JPH01276705A - Rare earth resin permanent magnet and manufacture thereof - Google Patents
Rare earth resin permanent magnet and manufacture thereofInfo
- Publication number
- JPH01276705A JPH01276705A JP63104208A JP10420888A JPH01276705A JP H01276705 A JPH01276705 A JP H01276705A JP 63104208 A JP63104208 A JP 63104208A JP 10420888 A JP10420888 A JP 10420888A JP H01276705 A JPH01276705 A JP H01276705A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- rare earth
- thin piece
- magnetic thin
- resin permanent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/058—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IVa elements, e.g. Gd2Fe14C
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/057—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
- H01F1/0571—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は希土類遷移金属異方性樹脂結合永久磁石および
その製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rare earth transition metal anisotropic resin bonded permanent magnet and a method for manufacturing the same.
[従来の技術]
希土類遷移金属合金において希土類金属と遷移金属の比
が2;17である金属間化合物が理論的に極めて高い磁
気特性[(BH)wax 〜50HGOe]を有するこ
とが発見されて以来、同系化合物を主体とする永久磁石
を得る試みが種々実験されてきた。そして5s−Co−
Cu−Fe系金属間化合物では(Bll)max 〜3
0HGOeの高磁気特性が得られ、さらに最近ではNd
2 Fe1JB系金属間他金属T: (BH)maX〜
40HGOeの高磁気特性が得られるようになった。N
dFeB系永久磁石については従来より急冷凝固法によ
り薄帯を得、粒径200−程度に粉砕して永久磁石また
は樹脂結合永久磁石の材料とたり、またその薄帯を70
0℃程度の温度でホットプレスすることにより緻密化し
、熱間塑性変形加工を施すことにより磁気的異方性材料
を得、粒径200縛程度に粉砕し磁場中配向して樹脂等
で固化することにより、異方性永久磁石が得られること
も提案されれている。[Prior Art] Ever since it was discovered that an intermetallic compound with a rare earth metal to transition metal ratio of 2:17 in a rare earth transition metal alloy has theoretically extremely high magnetic properties [(BH)wax ~ 50HGOe]. Various attempts have been made to obtain permanent magnets based on similar compounds. And 5s-Co-
For Cu-Fe-based intermetallic compounds, (Bll)max ~3
High magnetic properties of 0HGOe have been obtained, and more recently Nd
2 Fe1JB intermetallic other metal T: (BH)max~
High magnetic properties of 40HGOe can now be obtained. N
For dFeB permanent magnets, thin ribbons are conventionally obtained by the rapid solidification method and crushed to particles with a particle size of about 200 mm to be used as a material for permanent magnets or resin-bonded permanent magnets.
It is densified by hot pressing at a temperature of about 0°C, and a magnetically anisotropic material is obtained by hot plastic deformation processing, which is crushed to a particle size of about 200 particles, oriented in a magnetic field, and solidified with resin, etc. It has also been proposed that an anisotropic permanent magnet can be obtained by this method.
[発明が解決しようとする課題]
しかしながら従来の急冷凝固法による永久磁石およびそ
の製造方法においては、急冷薄帯を粉砕し固化したもの
では等方性永久磁石しか得られず、ar7!i気特性を
有する異方性永久磁石を得るには、薄帯をホットプレス
し塑性変形した後粉砕し固化する工程を経なければなら
ず、コスト面において割高となり、また多山生産するこ
とができないという欠点があった。[Problems to be Solved by the Invention] However, in the conventional permanent magnet and its manufacturing method using the rapid solidification method, only an isotropic permanent magnet can be obtained by crushing and solidifying a rapidly solidified ribbon, and ar7! In order to obtain an anisotropic permanent magnet with i-characteristics, it is necessary to go through a process of hot-pressing a thin ribbon, plastically deforming it, and then crushing and solidifying it, which is expensive in terms of cost and requires production in large quantities. The drawback was that it couldn't be done.
本発明はこの点を鑑みて、製造工程を省略化し、多量生
産ができる急冷凝固法による異方性永久磁石およびその
製造方法を提供することを目的とする。In view of this point, it is an object of the present invention to provide an anisotropic permanent magnet by a rapid solidification method that simplifies the manufacturing process and can be mass-produced, and a method for manufacturing the same.
