JPH01276969A - Picture signal processor - Google Patents
Picture signal processorInfo
- Publication number
- JPH01276969A JPH01276969A JP63106304A JP10630488A JPH01276969A JP H01276969 A JPH01276969 A JP H01276969A JP 63106304 A JP63106304 A JP 63106304A JP 10630488 A JP10630488 A JP 10630488A JP H01276969 A JPH01276969 A JP H01276969A
- Authority
- JP
- Japan
- Prior art keywords
- pixel
- error
- binarization
- level
- interest
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 41
- 238000004364 calculation method Methods 0.000 claims description 24
- 238000003860 storage Methods 0.000 claims description 18
- 238000009826 distribution Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
Landscapes
- Image Processing (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、階調画像を含む画像情報を2値再生する機能
を備えた画像信号処理装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an image signal processing device having a function of binary-reproducing image information including gradation images.
従来の技術
近年事務処理の機械化や画像通信の急速な普及に伴って
、従来の白黒2値原稿の他に、階調画像や印刷画像の高
品質での画像再現に対する要望が高まっている。2. Description of the Related Art In recent years, with the mechanization of office processing and the rapid spread of image communications, there has been an increasing demand for high-quality reproduction of gradation images and printed images in addition to conventional black-and-white binary originals.
特に、階調画像の2値画像による擬似階調再現は、表示
装置や記録装置との適合性が良く多くの提案がなされて
いる。In particular, many proposals have been made for pseudo gradation reproduction of gradation images using binary images, which is highly compatible with display devices and recording devices.
これらの擬似階調再現の1つの手段として、デノイザ法
が最もよく知られている。この方法は、予め定められた
一定面積において、その面積内に再現するドツトの数に
よって階調を再現しようとするもので、デイザマトリッ
クスに用意した閾値と入力画情報を1画素毎に比較しな
がら2値化処理を行っている。この方法は階調特性と分
解能がデイザマドvクスの大きさに直接依存し、互いに
両立できない関係にある。また印刷画像などに用いた再
現画像におけるモアレ模様の発生は避けがたい。The denoiser method is the most well-known method for reproducing these pseudo gradations. This method attempts to reproduce gradation based on the number of dots reproduced within a predetermined area, and compares the input image information with the threshold value prepared in the dither matrix for each pixel. At the same time, binarization processing is performed. In this method, the gradation characteristics and resolution directly depend on the size of the dithered Vx, and are incompatible with each other. Furthermore, the occurrence of moiré patterns in reproduced images used for printed images and the like is unavoidable.
上記階調特性と高分解能が両立し、かつモアレ模様の発
生抑制効果の大きい方法としてランダムデイザ法が提案
されておシ、その代表として誤差拡散法〔アール フロ
イド アンド エル スティンパーグアン アダプティ
ブ アルゴリズムフォー スペシャル グレー スケー
ル”ニスアイデイ 75 ダイジェスト 36〜37ペ
ージ(文献: R,FLOYD & L、5TEINB
ERG、”AnAdaptive Algorithm
for 5patial GreyScale”、
SID 75 DIGEST、 pP36−37))が
提案されている。A random dither method has been proposed as a method that achieves both the above gradation characteristics and high resolution, and is highly effective in suppressing the occurrence of moiré patterns.A representative example of this method is the error diffusion method [R.F. Special Gray Scale “Nisiday 75 Digest Pages 36-37 (Reference: R, FLOYD & L, 5TEINB
ERG, “An Adaptive Algorithm
for 5patial GrayScale”,
SID 75 DIGEST, pP36-37)) has been proposed.
第4図は上記誤差拡散法を実現するための装置の要部ブ
ロック図である。FIG. 4 is a block diagram of essential parts of an apparatus for realizing the above error diffusion method.
