFAOYSA-N 0.000 claims abstract description 26
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000002994 raw material Substances 0.000 claims abstract description 18
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 10
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 7
- 238000010304 firing Methods 0.000 claims description 11
- 150000002894 organic compounds Chemical class 0.000 claims description 6
- 238000010298 pulverizing process Methods 0.000 claims description 4
- 239000013078 crystal Substances 0.000 abstract description 5
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000005245 sintering Methods 0.000 abstract description 3
- 238000001354 calcination Methods 0.000 abstract 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 11
- 238000005452 bending Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 3
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005995 Aluminium silicate Substances 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 241000581652 Hagenia abyssinica Species 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000339 Marlex Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- FCSYOKKSVLQUBC-UHFFFAOYSA-N cerium(3+);methanolate Chemical group [Ce+3].[O-]C.[O-]C.[O-]C FCSYOKKSVLQUBC-UHFFFAOYSA-N 0.000 description 1
- VGBWDOLBWVJTRZ-UHFFFAOYSA-K cerium(3+);triacetate Chemical compound [Ce+3].CC([O-])=O.CC([O-])=O.CC([O-])=O VGBWDOLBWVJTRZ-UHFFFAOYSA-K 0.000 description 1
- GHLITDDQOMIBFS-UHFFFAOYSA-H cerium(3+);tricarbonate Chemical compound [Ce+3].[Ce+3].[O-]C([O-])=O.[O-]C([O-])=O.[O-]C([O-])=O GHLITDDQOMIBFS-UHFFFAOYSA-H 0.000 description 1
- OZECDDHOAMNMQI-UHFFFAOYSA-H cerium(3+);trisulfate Chemical compound [Ce+3].[Ce+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O OZECDDHOAMNMQI-UHFFFAOYSA-H 0.000 description 1
- UNJPQTDTZAKTFK-UHFFFAOYSA-K cerium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ce+3] UNJPQTDTZAKTFK-UHFFFAOYSA-K 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000003746 solid phase reaction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は焼結性に優れ1機械的強度、4!Pに高温にお
いても強度の良好なムライト焼結体用組成物およびそれ
を用いたムライト焼結体の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention has excellent sinterability, 1 mechanical strength, and 4! The present invention relates to a composition for a mullite sintered body that has good strength even at high temperatures, and a method for producing a mullite sintered body using the composition.
(従来の技術)
ムライト焼結体は、高融点で、かつ低膨張であシ、また
耐熱、耐クリープ性に優れるため、高温構造部材に使用
されてきた。(Prior Art) Mullite sintered bodies have a high melting point, low expansion, and excellent heat resistance and creep resistance, so they have been used for high-temperature structural members.
さらに高純度ムライト焼結体は、高温でも強度が劣化し
ないことがジャーナル、オプ、アメリカン、セラミック
、ソサイアティ(Journal ofAmeric
an Ceramic 5ociety )の第7
0巻、第1号、C−7〜C8,1987年発行に示され
ている。Furthermore, the strength of high-purity mullite sintered bodies does not deteriorate even at high temperatures, as reported by Journal of American Ceramics and Society.
An Ceramic 5ociety) No. 7
0, No. 1, C-7-C8, published in 1987.
この様な高純度ムライト焼結体は、高純度の金属アルコ
キシド、コロイダルシリカ、アルミナゾル、水溶性塩類
等のように原料として溶液化する工程を経たものを用い
て製造する方法が多く提案されている。Many methods have been proposed for manufacturing such high-purity mullite sintered bodies using raw materials that have gone through a process of being made into a solution, such as high-purity metal alkoxides, colloidal silica, alumina sol, and water-soluble salts. .
(発明が解決しようとする課題)
しかしながら高純度ムライト焼結体は、焼結性が悪く、
溶液化する工程を経て作られた微細で活性な原料粉末を
用いても、高純度で高強度のムライト焼結体を製造する
には、1650℃以上の高温で焼成しなければならない
。そのため設備費。(Problems to be solved by the invention) However, high-purity mullite sintered bodies have poor sinterability;
Even if a fine active raw material powder made through a solution process is used, it must be fired at a high temperature of 1650° C. or higher in order to produce a high-purity, high-strength mullite sintered body. Therefore equipment costs.
