JPH01280360A - Manufacture of nonvolatile semiconductor memory device - Google Patents
Manufacture of nonvolatile semiconductor memory deviceInfo
- Publication number
- JPH01280360A JPH01280360A JP7509288A JP7509288A JPH01280360A JP H01280360 A JPH01280360 A JP H01280360A JP 7509288 A JP7509288 A JP 7509288A JP 7509288 A JP7509288 A JP 7509288A JP H01280360 A JPH01280360 A JP H01280360A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polycrystalline silicon
- layer
- oxide film
- oxidation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 29
- 230000003647 oxidation Effects 0.000 claims abstract description 20
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 10
- 238000002347 injection Methods 0.000 claims abstract description 3
- 239000007924 injection Substances 0.000 claims abstract description 3
- 230000014759 maintenance of location Effects 0.000 claims abstract description 3
- 230000001590 oxidative effect Effects 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 abstract description 7
- 230000002542 deteriorative effect Effects 0.000 abstract 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 150000004767 nitrides Chemical class 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は不揮発性半導体記憶装置の製造方法にかかり、
特に素子領域中に薄いトンネル酸化膜を持つ、電気的に
書き込みや消去が可能な不揮発性半導体記憶装置の製造
方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Field of Industrial Application) The present invention relates to a method of manufacturing a nonvolatile semiconductor memory device,
In particular, the present invention relates to a method of manufacturing a nonvolatile semiconductor memory device that has a thin tunnel oxide film in an element region and is electrically programmable and erasable.
(従来の技術)
一般に電気的に書き込みや消去が可能な不揮発性半導体
記憶装置はE2FROMと称されている。(Prior Art) A nonvolatile semiconductor memory device that can be electrically written and erased is generally called an E2FROM.
このE2PROMは一般に素子領域にトンネル酸化膜と
呼ばれる薄い酸化膜を有しており、このトンネル酸化膜
を通じてフローティングゲートに電荷を蓄積することに
より情報記憶を行っている。This E2PROM generally has a thin oxide film called a tunnel oxide film in the element region, and stores information by accumulating charges in the floating gate through the tunnel oxide film.
第2図は従来のE2FROMの製造方法を説明するため
の工程別素子断面図である。FIG. 2 is a cross-sectional view of an element according to steps for explaining a conventional E2FROM manufacturing method.
まずシリコン基板1の表面近傍に周知の技術を用いて拡
散層2を形成する。First, a diffusion layer 2 is formed near the surface of a silicon substrate 1 using a well-known technique.
ついでその表面に熱酸化による厚い酸化膜3を成長させ
、その上にレジスト4を塗布する。このレジスト4を露
光して開孔部(トンネル窓)4aを設ける(第2図(a
))。ついでレジスト4をマスクにして開孔部4a下の
酸化膜3を除去してトンネル窓とし、その後レジスト4
を除去した後熱酸化を行ってトンネル窓内に薄い酸化膜
5を成長させる。そして全面にフローティングゲートと
なる第1多結晶シリコン層6を堆積する(第2図(b)
)。Then, a thick oxide film 3 is grown on the surface by thermal oxidation, and a resist 4 is applied thereon. This resist 4 is exposed to light to provide an opening (tunnel window) 4a (Fig. 2(a)
)). Next, using the resist 4 as a mask, the oxide film 3 under the opening 4a is removed to form a tunnel window, and then the resist 4 is removed.
After removal, thermal oxidation is performed to grow a thin oxide film 5 within the tunnel window. Then, a first polycrystalline silicon layer 6, which will become a floating gate, is deposited on the entire surface (Fig. 2(b)).
).
その後第2図(c)に示すように全面に絶縁膜7を形成
し、ついで制御ゲートとなる第2多結晶シリコン層8を
堆積させる。ついで第2図(d)に示すようにレジスト
を用いてゲート電極のパターニングを行い、第2多結晶
シリコン層8、絶縁膜7、第1多結晶シリコン層6を順
次除去し第2多結晶シリコン層8をマスクにしてシリコ
ン基板1にイオン注入により拡散層11を形成する。Thereafter, as shown in FIG. 2(c), an insulating film 7 is formed on the entire surface, and then a second polycrystalline silicon layer 8, which will become a control gate, is deposited. Next, as shown in FIG. 2(d), a gate electrode is patterned using a resist, and the second polycrystalline silicon layer 8, insulating film 7, and first polycrystalline silicon layer 6 are sequentially removed to form a second polycrystalline silicon layer. Diffusion layer 11 is formed by ion implantation into silicon substrate 1 using layer 8 as a mask.