[課題を解決するための手段〕
本発明は、R(T1.M、) 2の一般式で示され、R
は希土類、TはFe、 Coを主体とする遷移金属1M
はB、 C,si、 AJを主体とするメタロイド元素
で、0.02≦y≦0.15. 5≦7≦9で構成され
る合金を急冷することにより得られる磁性薄片を、面方
向に配列結合したことを特徴とする磁気異方性希土類樹
脂永久磁石であり、合金の急冷速度は10’〜106℃
/secに設定すること、この磁性薄片を0.2m X
0.03m X 1 m以上にすることが好ましく、
磁性薄片の良さ方向もしくは巾方向に着磁することによ
り優先着磁方向を設定することができる。合金の急冷速
度が104℃/sec未満であると粉砕が困難となり、
106℃/secを越えると合金がアモルファス化し保
磁力が発生しない、急冷体は例えば単ロール急冷法によ
れば巾0.5” 3m、長さ2〜100In!a。[Means for Solving the Problems] The present invention is represented by the general formula R(T1.M,) 2, and R
is a rare earth, T is a transition metal mainly composed of Fe and Co 1M
is a metalloid element mainly composed of B, C, si, and AJ, and 0.02≦y≦0.15. This is a magnetically anisotropic rare earth resin permanent magnet characterized by magnetic flakes obtained by quenching an alloy composed of 5≦7≦9 arranged and bonded in the plane direction, and the quenching rate of the alloy is 10'. ~106℃
/sec, this magnetic thin piece should be set at 0.2m x
It is preferable to make it 0.03 m x 1 m or more,
A preferential magnetization direction can be set by magnetizing the magnetic thin piece in the length direction or width direction. If the quenching rate of the alloy is less than 104°C/sec, it will be difficult to crush the alloy.
If the temperature exceeds 106° C./sec, the alloy becomes amorphous and no coercive force is generated. For example, the quenched body is 0.5” 3 m wide and 2 to 100 In!a long by the single roll quenching method.
厚さ0.05m位のリボンが得られるが、これを粉砕、
切断等により0.2mw X 0.03aa+ X 1
cm以上の磁性薄片を得ないと、磁気異方性が得られ
ないためそれぞれ限定される。急冷リボンは500〜9
00℃で熱処理を施すことにより保磁力がより高められ
る。A ribbon with a thickness of about 0.05 m is obtained, which is crushed,
Due to cutting etc. 0.2mw x 0.03aa+ x 1
Unless a magnetic thin piece of cm or more is obtained, magnetic anisotropy cannot be obtained, so there are limitations. Quenching ribbon is 500-9
Coercive force can be further increased by heat treatment at 00°C.
[実施例1]
Nd [(18□、7°00.3 )0.94B0.0
B16.3合金30gを石英管に封入し、Ar雰囲気内
にて1450℃に加熱溶融し、直径0.7Mのオリフィ
スより4秒間で噴出し、周速15m/sの単ロール上で
急冷凝固した。得られた巾lrn!R,肉厚0.03m
+のりボンを第1図に示すようにリボン1艮手方向に約
10aIごとに切断して磁性薄片2を得、これを長さ方
向に配列しエポキシ樹脂にて固化し、形成された永久磁
石体を振動型磁力計により磁気特性を測定したところ残
留磁化(Br)、保磁力(iHc)最大エネルギー積(
[Bll]max)は第1表に示すよとなり、長さ方向
に磁気異方性を有する樹脂結合永久磁石であった。[Example 1] Nd [(18□, 7°00.3)0.94B0.0
30g of B16.3 alloy was sealed in a quartz tube, heated and melted at 1450°C in an Ar atmosphere, ejected for 4 seconds from an orifice with a diameter of 0.7M, and rapidly solidified on a single roll at a circumferential speed of 15m/s. . Obtained width lrn! R, wall thickness 0.03m
+ As shown in Fig. 1, magnetic thin pieces 2 are obtained by cutting the glue ribbon into pieces of about 10 aI in the direction of the ribbon, which are then arranged in the length direction and solidified with epoxy resin to form a permanent magnet. When the magnetic properties of the body were measured using a vibrating magnetometer, the residual magnetization (Br), coercive force (iHc), and maximum energy product (
[Bll]max) was as shown in Table 1, and it was a resin-bonded permanent magnet having magnetic anisotropy in the length direction.
[実施例2]
” (FeO,94B0.06)6.5合金30gを石
英管に封入し、Ar雰囲気内にて1450℃に加熱溶融
し、直径0.7.のオリフィスより4秒間で噴出し、周
速20m/sの単ロール上で急冷凝固した。これを65
0℃、2時間真空中で熱処理し、得られたリボンを実施
例1と同様に長さ約10#I11ごとに切断し、長さ方
向に配列しエポキシ樹脂にて固化し、形成された永久磁
石体の磁気特性を測定しとなり、長さ方向に磁気異方性
を有する樹脂結合永久磁石であった。[Example 2] 30 g of (FeO, 94B0.06)6.5 alloy was sealed in a quartz tube, heated and melted at 1450°C in an Ar atmosphere, and ejected from an orifice with a diameter of 0.7 in 4 seconds. , was rapidly solidified on a single roll with a circumferential speed of 20 m/s.