原画像における注目画素の座標を(x、y)とするとき
、401は誤差記憶手段、402は誤差配分係数マトリ
クスの示す注目画素の周辺の未処理画素領域、403は
座標(x、りにおける集積誤差Sxyの記憶装置、40
4は座標(x、y)における入力レベルIx)Fの入力
端子、 405はI’ xy (=Ixy+Sxy )
の入力補正手段、406は出力レベルOまたはRの2値
信号Pxyの出力端子、407は一定閾値R/2を印加
する信号端子、408は入力信号I’xyと一定閾値R
/2を比較してI’xy>R/2の時PxV=Rを、そ
の他の場合はPxy=Oを出力する2値化手段、409
はExy (= I’ xy−Pxy )の注目画素に
対する2値化誤差を求める差分演算手段である。When the coordinates of the pixel of interest in the original image are (x, y), 401 is an error storage means, 402 is an unprocessed pixel area around the pixel of interest indicated by the error distribution coefficient matrix, and 403 is an accumulation at the coordinates (x, y). Error Sxy storage device, 40
4 is the input terminal of the input level Ix)F at the coordinates (x, y), 405 is the input terminal of I' xy (=Ixy+Sxy)
406 is an output terminal for a binary signal Pxy of output level O or R, 407 is a signal terminal for applying a constant threshold value R/2, 408 is an input signal I'xy and a constant threshold value R
/2 and outputs PxV=R when I'xy>R/2, and outputs Pxy=O in other cases, 409
is a difference calculation means for calculating the binarization error for the target pixel of Exy (=I'xy-Pxy).
さて、注目画素に対する集積誤差Sxyは式(1)。Now, the integration error Sxy for the pixel of interest is expressed by equation (1).
(2)で表される。It is expressed as (2).
5xy=ΣKij −Ex−j+2.3’−i +1
・・・−・−・・−(11(但し、1.Jは誤差分配係
数マトリクス内の座標を示す)
この誤差配分係数Kijは誤差Exyの注目画素の周辺
画素への配分の重み付けをするもので前記文献では
(但し、米は注目画素の位置)
を例示している。5xy=ΣKij -Ex-j+2.3'-i +1
・・・−・−・・−(11 (However, 1.J indicates the coordinate in the error distribution coefficient matrix) This error distribution coefficient Kij weights the distribution of the error Exy to the surrounding pixels of the pixel of interest. In the above-mentioned document, (however, the position of the pixel of interest is shown) is given as an example.
第4図の構成では、上記の演算は注目画素に対する2値
化誤差Exyに、未処理の周辺画素領域402内の各画
素A−Dに対応する配分係数を乗算し、誤差記憶手段4
01内の値に加算し再び該当位置へ記憶させる誤差配分
演算手段410によって実現している。ただし、誤差記
憶手段401の画素位置Bの集積誤差は予めOにクリア
されている。In the configuration shown in FIG. 4, the above calculation is performed by multiplying the binarization error Exy for the pixel of interest by the distribution coefficient corresponding to each pixel A to D in the unprocessed surrounding pixel area 402, and
This is realized by an error distribution calculation means 410 that adds the value within 01 and stores it again at the corresponding position. However, the accumulated error at pixel position B in the error storage means 401 is cleared to O in advance.
発明が解決しようとする課題
さて上記の誤差拡散法は、デイザ法に比して階調特性や
分解能の点で優れた性能を持ち、印刷画像の再現時にお
いてもモアレ模様の出現は極めて少ない。しかし、2値
化出力であるドツトの配置については考慮されていない
ために、文字や図形などの再現では連続性に欠け、文字
品質の劣化を招いていた。Problems to be Solved by the Invention The error diffusion method described above has superior performance in terms of gradation characteristics and resolution compared to the dither method, and the appearance of moiré patterns is extremely rare even when reproducing printed images. However, since the arrangement of dots in the binarized output is not considered, the reproduction of characters, figures, etc. lacks continuity, leading to deterioration in character quality.
本発明は上記の誤差拡散法における文字および図形の連
続性を確保し、階調特性・分解能に優れかつ文字品質の
良い画像信号処理装置を提供するものである。The present invention provides an image signal processing device that ensures the continuity of characters and graphics in the above-mentioned error diffusion method, has excellent gradation characteristics and resolution, and has good character quality.