このようにしてトンネル窓に薄い酸化膜5を有するE2
PROMが形成される。In this way, E2 having a thin oxide film 5 on the tunnel window
A PROM is formed.
一般にトンネル窓を有する不揮発性半導体記憶装置では
トンネル窓の面積を可能な限り小さくすることが望まし
い。しかし、従来の製造方法ではトンネル窓のパターニ
ングを第2図(a)に示したレジストの抜きパターンで
行っているため限界最小面積が大きくなる傾向がある。Generally, in a nonvolatile semiconductor memory device having a tunnel window, it is desirable to make the area of the tunnel window as small as possible. However, in the conventional manufacturing method, since the tunnel window is patterned using the resist punching pattern shown in FIG. 2(a), the critical minimum area tends to become large.
また、トンネル窓のパターニングに際してはレジストを
マスクにして厚い酸化膜を除去するようにしているが、
フッ化アンモニウム(NH4F)等を用いたウェットエ
ツチングを用いると、トンネル窓がレジストパターンの
幅よりも大きくなってしまう。Also, when patterning the tunnel window, a resist is used as a mask to remove the thick oxide film.
If wet etching using ammonium fluoride (NH4F) or the like is used, the tunnel window becomes larger than the width of the resist pattern.
さらにトンネル窓内の厚い酸化膜をレジストをマスクに
して除去するようにしているため、シリコン基板が露出
した直後に薄いトンネル酸化膜を形成することができな
い。このため薄いトンネル酸化膜の耐圧の劣化が生じる
。Furthermore, since the thick oxide film within the tunnel window is removed using a resist as a mask, a thin tunnel oxide film cannot be formed immediately after the silicon substrate is exposed. This causes deterioration in the withstand voltage of the thin tunnel oxide film.
また、レジスト除去工程を行ってから薄いトンネル酸化
膜を形成するようにしているため剥離されたレジストが
酸化膜形成時に薄いトンネル酸化膜中に混入して19染
を招き易い。Furthermore, since the thin tunnel oxide film is formed after the resist removal step, the stripped resist mixes into the thin tunnel oxide film when the oxide film is formed, which tends to cause 19 staining.
(発明が解決しようとする課題)
以上説明したように、従来の製造方法ではトンネル窓の
限界最小面積が大きくなったり薄いトンネル酸化膜の耐
圧が劣化したりするという問題点があった。(Problems to be Solved by the Invention) As explained above, the conventional manufacturing method has problems in that the critical minimum area of the tunnel window increases and the breakdown voltage of the thin tunnel oxide film deteriorates.
本発明はこのような従来技術の問題点を解消するために
なされたもので、トンネル酸化膜の膜質の劣化を招くこ
となくしかも小さなトンネル窓面積を有する不揮発性半
導体記憶装置を得るための製造方法を提供することを目
的とする。The present invention has been made to solve the problems of the prior art, and provides a manufacturing method for obtaining a nonvolatile semiconductor memory device that does not cause deterioration of the quality of the tunnel oxide film and has a small tunnel window area. The purpose is to provide
(課題を解決するための手段)
本発明にかかる半導体記憶装置の製造方法によれば、半
導体基板を熱酸化して表面にトンネル酸化膜としての所
定膜厚の絶縁膜を形成する工程と、前記酸化膜上の電子
注入・放出領域部に多結晶シリコン膜と耐酸化膜からな
る2層構造のパターン層を選択的に形成する工程と、前
記パターン層を耐酸化マスクとして、熱酸化し前記絶縁
膜を所定の膜厚まで成長させる工程と、前記耐酸化膜を
除去した後、全面に電荷保持層となる多結晶シリコンを
堆積させる工程とを設けたものである。(Means for Solving the Problems) According to the method of manufacturing a semiconductor memory device according to the present invention, a step of thermally oxidizing a semiconductor substrate to form an insulating film of a predetermined thickness as a tunnel oxide film on the surface; A step of selectively forming a two-layer patterned layer consisting of a polycrystalline silicon film and an oxidation-resistant film in the electron injection/emission region on the oxide film, and thermally oxidizing the insulating film using the patterned layer as an oxidation-resistant mask. This method includes a step of growing a film to a predetermined thickness, and a step of depositing polycrystalline silicon to serve as a charge retention layer over the entire surface after removing the oxidation-resistant film.
(作 用)
本発明ではトンネル酸化膜になる部分を予め形成し、残
しパターンの形成方法に従い、その周囲に厚いゲート酸
化膜を形成する。したがってトンネル窓領域が微細に形
成され、しかも厚いゲート酸化膜形成時にトンネル窓領
域の多結晶シリコンを同時に酸化することができるため
よりいっそうトンネル窓領域を微細に形成できる。(Function) In the present invention, a portion that will become a tunnel oxide film is formed in advance, and a thick gate oxide film is formed around it according to the method for forming a remaining pattern. Therefore, the tunnel window region can be formed finely, and since the polycrystalline silicon in the tunnel window region can be simultaneously oxidized when forming a thick gate oxide film, the tunnel window region can be formed even finer.
(実施例)
以下本発明の不揮発性半導体記憶装置の製造方法を図に
ついて説明する。(Example) A method of manufacturing a nonvolatile semiconductor memory device of the present invention will be described below with reference to the drawings.
第1図は本発明の製造方法を説明するための工程別素子
断面図である。FIG. 1 is a cross-sectional view of an element according to steps for explaining the manufacturing method of the present invention.
まず第1図(a)に示すように、シリコン基板11の表
面近傍の所定領域に拡散層12を選択的に形成する。First, as shown in FIG. 1(a), a diffusion layer 12 is selectively formed in a predetermined region near the surface of a silicon substrate 11. Then, as shown in FIG.
ついて熱酸化により表面に100人程度の薄い酸化膜1
3を成長させる。Then, due to thermal oxidation, a thin oxide film of about 100 layers is formed on the surface1.
Grow 3.
次に、表面に第1多結晶シリコン層14および窒化膜1
5をCVD法で順次堆積し、その上にトンネル窓部に対
応してパターニングされたレジスト16を形成する(第
1図(b))。Next, a first polycrystalline silicon layer 14 and a nitride film 1 are formed on the surface.
5 are sequentially deposited by the CVD method, and a resist 16 patterned in correspondence with the tunnel window portion is formed thereon (FIG. 1(b)).
その後第1図(C)に示すようにこのパターニングされ
たレジスト16をマスクにして反応性イオンエツチング
(RI E)等の方法により窒化膜15、第1多結晶シ
リコン層14を除去する。Thereafter, as shown in FIG. 1C, the nitride film 15 and first polycrystalline silicon layer 14 are removed by a method such as reactive ion etching (RIE) using the patterned resist 16 as a mask.
次に第1図(d)に示すように、熱酸化により熱酸化膜
13上および多結晶シリコン層14の側壁部に400人
程度の厚い酸化膜17を成長させる。このとき、側壁部
の酸化は内側にも広がるのでトンネル窓はさらに小さく
なる。なお、この際窒化膜15は耐酸化性膜であるので
その上にはほとんど酸化膜が形成されない。そして、こ
の選択酸化に用いた窒化膜15を加熱したリン酸等を用
いて選択的に除去する。Next, as shown in FIG. 1(d), a thick oxide film 17 of about 400 nm is grown on the thermal oxide film 13 and on the sidewalls of the polycrystalline silicon layer 14 by thermal oxidation. At this time, the oxidation of the side wall portion also spreads inward, making the tunnel window even smaller. At this time, since the nitride film 15 is an oxidation-resistant film, almost no oxide film is formed thereon. Then, the nitride film 15 used for this selective oxidation is selectively removed using heated phosphoric acid or the like.
その後フローティングゲートとなる第2の多結晶シリコ
ン層18を全面に堆積し、熱酸化法により第2の多結晶
シリコン層18の表面を酸化して絶縁膜19を形成し、
さらに制御ゲートおよび配線層となる第3の多結晶シリ
コン層20を堆積し、第1図(e)に示すような構造を
得る。After that, a second polycrystalline silicon layer 18 that will become a floating gate is deposited on the entire surface, and the surface of the second polycrystalline silicon layer 18 is oxidized by a thermal oxidation method to form an insulating film 19.