燃料費等がかさみ、結果としてムライト焼結体のコスト
高を招くという問題がある。また溶液化する工程を経て
微細で活性な原料粉末を作るために高価になるという問
題がある。これに対し、安価な酸化物粉末、カオリン等
を用い、固相反応によりムライト焼結体を製造する方法
がある。しかしこの方法では、焼結性が悪く、高温で焼
成しても十分な強度を得ることが困難であるという問題
がある。There is a problem in that fuel costs and the like increase, resulting in an increase in the cost of the mullite sintered body. Another problem is that it is expensive because fine, active raw material powder is produced through a process of making it into a solution. On the other hand, there is a method of producing a mullite sintered body by solid phase reaction using inexpensive oxide powder, kaolin, etc. However, this method has a problem in that the sinterability is poor and it is difficult to obtain sufficient strength even when fired at high temperatures.
上記の他に特公昭61−15532号公報に示されるよ
うに、ムライト基板を製造するのに、マグネシアを添加
して焼成温度を下げ、焼結性を向上させる方法がある。In addition to the above method, as shown in Japanese Patent Publication No. 61-15532, there is a method for manufacturing a mullite substrate in which magnesia is added to lower the firing temperature to improve sinterability.
しかしこの方法では、耐クリープ性および高温において
強度が低下するという問題がある。However, this method has problems in that creep resistance and strength decrease at high temperatures.
そこで本発明者らは、ムライト原料粉に酸化イツトリウ
ム粉を添加したところ、焼結性は向上したが、酸化イツ
トリウム粉がムライト原料粉のアルミナおよびシリカと
反応してガラス相を形成し。Therefore, when the present inventors added yttrium oxide powder to the mullite raw material powder, the sinterability improved, but the yttrium oxide powder reacted with the alumina and silica of the mullite raw material powder to form a glass phase.
このガラス相が高温にさらされるとガラス相の軟化がお
こり2強度が劣化するという問題が生じた。When this glass phase is exposed to high temperatures, a problem arises in that the glass phase softens and the strength deteriorates.
本発明は上記の問題のないムライト焼結体用組成物およ
びそれを用いたムライト焼結体の製造法を提供すること
を目的とするものである。The object of the present invention is to provide a composition for a mullite sintered body that does not have the above-mentioned problems, and a method for producing a mullite sintered body using the composition.
(課題を解決するための手段)
本発明はムライト原料粉またはムライト質の粉末95〜
99.8重量%および酸化セリウム0.2〜5重量%を
含有してなるムライト焼結体用組成物並びに重量比でア
ルミナ:シリカが65 : 35乃至80 : 20の
ムライト原料粉または該ムライト原料粉を焼成後粉砕し
たムライト質の粉末95〜99.8重量%および酸化セ
リウム粉0.2〜5重量%または酸化セリウムを0.2
〜5重量%含む塩若しくは有機化合物を均一に混合した
後、焼成するムライト焼結体の製造法に関する。(Means for Solving the Problems) The present invention provides mullite raw powder or mullite powder 95~
A composition for a mullite sintered body containing 99.8% by weight of cerium oxide and 0.2 to 5% by weight of cerium oxide, and a mullite raw material powder or the mullite raw material having a weight ratio of alumina:silica of 65:35 to 80:20. 95 to 99.8% by weight of mullite powder obtained by firing and pulverizing the powder and 0.2 to 5% by weight of cerium oxide powder or 0.2% of cerium oxide
The present invention relates to a method for producing a mullite sintered body in which a salt or organic compound containing up to 5% by weight is uniformly mixed and then fired.
本発明においてムライト原料粉は1重量比でアルミナ:
シリカが65:35乃至80 : 20の範囲とされ、
この範囲から外れると高温において強度が劣化し2本発
明の目的を達成することができない。In the present invention, the mullite raw material powder has a 1 weight ratio of alumina:
Silica is in the range of 65:35 to 80:20,
Outside this range, the strength deteriorates at high temperatures, making it impossible to achieve the two objects of the present invention.
ムライト焼結体は、ムライト原料粉となるアルミナとシ
リカとを酸化セリウム粉または酸化セリウムを含む塩若
しくは有機化合物と同時に混合し。Mullite sintered bodies are produced by mixing alumina and silica, which serve as mullite raw material powder, with cerium oxide powder, a salt containing cerium oxide, or an organic compound at the same time.
その後焼成してムライト焼結体としてもよく、またアル
ミナとシリカとを混合し、それを−度焼成して粉砕し、
ムライト質の粉末としたものを酸化セリウム粉または酸
化セリウムを含む塩若しくは有機化合物と混合し、その
後焼成してムライト焼結体としてもよく制限はない。It may then be fired to produce a mullite sintered body, or alumina and silica may be mixed, then fired and pulverized.
Mullite powder may be mixed with cerium oxide powder, a salt containing cerium oxide, or an organic compound, and then fired to form a mullite sintered body without any limitation.
なおムライト焼結体中のムライト質には80重量%以上
のムライト結晶を含むことが好ましい。The mullite in the mullite sintered body preferably contains 80% by weight or more of mullite crystals.
本発明になるムライト焼結体用組成物は、ムライト原料
粉またはムライト原料粉を焼成後粉砕したムライト質の
粉末が95〜99.8重量%および酸化セリウムが0.
2〜5重量%の範囲とされ、ムライト原料粉またはムラ
イト原料粉を焼成後粉砕したムライト質の粉末が99.
8重量%を越え、酸化セリウムが0.2重1未満である
と焼結性を向上させる効果が不十分であシ、またムライ
ト質が95重量%未満で、酸化セリウムが5重量%を越
えると焼結体が発泡するかまたは高温において強度が劣
化するという問題が生じる。The composition for a mullite sintered body according to the present invention contains 95 to 99.8% by weight of mullite raw powder or mullite powder obtained by firing and pulverizing mullite raw material powder, and 0.9% by weight of cerium oxide.
The content is in the range of 2 to 5% by weight, and mullite raw powder or mullite powder obtained by firing and pulverizing mullite raw powder is 99.9% by weight.
If the content exceeds 8% by weight and the content of cerium oxide is less than 0.2% by weight, the effect of improving sinterability will be insufficient, and if the content of mullite is less than 95% by weight and the content of cerium oxide exceeds 5% by weight. This causes the problem that the sintered body foams or its strength deteriorates at high temperatures.
本発明において酸化セリウムを0.2〜5重量%含む塩
としては、硝酸セリウム、酢酸セリウム。In the present invention, examples of salts containing 0.2 to 5% by weight of cerium oxide include cerium nitrate and cerium acetate.
炭酸セリウム、水酸化セリウム、硫酸セリウム等が用い
られ、また酸化セリウムを0.2〜5重i%含む有機化
合物としては、セリウムメトキシド。Cerium carbonate, cerium hydroxide, cerium sulfate, etc. are used, and the organic compound containing 0.2 to 5% by weight of cerium oxide is cerium methoxide.
リウムを含む塩若しくは有機化合物との混合方法につい
ては特に制限はな〈従来公知の方法で行なうものとする
。また焼成温度は1組成又は配合割合により適宜選定す
るものとし特に制限はない。There is no particular restriction on the method of mixing with the salt or organic compound containing lithium (it may be carried out by a conventionally known method). Further, the firing temperature is appropriately selected depending on the composition or blending ratio, and is not particularly limited.
(作用)
本発明においては、酸化セリウムはムライト原料粉のア
ルミナおよびシリカとは反応せず酸化セリウム結晶とし
て存在し、この酸化セリウム結晶の存在により軟化が起
こシにくくなシ、高温においての強度の劣化が小さくな
り、また焼結温度を低くすることができるものと考えら
れる。(Function) In the present invention, cerium oxide does not react with the alumina and silica of the mullite raw material powder and exists as cerium oxide crystals. It is believed that the deterioration is reduced and the sintering temperature can be lowered.
(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
実施例1
酸化アルミニウム粉(昭和電工製、商品名UA−510
5,純度99.99チ)および二酸化珪素粉(小宗化学
薬品製、高純度試薬、純度99.99%)を第1表に示
す配合割合に秤量し、ボールミルで6時間湿式混合して
解粒後噴霧乾燥した。これを1650℃で1時間焼成し
、冷却後粉砕してムライト質の粉末を得た。このムライ
ト質の粉末には900重量部上のムライト結晶が含壕れ
ていた。Example 1 Aluminum oxide powder (manufactured by Showa Denko, trade name UA-510)
5, purity 99.99%) and silicon dioxide powder (manufactured by Koso Chemical, high purity reagent, purity 99.99%) were weighed in the proportions shown in Table 1, and dissolved by wet mixing in a ball mill for 6 hours. The grains were then spray dried. This was calcined at 1650° C. for 1 hour, cooled, and then ground to obtain a mullite powder. This mullite powder contained 900 parts by weight of mullite crystals.