Heat treated in vacuum at 0°C for 2 hours, and the obtained ribbon was cut into lengths of approximately 10 #I11 in the same manner as in Example 1, arranged in the length direction, and solidified with epoxy resin to form permanent The magnetic properties of the magnet body were measured, and it was found to be a resin-bonded permanent magnet with magnetic anisotropy in the length direction.
[発明の効果]
本発明により、前記急冷速度で得られた急冷リボンはア
モルファス化せず磁気異方性を有するため、この異方性
化したリボンを粉砕、切断して配列するだけで樹脂永久
磁石が形成できるので製造工程が簡略化でき、粉砕、切
断した磁性薄片は粒度が非常に粗いために酸化、@蝕の
しにくい永久磁石となった。[Effects of the Invention] According to the present invention, the quenched ribbon obtained at the above-mentioned quenching rate does not become amorphous and has magnetic anisotropy, so that the resin can be made permanent by simply crushing, cutting and arranging the anisotropic ribbon. Since a magnet can be formed, the manufacturing process can be simplified, and the crushed and cut magnetic flakes have extremely coarse grain sizes, making them permanent magnets that are less susceptible to oxidation and corrosion.
第1図は本発明における磁性薄片を得る一例を示す斜視
図。
1:リボン 2:磁性薄片特許出願人 並
木精密宝石株式会社
図 面
第1図FIG. 1 is a perspective view showing an example of obtaining a magnetic thin piece according to the present invention. 1: Ribbon 2: Magnetic thin piece Patent applicant Namiki Precision Jewel Co., Ltd. Figure 1
Claims (5)
され、Rは希土類,TはFe,Coを主体とする遷移金
属,MはB,C,Si,Alを主体とするメタロイド元
素で、0.02≦y≦0.15,5≦z≦9で構成され
る合金を急冷することにより得られる磁性薄片を、面方
向に配列結合したことを特徴とする磁気異方性希土類樹
脂永久磁石。(1) It is represented by the general formula R( T_1_-_yM_y)_z, where R is a rare earth, T is a transition metal mainly composed of Fe and Co, and M is a metalloid element mainly composed of B, C, Si, and Al. A magnetically anisotropic rare earth resin permanent magnet characterized in that magnetic flakes obtained by rapidly cooling an alloy composed of 0.02≦y≦0.15, 5≦z≦9 are arranged and bonded in the plane direction. .
に設定した請求項(1)記載の磁気異方性希土類樹脂永
久磁石の製造方法。(2) The quenching rate of the alloy is 10^4 to 10^6℃/sec.
A method for manufacturing a magnetically anisotropic rare earth resin permanent magnet according to claim (1).
1)記載の磁気異方性希土類樹脂永久磁石の製造方法。(3) Claim in which the rapidly cooled body is heat treated at 500 to 900°C
1) The method for producing the magnetically anisotropic rare earth resin permanent magnet.
上である請求項(1)記載の磁気異方性希土類樹脂永久
磁石。(4) The magnetically anisotropic rare earth resin permanent magnet according to claim (1), wherein the magnetic thin piece has a size of 0.2 mm x 0.03 mm x 1 mm or more.