課題を解決するための手段
上記目的を達成するため、本発明の技術的解決手段は、
画素単位でサンプリングした多階調の濃度レベルを2値
化する際に、注目画素の2値化誤差をその周辺の画素位
置に対応させて記憶する誤差記憶手段と、注目画素の2
値化出力をその周辺の画素位置に対応させて記憶するた
めの2値化出力記憶手段と、注目画素の入力レベルと前
記誤差記憶手段内の注目画素位置に対応した集積誤差を
加算し補正レベルを出力する入力補正手段と、2値化す
る際の閾値レベルを前記2値化出力記憶手段内の注目画
素の周辺出力画素のドツト配置に応じた閾値レベルで出
力する周辺出力演算手段と、前記補正レベルを前記周辺
出力演算手段からの閾値レベルと比較し注目画素の2値
化レベルを決定する2値化手段と、前記補正レベルと2
値化レベルの差分すなわち2値化誤差を求める差分演算
手段と、前記誤差演算手段からの補正誤差とあらかじめ
定めた複数の配分係数から注目画素周辺の未処理画素に
対応する誤差配分値を算出し、前記誤差配分値を前記誤
差記憶手段内の対応する画素位置の集積誤差とを加算し
再び記憶させる誤差配分演算手段とを設けたものがある
。Means for Solving the Problems In order to achieve the above object, the technical solution of the present invention is as follows:
When binarizing multi-gradation density levels sampled in pixel units, an error storage means stores the binarization error of the pixel of interest in correspondence with the surrounding pixel positions;
A binarized output storage means for storing the digitized output in correspondence with its surrounding pixel position, and a correction level that adds the input level of the pixel of interest and the integrated error corresponding to the pixel position of interest in the error storage means. input correction means for outputting a pixel; peripheral output calculation means for outputting a threshold level for binarization at a threshold level corresponding to a dot arrangement of peripheral output pixels of the pixel of interest in the binarization output storage means; a binarization means that compares the correction level with a threshold level from the peripheral output calculation means and determines a binarization level of the pixel of interest;
A difference calculation means for calculating a difference in digitization level, that is, a binarization error, and a correction error from the error calculation means and a plurality of predetermined distribution coefficients to calculate an error distribution value corresponding to unprocessed pixels around the pixel of interest. , an error distribution calculation means for adding the error distribution value to the accumulated error of the corresponding pixel position in the error storage means and storing the result again.
作 用。For production.
本発明は上記構成によシ、2値化する際の閾値レベルを
注目画素の周辺出力画素のドツト配置に応じ例えば通常
処理時の閾値レベルよシ低い値に設定して、よシ黒レベ
ルになシやすくすることによシ周辺出力画素との連続性
を確保し、文字および図形の画質を向上させるものであ
る。According to the above configuration, the present invention sets the threshold level during binarization to a value lower than, for example, the threshold level during normal processing, depending on the dot arrangement of peripheral output pixels of the pixel of interest, and increases the black level. By making it easier to draw, continuity with peripheral output pixels is ensured, and the image quality of characters and graphics is improved.
実施例
第1図は本発明の一実施例における画像信号処理装置の
要部ブロック構成図である。Embodiment FIG. 1 is a block diagram of main parts of an image signal processing apparatus in an embodiment of the present invention.
同図において、101〜110の各ブロックの構成と作
用は第3図の従来の誤差拡散法における各構成401〜
410と同様である。以下、第3図の構成と異なる2値
串力記憶手段111、周辺出力演算手段113について
以下に詳細に述べる。In the same figure, the configuration and operation of each block 101 to 110 are the same as those of each block 401 to 110 in the conventional error diffusion method in FIG.
This is similar to 410. The binary skewer force storage means 111 and the peripheral output calculation means 113, which differ from the configuration shown in FIG. 3, will be described in detail below.
2値出力記憶手段111は、2値化手段lO8からの2
値化レベルPxVを注目画素の周辺出力画素位置に対応
させて記憶し、2値化する際に注目画素の周辺出力領域
112内が読出され周辺出力演算手段113に出力され
る。The binary output storage means 111 stores the 2-value output from the binary output means lO8.
The digitization level PxV is stored in correspondence with the peripheral output pixel position of the pixel of interest, and when binarizing, the peripheral output area 112 of the pixel of interest is read out and output to the peripheral output calculation means 113.
周辺出力演算手段113は、2値出力記憶手段111内
の周辺出力領域112を読出し、周辺出力領域112の
全画素あるいは一部の軍素の2値化レベルが黒レベルの
とき、2値化する際の閾値レベル107を例えば低く設
定し注目画素の2値化レベルが黒レベルになシやすくす
る。The peripheral output calculation means 113 reads out the peripheral output area 112 in the binary output storage means 111, and when the binary level of all or some of the pixels in the peripheral output area 112 is the black level, binarizes the peripheral output area 112. For example, the threshold level 107 is set low to make it easier for the binarization level of the pixel of interest to reach the black level.
