[go: up one dir, main page]

JPH01275762A - Film-forming apparatus - Google Patents

Film-forming apparatus

Info

Publication number
JPH01275762A
JPH01275762A JP10659788A JP10659788A JPH01275762A JP H01275762 A JPH01275762 A JP H01275762A JP 10659788 A JP10659788 A JP 10659788A JP 10659788 A JP10659788 A JP 10659788A JP H01275762 A JPH01275762 A JP H01275762A
Authority
JP
Japan
Prior art keywords
gas
substrate
film
reaction chamber
film forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10659788A
Other languages
Japanese (ja)
Inventor
Atsushi Watanabe
渡辺 敦司
Daigoro Okubo
大五郎 大久保
Kazumasa Okawa
大川 和昌
Hisashi Higuchi
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP10659788A priority Critical patent/JPH01275762A/en
Publication of JPH01275762A publication Critical patent/JPH01275762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the use efficiency of a gas for film formation and also to increase film forming speed by introducing a gas for film formation into a reaction chamber in which a substrate is placed and also spraying a decomposed product gas formed by means of arc discharge on the substrate. CONSTITUTION:A substrate 5 is placed in a cylindrical reaction chamber 1 consisting of a electric conductor in parallel with the central axis of the chamber 1 and is rotated by means of a motor 6. An SiH4 gas is introduced through gas-introducing parts 2 into the above reaction chamber 1 and a plasma gas prepared by decomposing H2 gas by means of arc discharge is sprayed through gas injection parts 3 on the substrate 5, by which an a-Si film can be efficiently formed on the peripheral surface of the substrate at high speed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えばアーク放電により感光体ドラムを製造す
ることができる成膜装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a film forming apparatus capable of manufacturing a photoreceptor drum by, for example, arc discharge.

〔従来技術及びその問題点〕[Prior art and its problems]

アモルファスシリコン感光体ドラムには耐摩耗性、耐熱
性、光感度特性並びに無公害性などの利点があり、市場
に急速に浸透しつつある。
Amorphous silicon photoreceptor drums have advantages such as abrasion resistance, heat resistance, photosensitivity, and non-pollution properties, and are rapidly penetrating the market.

このアモルファスシリコン感光体ドラム(以下、アモル
ファスシリコンをa−Stと略す)を製造する場合、5
iHa+Si*Hb+CH*+CzHz*GeHaなど
の周期律表第1Vb族元素化合物ガス並びにBgH&、
PHs、O□、N2などのドーパントガス、H,、He
などのキャリアーガスを用いて、この成膜用ガスをグロ
ー放電分解装置に導入して気相成長させる。
When manufacturing this amorphous silicon photoreceptor drum (hereinafter amorphous silicon is abbreviated as a-St), 5
Compound gases of Group 1 Vb elements of the periodic table such as iHa+Si*Hb+CH*+CzHz*GeHa and BgH&,
Dopant gas such as PHs, O□, N2, H,, He
This film-forming gas is introduced into a glow discharge decomposition apparatus to perform vapor phase growth using a carrier gas such as .

しかしながら、上記グロー放電分解装置によれば、成膜
用ガスの構成元素のうち約7〜10χが成膜に寄与して
いるにすぎず、グロー放電分解されても成膜に寄与しな
かった残留ガスは装置より排出される。従って、成膜用
ガスの利用効率が著しく小さい。
However, according to the above-mentioned glow discharge decomposition apparatus, only about 7 to 10χ of the constituent elements of the film-forming gas contribute to film formation, and even after glow discharge decomposition, the remaining elements that do not contribute to film formation remain. Gas is exhausted from the device. Therefore, the utilization efficiency of the film-forming gas is extremely low.

また、上記グロー放電分解装置を用いた場合、その成膜
速度が小さく、これにより、製造効率が低下し、製造コ
ストが大きくなるという問題もある。
Further, when the above-mentioned glow discharge decomposition apparatus is used, there is also a problem that the film formation rate is low, which reduces manufacturing efficiency and increases manufacturing cost.