とにより優先着磁方向を設定した磁気異方性希土類樹脂
永久磁石。(5) A magnetically anisotropic rare earth resin permanent magnet in which a preferential magnetization direction is set by magnetizing the magnetic thin piece in the length direction or width direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63104208A JPH01276705A (en) | 1988-04-28 | 1988-04-28 | Rare earth resin permanent magnet and manufacture thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63104208A JPH01276705A (en) | 1988-04-28 | 1988-04-28 | Rare earth resin permanent magnet and manufacture thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01276705A true JPH01276705A (en) | 1989-11-07 |
Family
ID=14374553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63104208A Pending JPH01276705A (en) | 1988-04-28 | 1988-04-28 | Rare earth resin permanent magnet and manufacture thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01276705A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1116715A (en) * | 1997-06-26 | 1999-01-22 | Sumitomo Special Metals Co Ltd | Manufacturing method of laminated permanent magnet |
JPH1126272A (en) * | 1997-07-04 | 1999-01-29 | Sumitomo Special Metals Co Ltd | Manufacture of laminated permanent magnet |
EP0921533A1 (en) * | 1997-06-26 | 1999-06-09 | Sumitomo Special Metals Co., Ltd. | Method of producing laminated permanent magnet |
WO2000033325A1 (en) * | 1998-12-03 | 2000-06-08 | Institut für Festkörper- und Werkstofforschung Dresden e.V. | Hard magnetic alloy and casting mould produced therewith |
GB2424901A (en) * | 2005-04-01 | 2006-10-11 | Neomax Co Ltd | A magnetic Fe-rare earth-Al/Si alloy |
US7578892B2 (en) | 2005-03-31 | 2009-08-25 | Hitachi Metals, Ltd. | Magnetic alloy material and method of making the magnetic alloy material |
JP2013042004A (en) * | 2011-08-17 | 2013-02-28 | Minebea Co Ltd | METHOD OF MANUFACTURING α-Fe/R2TM14B SYSTEM NANOCOMPOSITE MAGNET |
JP2017011283A (en) * | 2016-08-10 | 2017-01-12 | ミネベア株式会社 | METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET |
-
1988
- 1988-04-28 JP JP63104208A patent/JPH01276705A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1116715A (en) * | 1997-06-26 | 1999-01-22 | Sumitomo Special Metals Co Ltd | Manufacturing method of laminated permanent magnet |
EP0921533A1 (en) * | 1997-06-26 | 1999-06-09 | Sumitomo Special Metals Co., Ltd. | Method of producing laminated permanent magnet |
EP0921533A4 (en) * | 1997-06-26 | 2001-03-21 | Sumitomo Spec Metals | PROCESS FOR FORMING PERMANENT MAGNETS |
JPH1126272A (en) * | 1997-07-04 | 1999-01-29 | Sumitomo Special Metals Co Ltd | Manufacture of laminated permanent magnet |
WO2000033325A1 (en) * | 1998-12-03 | 2000-06-08 | Institut für Festkörper- und Werkstofforschung Dresden e.V. | Hard magnetic alloy and casting mould produced therewith |
US7578892B2 (en) | 2005-03-31 | 2009-08-25 | Hitachi Metals, Ltd. | Magnetic alloy material and method of making the magnetic alloy material |
GB2424901A (en) * | 2005-04-01 | 2006-10-11 | Neomax Co Ltd | A magnetic Fe-rare earth-Al/Si alloy |
GB2424901B (en) * | 2005-04-01 | 2011-11-09 | Neomax Co Ltd | Method of making a sintered body of a magnetic alloyl |
JP2013042004A (en) * | 2011-08-17 | 2013-02-28 | Minebea Co Ltd | METHOD OF MANUFACTURING α-Fe/R2TM14B SYSTEM NANOCOMPOSITE MAGNET |
JP2017011283A (en) * | 2016-08-10 | 2017-01-12 | ミネベア株式会社 | METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4197146A (en) | Molded amorphous metal electrical magnetic components | |
JPH0420242B2 (en) | ||
JPS60162750A (en) | Rare earth magnet and its production | |
JPH0257662A (en) | Rapidly cooled thin strip alloy for bond magnet | |
JPH01276705A (en) | Rare earth resin permanent magnet and manufacture thereof | |
JP6042602B2 (en) | Method for producing α-Fe / R2TM14B nanocomposite magnet | |
US4983230A (en) | Platinum-cobalt alloy permanent magnets of enhanced coercivity | |
JPS6472502A (en) | Permanent magnet for accelerating particle beam | |
US4810309A (en) | Method of manufacturing flakes from a magnetic material having a preferred crystallite orientation, flakes and magnets manufactured therefrom | |
JPH04147604A (en) | Magnetic anisotropy magnet and manufacture thereof | |
JPH01261803A (en) | Manufacture of rare-earth permanent magnet | |
Sakamoto et al. | Cu‐added Nd‐Fe‐B anisotropic powder for permanent magnet use | |
JPH08260112A (en) | Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet | |
JPS62276802A (en) | Manufacture of rare earth magnet | |
JPS5927756A (en) | Production of thin sheet of permanent magnet material | |
JP2017011283A (en) | METHOD FOR MANUFACTURING α-Fe/R2TM14B NANOCOMPOSITE MAGNET | |
JP2937680B2 (en) | Magnetoresistive element and method of manufacturing the same | |
JPH0270011A (en) | Production of permanent magnet material | |
JPS63312915A (en) | Production of permanent magnet | |
JPS63211705A (en) | Anisotropic permanent magnet and manufacture thereof | |
JPH01255620A (en) | Production of permanent magnet material and bonded magnet | |
JPS61133317A (en) | Production of permanent magnet | |
JPS61270316A (en) | Production of raw material powder for resin bonded permanent alloy | |
JPH02297911A (en) | Manufacture of radially oriented magnet | |
JPS5927757A (en) | Method and device for producing thin sheet of anisotropic permanent magnet material |