第2図を用いて周辺出力手段113が参照する周辺領域
について説明する。The peripheral area referred to by the peripheral output means 113 will be explained using FIG.
第2図(JL)は、注目画素に隣接する周辺出力画素a
% dを用いたものを示すもので、周辺出力画素a
% dの全画素あるいは一部画素の2値化レベルで論理
積または論理和条件によって閾値レベルを制御するもの
である。Figure 2 (JL) shows the peripheral output pixel a adjacent to the pixel of interest.
%d is used, and the peripheral output pixel a
The threshold level is controlled by a logical product or logical sum condition at the binarization level of all or some pixels of %d.
第2図(b)は、周辺出力画素領域を広範囲にしたもの
を示すもので、黒画素のドツト配置の方向性を考慮する
もので、θl〜θ4は垂直方向・水平方向あるいは科目
方向の方向性を示すものであシ、周辺出力画素a %
hの2値化レベルによって次のように方向性を検出する
。Figure 2 (b) shows the peripheral output pixel area expanded over a wide range, and takes into consideration the directionality of the dot arrangement of black pixels, where θl to θ4 are vertical, horizontal, or subject directions. Peripheral output pixel a %
The directionality is detected as follows based on the binarization level of h.
(但し、豪は論理積を示す)
さらに、周辺出力演算手段113としては、01〜θ4
の方向性の論理和条件によって2値化する際の閾値レベ
ルBthを低く制御するものである。(However, Australia indicates logical product.) Furthermore, as the peripheral output calculation means 113, 01 to θ4
The threshold level Bth at the time of binarization is controlled to be low by the logical sum condition of the directionality.
第3図は周辺出力演算手段のブロック構成図である。3
01は周辺出力領域の論理条件を実現するための出力演
算回路、304は2値化の閾値レベルを選択するセレク
タを示す。FIG. 3 is a block diagram of the peripheral output calculation means. 3
Reference numeral 01 indicates an output arithmetic circuit for realizing the logical conditions of the peripheral output area, and 304 indicates a selector for selecting a threshold level for binarization.
出力演算回路301は、第2図(b)の論理条件を例に
とって説明すれば、
y=(a*b )+(c *d )+(e if )+
(g奈h )・・・・・・・・・ (3)
論理条件を論理式で表現すれば式(5)のようになシ、
出力演算回路としては論理積302と論理和303のゲ
ート回路によって構成できる。The output arithmetic circuit 301 can be explained using the logic condition shown in FIG. 2(b) as an example: y=(a*b)+(c*d)+(e if)+
(gnah)・・・・・・・・・ (3) If we express the logical condition as a logical formula, it will look like formula (5),
The output arithmetic circuit can be configured by a gate circuit of AND 302 and OR 303.
セレクタ304は、出力演算回路301からのセレ〉ト
信号によシ、y=oのときは通常の閾値レベルBthl
を選択し、y=1のときは通常の閾値レベルBthlよ
シ低く設定した閾値レベルBth2を選択し2値化手段
に閾値レベルBthを出力するものである。The selector 304 selects the normal threshold level Bthl when y=o according to the select signal from the output calculation circuit 301.
When y=1, a threshold level Bth2 set lower than the normal threshold level Bthl is selected and the threshold level Bth is output to the binarization means.
また、出力演算回路301をゲート回路のようなランダ
ムロジックではなくROM(リード・オンリ・メモリ)
で構成することも簡便な方法である。第2図で示した周
辺出力画素a % dまたはa〜hをアドレスとし、R
OMパターンで閾値レペルのセレクト信号として単数ま
たは複数出力することも容易に考えられる。In addition, the output calculation circuit 301 is not a random logic like a gate circuit, but a ROM (read-only memory).
It is also a simple method to configure. The peripheral output pixels a%d or a~h shown in Figure 2 are used as addresses, and R
It is easily possible to output one or more as a threshold level select signal in the OM pattern.
さらに、第2図(a)の周辺出力画素a % dの黒画
素の数または第2図(b)の周辺出力画素領域の01〜
θ4の方向を検出した数に応じて、通常処理時の閾値レ
ベルに対して複数の閾値レベルを設定することも考えら
れる。Furthermore, the number of black pixels in the peripheral output pixel a% d in FIG. 2(a) or 01 to 01 in the peripheral output pixel area in FIG. 2(b)
It is also conceivable to set a plurality of threshold levels with respect to the threshold level during normal processing, depending on the number of detected directions of θ4.