〔発明の目的〕[Purpose of the invention]

従って本発明の目的は叙上の問題点を解決して成膜用ガ
スの利用効率を高め、しかも、成膜速度を大きくし、こ
れにより、製造効率及び製造コストを改善した成膜装置
を提供することにある。
Therefore, an object of the present invention is to provide a film forming apparatus that solves the above-mentioned problems, increases the efficiency of use of film forming gas, increases the film forming speed, and thereby improves manufacturing efficiency and manufacturing cost. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の成膜装置は、成膜用ガスが導入される反応室の
内部に基体が設置され、該ガスのアーク放電により生成
された分解生成ガスが該基体上に吹き付けられて気相成
長させることを特徴とする。
In the film forming apparatus of the present invention, a substrate is installed inside a reaction chamber into which a film forming gas is introduced, and a decomposition gas generated by arc discharge of the gas is blown onto the substrate to perform vapor phase growth. It is characterized by

〔実施例〕〔Example〕

以下、本発明の成膜装置を第1図及び第2図に示す実施
例によりa−Sii光体ドラムを製造する場合を例にと
って説明する。
EMBODIMENT OF THE INVENTION Hereinafter, the film-forming apparatus of this invention will be explained by taking as an example the case where an a-Sii optical drum is manufactured by the embodiment shown in FIGS. 1 and 2.

第1図は本発明成膜装置、第2図は同装置に付設された
ガス噴出部である。
FIG. 1 shows a film forming apparatus according to the present invention, and FIG. 2 shows a gas ejection section attached to the same apparatus.

第1図において、lは導電体から成る円筒形状の反応室
、1aはその周面であり、周面1aには複数個のガス導
入部2とガス噴出部3が形成され、ガス導入部2よりS
iH4ガスが、ガス噴出部3よりH2ガスが噴出される
。また、反応室1の内部に円筒状基板5が配置されるに
当たって、基板5の中心軸が反応室1の中心軸と実質上
平行になるように設定され、そして、成膜中、基板5は
モータ6により回転される。尚、7は反応ガスの分解残
余ガスを排出するためのガス排出部である。
In FIG. 1, l is a cylindrical reaction chamber made of a conductor, 1a is its circumferential surface, and a plurality of gas introduction sections 2 and gas ejection sections 3 are formed on the circumference surface 1a. More S
The iH4 gas and the H2 gas are ejected from the gas ejection section 3. Further, when the cylindrical substrate 5 is placed inside the reaction chamber 1, the central axis of the substrate 5 is set to be substantially parallel to the central axis of the reaction chamber 1, and during film formation, the substrate 5 is It is rotated by a motor 6. In addition, 7 is a gas discharge part for discharging the decomposition residual gas of the reaction gas.

第2図はガス噴出部3の拡大図であり、8は円筒状の絶
縁性外部配管、9は円筒状の導電性内部配管であり、外
部配管8と内部配管9の間隙を通してH2ガスが流れる
。外部配管8は周面1aと接続されており、一方、内部
配管9の先端部9aは先細りとなり、その先端が周面1
aの厚み方向の概ね中心に位置されている。そして、周
面1aには先端部9aに対応してテーパ部10が形成さ
れ、先端部9aとテーパ部10によりノズルが形成され
、H2ガスがノズルを介してジェット流となって噴出さ
れる。
FIG. 2 is an enlarged view of the gas ejection part 3, where 8 is a cylindrical insulating external pipe, 9 is a cylindrical conductive internal pipe, and H2 gas flows through the gap between the external pipe 8 and the internal pipe 9. . The external pipe 8 is connected to the circumferential surface 1a, while the distal end 9a of the internal pipe 9 is tapered, and the distal end thereof is connected to the circumferential surface 1a.
It is located approximately at the center in the thickness direction of a. A tapered part 10 is formed on the circumferential surface 1a in correspondence with the tip 9a, and a nozzle is formed by the tip 9a and the tapered part 10, and the H2 gas is ejected as a jet stream through the nozzle.

11はアーク放電用直流電源であり、この直流電源11
の出力両端子はそれぞれ内部配管9と周面1aに接続さ
れている。そして、H2ガスをノズルより噴出させると
同時にノズルにアーク放電を発生させた場合、プラズマ
化された水素ガスが周面1aより噴出される。
11 is a DC power supply for arc discharge, and this DC power supply 11
Both output terminals of are connected to the internal pipe 9 and the peripheral surface 1a, respectively. When H2 gas is ejected from the nozzle and at the same time an arc discharge is generated in the nozzle, plasma hydrogen gas is ejected from the circumferential surface 1a.

このアーク放電が発生した場合、その放電部付近は著し
く高温になり、そのために周面1a及び内部配管9を冷
却させる必要がある。従って、冷却水を通過させるため
に周面1aには冷却用細管12が形成され、一方、内部
配管9の内部には冷却水輸送管13が形成され、これに
より、放電部付近が一定以上の温度にまで高められるの
が防止される。
When this arc discharge occurs, the temperature near the discharge portion becomes extremely high, and therefore it is necessary to cool the peripheral surface 1a and the internal pipe 9. Therefore, a cooling thin tube 12 is formed on the circumferential surface 1a to allow the cooling water to pass through, and a cooling water transport pipe 13 is formed inside the internal piping 9. This prevents the temperature from rising too high.

上記構成の成膜装置によれば、SiH4ガスがガス導入
部2を介して反応室1の内部へ入り、また、■2ガスを
アーク放電により分解し、そのプラズマガスがガス噴出
部3により吹き出され、これにより、ガス噴出部3より
基板5に至る間でSiH,ガスがこのプラズマにより分
解され、Sin、分解生成ガスがH2分分解残余ガスと
もに基板周面に吹き付けられる。その際、基板5が回転
され、また、反応圧力、基板温度、アーク電流、アーク
電圧などの条件を設定し、これにより、基板周面にa−
3i膜が形成される。
According to the film forming apparatus having the above configuration, the SiH4 gas enters the reaction chamber 1 through the gas introduction part 2, and (2) the gas is decomposed by arc discharge, and the plasma gas is blown out by the gas jetting part 3. As a result, SiH and gas are decomposed by the plasma from the gas jetting section 3 to the substrate 5, and the Sin and decomposition product gas are blown onto the peripheral surface of the substrate together with the H2 decomposition residual gas. At that time, the substrate 5 is rotated, and conditions such as reaction pressure, substrate temperature, arc current, and arc voltage are set.
A 3i film is formed.

このようなアーク放電によれば、グロー放電に比べて単
位体積当たりの電力密度が著しく大きくなり、その結果
、5illガスの約50χを成膜に寄与させることがで
き、しかも、その成長速度を顕著に高めることができる
According to such arc discharge, the power density per unit volume is significantly higher than that of glow discharge, and as a result, approximately 50χ of 5ill gas can be contributed to film formation, and the growth rate is significantly increased. can be increased to

また、a−5i膜以外にも、SiH4ガスにGeH4ガ
スを加工た場合にはアモルファスシリコンゲルマニウム
膜を形成することができ、また、SiH4ガスにCH4
ガスを加えた場合にはアモルファスシリコンカーバイド
膜を形成することができる。
In addition to the a-5i film, an amorphous silicon germanium film can be formed by processing GeH4 gas into SiH4 gas, and CH4
When gas is added, an amorphous silicon carbide film can be formed.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の成膜装置によれば、グロー放電分
解装置に比べてガス利用効率が高く、しかも、成膜速度
が大きく、これにより、製造効率及び製造コストを改善
することができる。
As described above, the film forming apparatus of the present invention has a higher gas utilization efficiency and a faster film forming rate than a glow discharge decomposition apparatus, thereby improving manufacturing efficiency and manufacturing cost.

また、本発明の電子写真感光体用成膜装置によれば、H
2ガスを用いてアーク放電を発生させ、そのプラズマに
SiH4ガスを吹き込んでおり、そのため、アーク放電
発生付近、即ち、ノズル部に成膜されない。しかも、ノ
ズル部と基板の間隔並びに水素ガスなどの噴出量を制御
すれば、成膜部位を限られた所定の位置に設定すること
ができる。従って、このような理由により反応室内部が
成膜用ガスの分解生成物により汚染されないという利点
がある。
Further, according to the film forming apparatus for an electrophotographic photoreceptor of the present invention, H
Arc discharge is generated using two gases, and SiH4 gas is blown into the plasma. Therefore, a film is not formed near the area where the arc discharge occurs, that is, at the nozzle portion. Furthermore, by controlling the distance between the nozzle section and the substrate and the amount of hydrogen gas etc. ejected, the film forming region can be set at a limited predetermined position. Therefore, for this reason, there is an advantage that the interior of the reaction chamber is not contaminated by decomposition products of the film-forming gas.

尚、本発明の成膜装置は上記の実施例に限定されず、本
発明の要旨を逸脱しない範囲において種々の弯更、改善
などは何隻差支えない。
The film forming apparatus of the present invention is not limited to the above-described embodiments, and any number of modifications and improvements may be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の成膜装置の概略図、第2図はこの装置
に付設されたガス噴出部の拡大概略図である。 1・・・反応室   2・・・ガス導入部3・・・ガス
噴出部  5・・・円筒状基板特許出願人 (663)
京セラ株式会社代表者安城欽寿
FIG. 1 is a schematic diagram of a film forming apparatus according to an embodiment, and FIG. 2 is an enlarged schematic diagram of a gas ejection section attached to this apparatus. 1...Reaction chamber 2...Gas introduction section 3...Gas ejection section 5...Cylindrical substrate patent applicant (663)
Kinju Anjo, Representative of Kyocera Corporation

Claims (2)

【特許請求の範囲】[Claims] (1)成膜用ガスが導入される反応室の内部に基体が設
置され、該ガスのアーク放電により生成された分解生成
ガスが上記基体上に吹き付けられて気相成長させること
を特徴とする成膜装置。
(1) A substrate is installed inside a reaction chamber into which a film-forming gas is introduced, and decomposition gas generated by arc discharge of the gas is blown onto the substrate to cause vapor phase growth. Film deposition equipment.
(2)前記成膜用ガスのアモルファスシリコン成膜用ガ
スである請求項(1)記載の成膜装置。
(2) The film forming apparatus according to claim 1, wherein the film forming gas is an amorphous silicon film forming gas.
JP10659788A 1988-04-28 1988-04-28 Film-forming apparatus Pending JPH01275762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10659788A JPH01275762A (en) 1988-04-28 1988-04-28 Film-forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10659788A JPH01275762A (en) 1988-04-28 1988-04-28 Film-forming apparatus

Publications (1)

Publication Number Publication Date
JPH01275762A true JPH01275762A (en) 1989-11-06

Family

ID=14437566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10659788A Pending JPH01275762A (en) 1988-04-28 1988-04-28 Film-forming apparatus

Country Status (1)

Country Link
JP (1) JPH01275762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200279B4 (en) * 2001-01-11 2006-08-17 Samsung Electronics Co., Ltd., Suwon Gas injector arrangement with gas injectors of a ceramic material block with gas injector holes extending therethrough, and an etching device containing the gas injector assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10200279B4 (en) * 2001-01-11 2006-08-17 Samsung Electronics Co., Ltd., Suwon Gas injector arrangement with gas injectors of a ceramic material block with gas injector holes extending therethrough, and an etching device containing the gas injector assembly

Similar Documents

Publication Publication Date Title
US5030476A (en) Process and apparatus for the formation of a functional deposited film on a cylindrical substrate by means of microwave plasma chemical vapor deposition
EP0388861B1 (en) Method for making diamond and apparatus therefor
US5443645A (en) Microwave plasma CVD apparatus comprising coaxially aligned multiple gas pipe gas feed structure
KR880012791A (en) Diamond deposition apparatus and method
US20050000441A1 (en) Process and device for depositing in particular crystalline layers on in particular crystalline substrates
JPWO2007105428A1 (en) Nozzle for plasma generator, plasma generator, plasma surface treatment apparatus, plasma generation method and plasma surface treatment method
US4545328A (en) Plasma vapor deposition film forming apparatus
WO1997008361A1 (en) Surface treatment apparatus using gas jet
KR100288606B1 (en) Plasma processing apparatus
JP2003073835A (en) Plasma cvd apparatus and method for forming plasma cvd film
JPH01275762A (en) Film-forming apparatus
KR20020010465A (en) Semiconductor fabricating apparatus having improved shower head
JP3406936B2 (en) Plasma CVD method using ultrashort wave and plasma CVD apparatus
JPS5931977B2 (en) Plasma CVD equipment
JPH07335563A (en) Plasma cvd device
JPS6273622A (en) Formation of amorphous semiconductor film
JPH07330488A (en) Plasma cvd apparatus
JP2561129B2 (en) Thin film forming equipment
JPH0241901B2 (en)
JPH09283449A (en) Plasma chemical vapor deposition system
JP2023117389A (en) Batch type substrate processing device
JP2000104174A (en) Production of semiconductor layer, production of photovoltaic element and production device for semiconductor layer
KR20150000589A (en) Preparation of polycrystalline silicon by using combined plasma
Theophile et al. Development of a novel DC plasma source for coating and surface modification under atmospheric pressure
Schade et al. A new helix plasma source for VHF PECVD of a-Si: H