次に上記で得たムライト質の粉末に酸化セリウム扮(日
産稀元素製、純度99.991)および酸化イツトリウ
ム粉(三菱化成工業製、純度99.99チ)を第1表に
示す配合割合で添加し、再びボールミルで平均粒径が約
1μmになるまで湿式混合。Next, cerium oxide powder (manufactured by Nissan Kigenso, purity 99.991) and yttrium oxide powder (manufactured by Mitsubishi Chemical Industries, Ltd., purity 99.99) were added to the mullite powder obtained above in the proportions shown in Table 1. and wet-mix again using a ball mill until the average particle size is about 1 μm.
粉砕した。得られた泥漿100重量部に対しポリビニル
アルコール(クランa、 商品名ポバール110)2重
量部およびワックス(モーピル石油製、商品名マルレツ
クス209)2重量部を添加し、噴霧乾燥して成形用顆
粒を得た。ついで成形用顆粒を12トン/alの圧力で
ラバープレス成形後、第2表に示す温度で3時間焼成し
てムライト焼結体を得た。Shattered. To 100 parts by weight of the obtained slurry, 2 parts by weight of polyvinyl alcohol (Cran A, trade name Poval 110) and 2 parts by weight of wax (manufactured by Mopil Oil Co., Ltd., trade name Marlex 209) were added, and the mixture was spray-dried to form granules for molding. Obtained. The molding granules were then rubber press molded at a pressure of 12 tons/al and fired for 3 hours at the temperatures shown in Table 2 to obtain mullite sintered bodies.
得られたムライト焼結体を3w+X4amX40mの寸
法に切断し、JIS R1601−1981に基づき
、3点曲げ試験で室温時および1200℃時における曲
げ強度を測定した。その結果を合わせて第2表に示す。The obtained mullite sintered body was cut into a size of 3w + x 4am x 40m, and the bending strength at room temperature and at 1200°C was measured by a three-point bending test based on JIS R1601-1981. The results are shown in Table 2.
また焼成温度とムライト焼結体のかさ密度との関係を第
1図に示す。なお第2表において賦香5のムライト焼結
体は発泡したので曲げ強度の測定は行なわなかった。Furthermore, the relationship between the firing temperature and the bulk density of the mullite sintered body is shown in FIG. In Table 2, since the mullite sintered body of No. 5 was foamed, the bending strength was not measured.
第1表 矢印は本発明に含まれないものを示す。Table 1 Arrows indicate items not included in the present invention.
第2表 矢印は本発明に含まれないものを示す。Table 2 Arrows indicate items not included in the present invention.
第1表、第2表および第1図から明らかなように2本発
明になるムライト焼結体は、焼成温度を賦香1の高純度
ムライト焼結体に比較し、50〜150℃程低下するこ
とができ、しかも室温での曲げ強度に優れ、tた120
0℃の高温においても劣下が小さいことがわかる。これ
に対し賦香6゜7および12のムライト焼結体は、高温
における曲げ強度の劣化が大きいことがわかる。As is clear from Table 1, Table 2, and Figure 1, the firing temperature of the mullite sintered body according to the present invention is approximately 50 to 150°C lower than that of the high purity mullite sintered body with fragrance 1. Moreover, it has excellent bending strength at room temperature, and has a t.
It can be seen that the deterioration is small even at a high temperature of 0°C. On the other hand, it can be seen that the mullite sintered bodies with fragrances of 6°7 and 12 have a large deterioration in bending strength at high temperatures.
(発明の効果)
本発明によって得られるムライト焼結体は、従来の焼成
温度よシ50〜150℃程低い温度で焼成することがで
き、室温での強度に優れ、また高温においても強度劣化
が小さく、安価に製造することができ、工業的に極めて
好適なムライト焼結体である。(Effects of the Invention) The mullite sintered body obtained by the present invention can be fired at a temperature 50 to 150°C lower than the conventional firing temperature, has excellent strength at room temperature, and does not deteriorate in strength even at high temperatures. This mullite sintered body is small and can be produced at low cost, making it extremely suitable industrially.
第1図は焼成温度とムライト焼結体のかさ密度との関係
を示すグラフである。
焼べ温厚(′C)
第 1 図FIG. 1 is a graph showing the relationship between firing temperature and bulk density of sintered mullite. Grilling mildness ('C) Fig. 1
Claims (2)
.8重量%および酸化セリウム0.2〜5重量%を含有
してなるムライト焼結体用組成物。1. Mullite raw powder or mullite powder 95-99
.. A composition for a mullite sintered body comprising 8% by weight of cerium oxide and 0.2 to 5% by weight of cerium oxide.
20のムライト原料粉または該ムライト原料粉を焼成後
粉砕したムライト質の粉末95〜99.8重量%および
酸化セリウム粉0.2〜5重量%または酸化セリウムを
0.2〜5重量%含む塩若しくは有機化合物を均一に混
合した後,焼成することを特徴とするムライト焼結体の
製造法。2. Weight ratio of alumina:silica is 65:35 to 80:
20 mullite raw material powder or 95 to 99.8% by weight of mullite powder obtained by firing and pulverizing the mullite raw material powder and 0.2 to 5% by weight of cerium oxide powder or a salt containing 0.2 to 5% by weight of cerium oxide. Alternatively, a method for producing a mullite sintered body characterized by mixing an organic compound uniformly and then firing it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63112970A JPH01282149A (en) | 1988-05-10 | 1988-05-10 | Composition for mullite sintered body and production of mullite sintered body utilizing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63112970A JPH01282149A (en) | 1988-05-10 | 1988-05-10 | Composition for mullite sintered body and production of mullite sintered body utilizing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01282149A true JPH01282149A (en) | 1989-11-14 |
Family
ID=14600113
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63112970A Pending JPH01282149A (en) | 1988-05-10 | 1988-05-10 | Composition for mullite sintered body and production of mullite sintered body utilizing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01282149A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04292480A (en) * | 1990-06-13 | 1992-10-16 | Rhone Poulenc Chim | Substance consisting of porous base material containing second component in dispersed form and method for its production |
DE19623425A1 (en) * | 1996-06-12 | 1997-12-18 | Dlr Deutsche Forschungsanstalt | Reaction bonded mullite-based ceramic article |
-
1988
- 1988-05-10 JP JP63112970A patent/JPH01282149A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04292480A (en) * | 1990-06-13 | 1992-10-16 | Rhone Poulenc Chim | Substance consisting of porous base material containing second component in dispersed form and method for its production |
DE19623425A1 (en) * | 1996-06-12 | 1997-12-18 | Dlr Deutsche Forschungsanstalt | Reaction bonded mullite-based ceramic article |
US6083861A (en) * | 1996-06-12 | 2000-07-04 | DLR Deutsche Forschungsanstalt fur Luft-und Raumfahrt e.V. | Reaction bonded ceramics for ceramic composite materials comprising mullite as the main component and corundum and thortveitite or cerianite as minor components |
DE19623425B4 (en) * | 1996-06-12 | 2005-06-16 | Deutsches Zentrum für Luft- und Raumfahrt e.V. | Process for the preparation of reaction-bonded mullite-containing ceramic shaped bodies and their use |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100427432C (en) | Method for producing aluminum magnesium titanate sintered product | |
JP2533992B2 (en) | Aluminum titanate ceramics and manufacturing method thereof | |
JPS63139050A (en) | zirconia ceramics | |
JPS6117469A (en) | Manufacture of minute cordierite | |
JPS6125677B2 (en) | ||
JPH11322433A (en) | Production of composite ceramic sintered body containing boron nitride, and the sintered body | |
JPH01282149A (en) | Composition for mullite sintered body and production of mullite sintered body utilizing the same | |
EP0351827B1 (en) | Zirconia-based sintered material and process for producing the same | |
JP3190060B2 (en) | Method for producing fine ceria solid solution tetragonal zirconia powder | |
JP2000159570A (en) | Production of compact cordierite sintered product | |
JPS6357383B2 (en) | ||
US4162168A (en) | Refractory material | |
JPH02116664A (en) | Preparation of sintered body of mullite | |
AU594086B2 (en) | Method for the manufacture of formed parts from Al2O3 and ZrO2 and formed parts manufactured by this method | |
JPS647030B2 (en) | ||
JPS6081062A (en) | High strength ceramic material | |
JPH0615421B2 (en) | Method for manufacturing mullite sintered body | |
KR960006247B1 (en) | High strength, low thermal expansion aluminum titanate ceramics and method of manufacturing the same | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JP2001089225A (en) | Yttrium-aluminum-garnet sintered body and method for producing raw material thereof | |
JPH052622B2 (en) | ||
JPH06100358A (en) | Method for manufacturing mullite sintered body | |
JP2607517B2 (en) | Method for producing zirconia ceramics | |
JPS62230667A (en) | Manufacture of ceramics |