なお、閾値レベルBth2のレベルを0”と設定するこ
とにより、確立的に黒レベルになりやすくするのではな
く、論理条件を満足すると強制的に黒レベルにすること
もできる。By setting the threshold level Bth2 to 0'', it is possible to forcibly set the black level when a logical condition is satisfied, instead of making it easier to set the black level.
発明の効果 。Effect of the invention .
以上のように本発明では、2値化する際の閾値レベルを
注目画素の周辺出力画素のドツト配置に応じ、例えば通
常処理時の閾値レベルよシ低く設定することによシ、2
値化した際に確立的に黒レベルになシやすくなシ、周辺
出力画素との連続性が確保でき、文字および図形の画質
を向上させることが可能となった。As described above, in the present invention, the threshold level during binarization is set lower than the threshold level during normal processing, depending on the dot arrangement of peripheral output pixels of the pixel of interest.
When converted into a value, the black level can be easily changed, continuity with peripheral output pixels can be ensured, and the image quality of characters and graphics can be improved.
また、2値化する際の第2の閾値レベルを′0”に設定
し、強制的に黒レベルにすることでも同様の効果を得る
ことができる。Furthermore, the same effect can be obtained by setting the second threshold level at the time of binarization to '0' and forcing the black level.
第1図は本発明の一実施例における画像信号処理装置の
要部ブロック結線図、第2図は同装置における注目画素
の周辺出力画素の周辺領域を示す概念図、第3図は同装
置における周辺出力演算手段の詳細ブロック図、第4図
は従来の誤差拡散法を実施する画像信号処理装置の要部
ブロック結線図である。
101・401・・・誤差記憶手段、110・・・誤差
演算手段、111・・・2値出力記憶手段、113・・
・周辺出力演算手段、301・・・出力演算回路、30
4・・・セレクタ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名N1
図
第2図
5王目II!11男(
第3図
301於乃贋m(ロ)■含
第4図FIG. 1 is a block diagram of main parts of an image signal processing device according to an embodiment of the present invention, FIG. 2 is a conceptual diagram showing a peripheral area of a peripheral output pixel of a pixel of interest in the same device, and FIG. FIG. 4 is a detailed block diagram of the peripheral output calculation means, and is a block diagram of main parts of an image signal processing device implementing the conventional error diffusion method. 101, 401...Error storage means, 110...Error calculation means, 111...Binary output storage means, 113...
- Peripheral output calculation means, 301... Output calculation circuit, 30
4...Selector. Name of agent: Patent attorney Toshio Nakao and 1 other person N1
Figure 2 Figure 5 King II! 11th man (Fig. 3 301) ■Includes Fig. 4
Claims (1)
化する際に、注目画素の2値化誤差をその周辺の画素位
置に対応させて記憶する誤差記憶手段と、前記注目画素
の2値化出力をその周辺の画素位置に対応させて記憶す
る2値化出力記憶手段と、前記注目画素の入力レベルと
前記誤差記憶手段内の注目画素位置に対応した集積誤差
を加算し補正レベルを出力する入力補正手段と、2値化
する際の閾値レベルを前記2値化出力記憶手段内の注目
画素の周辺出力画素のドット配置に応じた閾値レベルで
出力する周辺出力演算手段と、前記補正レベルを前記周
辺出力演算手段からの閾値レベルと比較し注目画素の2
値化レベルを決定する2値化手段と、前記補正レベルと
2値化レベルの差分として2値化誤差を求める差分演算
手段と、前記誤差演算手段からの補正誤差とあらかじめ
定めた複数の配分係数から注目画素周辺の未処理画素に
対応する誤差配分値を算出し、前記誤差配分値を前記誤
差記憶手段内の対応する画素位置の集積誤差とを加算し
再び記憶させる誤差配分演算手段から成ることを特徴と
する画像信号処理装置。an error storage means for storing a binarization error of a pixel of interest in correspondence with pixel positions around it when binarizing multi-gradation density levels sampled in pixel units; and binarization of the pixel of interest. a binarized output storage means for storing the output in correspondence with its surrounding pixel position; and a correction level is output by adding the input level of the pixel of interest and the integrated error corresponding to the position of the pixel of interest in the error storage means. input correction means; peripheral output calculation means for outputting a threshold level for binarization at a threshold level corresponding to a dot arrangement of peripheral output pixels of the pixel of interest in the binarization output storage means; 2 of the pixel of interest compared with the threshold level from the peripheral output calculation means.