Furthermore, a third polycrystalline silicon layer 20, which will serve as a control gate and wiring layer, is deposited to obtain a structure as shown in FIG. 1(e).
その後周知の技術に従い、レジストを塗布し、レジスト
をマスクにして第3の多結晶シリコン層20、絶縁膜1
9、第2の多結晶シリコン層18を順次除去してゲート
電極のバターニングを行う。Thereafter, according to a well-known technique, a resist is applied, and using the resist as a mask, the third polycrystalline silicon layer 20 and the insulating film 1 are formed.
9. The second polycrystalline silicon layer 18 is sequentially removed to pattern the gate electrode.
その後節3の多結晶シリコン層20をマスクにしてイオ
ン注入を行いシリボン基板11に拡散層21を形成し、
第1図(f)に示すような構造を得る。Then, using the polycrystalline silicon layer 20 of the node 3 as a mask, ion implantation is performed to form a diffusion layer 21 on the silicon ribbon substrate 11,
A structure as shown in FIG. 1(f) is obtained.
以下周知の方法により電極形成を行い本発明にがかるE
2FROMを形成する。The electrodes are formed by a well-known method as follows.
Form 2FROM.
以上の実施例では耐酸化性膜として窒化膜を用いている
が、他の耐酸化性膜を用いるようにしてもよい。In the above embodiments, a nitride film is used as the oxidation-resistant film, but other oxidation-resistant films may be used.
以上実施例に基づいて詳細に説明したように、本発明で
はトンネル窓のレジストバターニングを残しパターンで
形成するようにしているためトンネル窓のパターン面積
を小さくすることが可能である。また薄いトンネル酸化
膜をさきに成長させるため、シリコン基板露出後にレジ
ストを除去する等の工程が入らない。As described above in detail based on the embodiments, in the present invention, the resist patterning of the tunnel window is left intact and the pattern is formed, so it is possible to reduce the pattern area of the tunnel window. Furthermore, since a thin tunnel oxide film is grown first, there is no need for steps such as removing the resist after exposing the silicon substrate.
このため汚染が発生せず、また連続的にトンネル酸化膜
を形成することができる。Therefore, no contamination occurs, and the tunnel oxide film can be formed continuously.
さらに厚い酸化膜の熱酸化による形成時にトンネル窓の
多結晶シリコン層で形成される浮遊ゲートが酸化される
ためトンネル窓の面積がさらに小さくなり容量が小さく
なり性能向上をはかることができる。Further, when a thick oxide film is formed by thermal oxidation, the floating gate formed by the polycrystalline silicon layer of the tunnel window is oxidized, so the area of the tunnel window is further reduced, the capacitance is reduced, and performance can be improved.
第1図は本発明にかかる不揮発性半導体記憶装置の製造
方法を説明するための工程別素子断面図、第2図は従来
の製造方法を説明するための工程別素子断面図である。
11・・・シリコン基板、12・・・拡散領域、13・
・・薄い酸化膜(トンネル酸化膜)、14・・・第1多
結晶シリコン層、15・・・窒化膜、16・・・レジス
ト、17・・・厚い酸化膜(ゲート酸化膜)、18・・
・第2多結晶シリコン層、19・・・絶縁膜、20・・
・第3多結晶シリコン層、21・・・拡散領域。
出願人代理人 佐 藤 −雄FIG. 1 is a cross-sectional view of an element according to steps for explaining a method of manufacturing a nonvolatile semiconductor memory device according to the present invention, and FIG. 2 is a cross-sectional view of an element according to steps for explaining a conventional manufacturing method. 11... Silicon substrate, 12... Diffusion region, 13.
... Thin oxide film (tunnel oxide film), 14... First polycrystalline silicon layer, 15... Nitride film, 16... Resist, 17... Thick oxide film (gate oxide film), 18.・
・Second polycrystalline silicon layer, 19...insulating film, 20...
- Third polycrystalline silicon layer, 21...diffusion region. Applicant's agent Mr. Sato
Claims (1)
の所定膜厚の絶縁膜を形成する工程と、前記酸化膜上の
電子注入・放出領域部に多結晶シリコン膜と耐酸化膜か
らなる2層構造のパターン層を選択的に形成する工程と
、前記パターン層を耐酸化マスクとして、熱酸化し前記
絶縁膜を所定の膜厚まで成長させる工程と、前記耐酸化
膜を除去した後、全面に電荷保持層となる多結晶シリコ
ンを堆積させる工程とを具備してなる不揮発性半導体記
憶装置の製造方法。A process of thermally oxidizing a semiconductor substrate to form an insulating film of a predetermined thickness as a tunnel oxide film on the surface, and a two-layer process consisting of a polycrystalline silicon film and an oxidation-resistant film in the electron injection/emission region on the oxide film. a step of selectively forming a patterned layer of the structure; a step of thermally oxidizing the insulating film to a predetermined thickness using the patterned layer as an oxidation-resistant mask; and a step of growing the insulating film to a predetermined thickness after removing the oxidation-resistant film. A method for manufacturing a nonvolatile semiconductor memory device, comprising the step of depositing polycrystalline silicon to serve as a charge retention layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7509288A JPH01280360A (en) | 1988-03-29 | 1988-03-29 | Manufacture of nonvolatile semiconductor memory device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7509288A JPH01280360A (en) | 1988-03-29 | 1988-03-29 | Manufacture of nonvolatile semiconductor memory device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01280360A true JPH01280360A (en) | 1989-11-10 |
Family
ID=13566182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7509288A Pending JPH01280360A (en) | 1988-03-29 | 1988-03-29 | Manufacture of nonvolatile semiconductor memory device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01280360A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005322920A (en) * | 2004-04-30 | 2005-11-17 | Samsung Electronics Co Ltd | Method for manufacturing EEPROM cell |
-
1988
- 1988-03-29 JP JP7509288A patent/JPH01280360A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005322920A (en) * | 2004-04-30 | 2005-11-17 | Samsung Electronics Co Ltd | Method for manufacturing EEPROM cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4808261A (en) | Fabrication process for EPROM cells with oxide-nitride-oxide dielectric | |
KR100189092B1 (en) | Method for manufacturing a semiconductor memory device having a floating gate with an improved insulating film | |
JPH10223850A (en) | Method for incorporating non-volatile memory and logic component element into single manufacturing process of 0.3mum or below to obtain non-volatile memory of integral structure | |
KR940007654B1 (en) | Method of fabricating a nonvolatile semiconductor memory device | |
JP2525144B2 (en) | Method of manufacturing integrated structure including non-volatile memory cell and related transistor | |
US6235585B1 (en) | Method for fabricating flash memory device and peripheral area | |
JPH09129853A (en) | Manufacture of nonvolatile semiconductor storage device | |
JPH11512568A (en) | Method for forming a minimum pattern width on a semiconductor substrate | |
KR950005459B1 (en) | Semiconductor device manufacturing method | |
JPH01280360A (en) | Manufacture of nonvolatile semiconductor memory device | |
JPH05343693A (en) | Manufacture of nonvolatile semiconductor storage device | |
JPH10189922A (en) | Method for manufacturing flash memory device | |
KR100422351B1 (en) | method for forming dielectric layer of flash memory device | |
KR0150669B1 (en) | Forming method of dielectric material film in the semiconductor device | |
KR19980043614A (en) | Manufacturing method of nonvolatile memory device | |
KR100300871B1 (en) | Method of forming gate oxide in semiconductor memory device | |
KR930004347B1 (en) | Method of fabricating nonvolatile semiconductor memory device | |
JP3783240B2 (en) | Manufacturing method of flash memory | |
KR0157975B1 (en) | Stack capacitor fabrication method | |
JP2004079624A (en) | Memory device structure and its manufacturing method | |
JPH01214065A (en) | Method of manufacturing semiconductor memory device | |
JPS6353978A (en) | Manufacture of semiconductor storage device | |
JPH05343703A (en) | Manufacture of nonvolatile memory | |
JPS58122769A (en) | Manufacturing method of semiconductor device | |
JPS63177569A (en) | Manufacture of nonvolatile semiconductor memory device |