a binarization means for determining a digitization level; a difference calculation means for obtaining a binarization error as a difference between the correction level and the binarization level; and a correction error from the error calculation means and a plurality of predetermined distribution coefficients. Error allocation calculation means for calculating an error allocation value corresponding to unprocessed pixels around the pixel of interest from the pixel of interest, adding the error allocation value to the accumulated error of the corresponding pixel position in the error storage means, and storing the result again. An image signal processing device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63106304A JPH0824338B2 (en) | 1988-04-28 | 1988-04-28 | Image signal processor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63106304A JPH0824338B2 (en) | 1988-04-28 | 1988-04-28 | Image signal processor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01276969A true JPH01276969A (en) | 1989-11-07 |
JPH0824338B2 JPH0824338B2 (en) | 1996-03-06 |
Family
ID=14430272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63106304A Expired - Fee Related JPH0824338B2 (en) | 1988-04-28 | 1988-04-28 | Image signal processor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0824338B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0334680A (en) * | 1989-06-30 | 1991-02-14 | Canon Inc | Picture processor |
US6134355A (en) * | 1989-02-10 | 2000-10-17 | Canon Kabushiki Kaisha | Binarization using a local average, and using error diffusion |
US7106476B1 (en) | 1999-12-13 | 2006-09-12 | Ricoh Company, Ltd. | Image processing method, image processing apparatus, image forming method and recording medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58184965U (en) * | 1982-05-31 | 1983-12-08 | ユ−ザツク電子工業株式会社 | Digital notchless circuit for image signals |
JPS62139472A (en) * | 1985-12-12 | 1987-06-23 | Nec Corp | Pseudo halftone image processor |
JPH01130946A (en) * | 1987-11-16 | 1989-05-23 | Canon Inc | Image processing apparatus |
-
1988
- 1988-04-28 JP JP63106304A patent/JPH0824338B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58184965U (en) * | 1982-05-31 | 1983-12-08 | ユ−ザツク電子工業株式会社 | Digital notchless circuit for image signals |
JPS62139472A (en) * | 1985-12-12 | 1987-06-23 | Nec Corp | Pseudo halftone image processor |
JPH01130946A (en) * | 1987-11-16 | 1989-05-23 | Canon Inc | Image processing apparatus |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6134355A (en) * | 1989-02-10 | 2000-10-17 | Canon Kabushiki Kaisha | Binarization using a local average, and using error diffusion |
JPH0334680A (en) * | 1989-06-30 | 1991-02-14 | Canon Inc | Picture processor |
US7106476B1 (en) | 1999-12-13 | 2006-09-12 | Ricoh Company, Ltd. | Image processing method, image processing apparatus, image forming method and recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPH0824338B2 (en) | 1996-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10271331A (en) | Image processing method and device therefor | |
EP0781034B1 (en) | Image processing apparatus and method | |
JPH07123248A (en) | Method and device for processing picture | |
US5177795A (en) | Image processing apparatus | |
JPH03286680A (en) | Picture processing unit | |
JP2543267B2 (en) | Image reduction device and image display device | |
JP3119150B2 (en) | Image processing apparatus and image processing method | |
US6385344B2 (en) | Image processing apparatus | |
JPH01276970A (en) | Picture signal processor | |
JPH01276969A (en) | Picture signal processor | |
JP2972172B2 (en) | Halftone area detection method | |
JPH1127528A (en) | Pseudo-medium gradation processing method, device and record medium therefor | |
JP3295561B2 (en) | Image processing device | |
JPS6359272A (en) | Picture processor | |
JP3256267B2 (en) | Image processing device | |
JP2851662B2 (en) | Image processing device | |
JPH11146203A (en) | Image processor and storage medium storing program about device | |
JP4454879B2 (en) | Image processing apparatus, image processing method, and recording medium | |
JP3260815B2 (en) | Image processing device | |
JP2857906B2 (en) | Halftone binarization processor | |
JP2860039B2 (en) | Pseudo halftone image reduction device | |
JP2935435B2 (en) | Halftone image processing device | |
JP2972171B2 (en) | Halftone area detection method | |
JP3245586B2 (en) | Extreme pixel detector | |
JP3253140B2 (en) | Image processing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |