[go: up one dir, main page]

JPH01275410A - Production of metal oxide fine powder - Google Patents

Production of metal oxide fine powder

Info

Publication number
JPH01275410A
JPH01275410A JP63103999A JP10399988A JPH01275410A JP H01275410 A JPH01275410 A JP H01275410A JP 63103999 A JP63103999 A JP 63103999A JP 10399988 A JP10399988 A JP 10399988A JP H01275410 A JPH01275410 A JP H01275410A
Authority
JP
Japan
Prior art keywords
nozzle
metal powder
powder
gas
cylindrical burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103999A
Other languages
Japanese (ja)
Inventor
Akio Nishida
明生 西田
Akira Ueki
明 植木
Yoshikazu Goto
義和 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP63103999A priority Critical patent/JPH01275410A/en
Publication of JPH01275410A publication Critical patent/JPH01275410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PURPOSE:To reduce unreacted metal content in the title fine powder and to make the particle minute by ejecting high speed as from a fine tube equipped inside of a cylindrical burner having a specified structure to disperse metal powder, thereafter by ejecting the metal powder from a burner nozzle and by floating in a gas contg. oxygen to burn. CONSTITUTION:The metal powder of Mg, Al, Ti, etc., having <=200mu particle size is quantitatively supplied from a feeder 2, dispersed with the dispersing gas ejected at >=30m/s flow rate from the nozzle 5 for the dispersing gas and ejected at <=30m/s flow rate from the cylindrical burner nozzle 4 in a reaction chamber 9 of a vertical cylindrical reactor 6. The nozzle 5 for the dispersing gas is concentrically equipped on the axis of the cylindrical burner 3 and its caliber is below 1/3 one of the nozzle of the cylindrical burner. The caliber of the nozzle 4 of the cylindrical burner is preferably 2-50mm. The gas contg. >=1.2 times the theoretical oxygen amt. is supplied from a pipe 12.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は平均粒径が1μm以下である金属酸化物微粉末
の製法に関し、さらに詳しくは、改良された構造のバー
ナーを用いることにより、金属粉末の分散を良好にし、
未反応金属の少ない金属酸化物微粉末を製造する方法に
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for producing fine metal oxide powder having an average particle size of 1 μm or less, and more specifically, by using a burner with an improved structure, Improves powder dispersion,
The present invention relates to a method for producing metal oxide fine powder with less unreacted metal.

(従来の技術及び問題点) 金属粉末を酸素含有雰囲気下に燃焼させて金属酸化物微
粉末を製造する方法に関しては、既にいくつかの提案が
されている。
(Prior Art and Problems) Several proposals have already been made regarding methods for producing fine metal oxide powder by burning metal powder in an oxygen-containing atmosphere.

たとえば、特開昭60−255602号公報及び同62
−46905号公報には、金属粉末をキャリアーガスに
同伴させて反応室に供給し、酸素含有雰囲気で燃焼させ
て、金属酸化物微粉末を製造する方法が開示されている
。これら提案の方法によれば、金属粉末を反応室に供給
する際に、金属粉末の分散を行っていないので、金属粉
末の一部が凝集した状態で反応室に供給される。この凝
集物は反応室で融着を起こし、塊となり表面積が小さく
なるので、酸化が表面のみで終わり、未反応金属として
、生成した金属酸化物微粉末に混入する。このため、金
属粉末の燃焼を利用する金属酸化物の製造においては、
未反応金属の残存を防ぐ方法が求められている。
For example, JP-A-60-255602 and JP-A-60-255602
Japanese Patent No. 46905 discloses a method for producing fine metal oxide powder by supplying metal powder together with a carrier gas to a reaction chamber and burning it in an oxygen-containing atmosphere. According to these proposed methods, when the metal powder is supplied to the reaction chamber, the metal powder is not dispersed, so that the metal powder is supplied to the reaction chamber in a partially aggregated state. This aggregate causes fusion in the reaction chamber, becomes agglomerated, and reduces the surface area, so that oxidation ends only on the surface and is mixed into the produced metal oxide fine powder as unreacted metal. For this reason, in the production of metal oxides using combustion of metal powder,
There is a need for a method to prevent unreacted metal from remaining.

(発明の目的) 本発明の目的は未反応金属が少なく、セラミックス焼結
体用原料、フィラーとして実用に供することができ、平
均粒径が171m以下である金属酸化物微粉末の製法を
提供することにある。
(Objective of the Invention) The object of the present invention is to provide a method for producing metal oxide fine powder that contains less unreacted metal, can be practically used as a raw material for ceramic sintered bodies, and as a filler, and has an average particle size of 171 m or less. There is a particular thing.

(問題点を解決するための手段) 本発明は、筒状バーナー内部に設けた細管から30m/
s以上の高速ガスを噴出して金属粉末を分散させた後、
該金属粉末を筒状バーナーのノズルから30m/s以下
の速度で噴出させ、酸素含有気体中に浮遊させて燃焼さ
せることを特徴とする金属酸化物微粉末の製法に関する
(Means for Solving the Problems) The present invention provides a 30 m
After dispersing the metal powder by ejecting high-speed gas of s or more,
The present invention relates to a method for producing fine metal oxide powder, characterized in that the metal powder is ejected from a nozzle of a cylindrical burner at a speed of 30 m/s or less, suspended in an oxygen-containing gas, and burned.

本発明において得られる金属酸化物微粉末としては、マ
グネシア(MgO)、アルミナ(A(20、)、チタニ
ア(TiO□)、スピネル(MgO・An!O,)、フ
ォルステライト(2MgO・SiO□)等が挙げられる
The metal oxide fine powders obtained in the present invention include magnesia (MgO), alumina (A(20,), titania (TiO□), spinel (MgO・An!O,), and forsterite (2MgO・SiO□). etc.

本発明の金属粉末としては、上記金属酸化物の組成に対
応する金属粉末又は合金粉末が使用され、例えばMg、
/l!、Ti、Mg−A/!合金(原子比1 :2)、
Mg−Si合金(原子比2:1)等が用いられる。
As the metal powder of the present invention, a metal powder or alloy powder corresponding to the composition of the above metal oxide is used, such as Mg,
/l! , Ti, Mg-A/! Alloy (atomic ratio 1:2),
Mg-Si alloy (atomic ratio 2:1) or the like is used.

以下に本発明を図面を参照して説明する。第1図におい
て、1はホッパー、2はフィーダー、3は筒状バーナー
、4は筒状バーナーノズル、5は分散ガスノズル、6は
竪型円筒状反応器、7は生成した金属酸化物微粉末の捕
集器である。
The present invention will be explained below with reference to the drawings. In Fig. 1, 1 is a hopper, 2 is a feeder, 3 is a cylindrical burner, 4 is a cylindrical burner nozzle, 5 is a dispersion gas nozzle, 6 is a vertical cylindrical reactor, and 7 is a metal oxide fine powder produced. It is a collector.

ホッパー1に収納された原料の金属粉末日はフィーダー
2によって定量的に供給され、分散ガスノズル5から噴
出した分散ガスによって分散された後、筒状バーナーノ
ズル4から竪型円筒状反応器6内の反応室9に噴出され
る。
The raw metal powder stored in the hopper 1 is quantitatively supplied by the feeder 2, dispersed by the dispersion gas ejected from the dispersion gas nozzle 5, and then transferred from the cylindrical burner nozzle 4 into the vertical cylindrical reactor 6. It is ejected into the reaction chamber 9.

金属粉末8の粒子径は2003m以下であることが好ま
しい。金属粉末8の粒子径が200μmより大きくなる
と、燃焼性が悪化し、完全に金属粉末を燃焼させること
が困難となる。
The particle size of the metal powder 8 is preferably 2003 m or less. When the particle size of the metal powder 8 is larger than 200 μm, combustibility deteriorates and it becomes difficult to completely burn the metal powder.

金属粉末8は分散ガスノズル5から30 m/ s以上
の流速で噴出した分散ガスによって十分分散した後、反
応室9にjA−給する必要がある。流速が30 m/ 
sより小さいと金属粉末8の分散が十分に行われず、金
属粉末8の一部が凝集した状態で反応室に供給され、こ
の凝集物は反応室で融着を起こし表面積が小さ(なるの
で、酸化が表面のみで終わり、未反応金属として生成し
た金属酸化物微粉末に混入してしまう。
The metal powder 8 needs to be sufficiently dispersed by the dispersion gas ejected from the dispersion gas nozzle 5 at a flow rate of 30 m/s or more, and then supplied to the reaction chamber 9. Flow velocity is 30 m/
If it is smaller than s, the metal powder 8 will not be sufficiently dispersed, and some of the metal powder 8 will be supplied to the reaction chamber in an aggregated state, and this aggregate will fuse in the reaction chamber and have a small surface area. The oxidation ends only on the surface, and unreacted metal is mixed into the generated metal oxide fine powder.

分散ガスノズル5は筒状バーナ−3内部の中心軸と同軸
に設け、そのノズル口径は筒状バーナーノズル4の口径
の1/3以下にすることが好ましい。分散ガスノズル5
の口径が筒状バーナーノズル4の口径の1/3よりも大
きいと分散ガスの流速を30m/s以上にするのに要す
る分qtガスの流量が多くなるため、筒状バーナーノズ
ル4から噴出する金属粉末8の速度が30m/sより大
きくなってしまうので、好ましくない。
The dispersion gas nozzle 5 is preferably provided coaxially with the central axis inside the cylindrical burner 3, and its nozzle diameter is preferably ⅓ or less of the diameter of the cylindrical burner nozzle 4. Dispersion gas nozzle 5
If the diameter of the gas is larger than 1/3 of the diameter of the cylindrical burner nozzle 4, the flow rate of qt gas required to increase the flow velocity of the dispersed gas to 30 m/s or more increases, so that the gas is ejected from the cylindrical burner nozzle 4. This is not preferable because the speed of the metal powder 8 becomes greater than 30 m/s.

筒状バーナーノズル4の口径は2〜50mmの範囲にあ
ることが好ましい。口径が2fflI11より小さいと
金属粉末がノズル内で詰まる恐れがあり、また口径が5
0胴より大きいと金属粉末を分散するために、分散ガス
の流速を過度に大きくする必要がある。
The diameter of the cylindrical burner nozzle 4 is preferably in the range of 2 to 50 mm. If the diameter is smaller than 2fflI11, metal powder may clog the nozzle, and if the diameter is smaller than 5
If the cylinder size is larger than 0, it is necessary to increase the flow rate of the dispersion gas excessively in order to disperse the metal powder.

十分に分散された金属粉末8は筒状バーナーノズル4か
ら30m/s以下の流速で竪型円筒状反応器6内の反応
室9に噴出する必要がある。金属粉末8の燃焼速度は金
属蒸気のそれと比べて遅いので、30 m / sより
大きい流速で金属粉末8を噴出すると未反応金属が残存
するようになるので好ましくない。
The sufficiently dispersed metal powder 8 must be ejected from the cylindrical burner nozzle 4 into the reaction chamber 9 in the vertical cylindrical reactor 6 at a flow rate of 30 m/s or less. Since the combustion speed of the metal powder 8 is slower than that of metal vapor, it is not preferable to eject the metal powder 8 at a flow rate greater than 30 m/s because unreacted metal will remain.

金属粉末8を反応室9へ供給するに当たっては、筒状バ
ーナー3内でのバツクファイヤーを防止する目的で、管
10から筒状バーナー3にバツクファイヤー防止用ガス
を供給することが好ましい。
When supplying the metal powder 8 to the reaction chamber 9, it is preferable to supply a backfire prevention gas to the cylindrical burner 3 from the pipe 10 in order to prevent backfire within the cylindrical burner 3.

このようなガスとしてはアルゴン、ヘリウムなどの不活
性ガスが好ましく使用される。同様の理由により、管1
1から供給される分散ガスは不活性ガスが好ましく使用
される。
As such a gas, an inert gas such as argon or helium is preferably used. For the same reason, tube 1
The dispersion gas supplied from 1 is preferably an inert gas.

反応室9に供給された金属粉末は、管12から供給され
る酸素含有ガスによって燃焼し、金属酸化物微粉末が生
成する。
The metal powder supplied to the reaction chamber 9 is combusted by the oxygen-containing gas supplied from the tube 12, producing fine metal oxide powder.

酸素含有ガスは、供給金属粉末を酸化するのに必要な理
論酸素量の1.2倍以上となるように供給することが望
ましい。また、酸素含有ガスの酸素濃度は20〜100
モル%であることが好ましい。
It is desirable that the oxygen-containing gas be supplied in an amount that is 1.2 times or more the theoretical amount of oxygen required to oxidize the supplied metal powder. In addition, the oxygen concentration of the oxygen-containing gas is 20 to 100
Preferably it is mol%.

酸素含有ガス中の酸素量が理論酸素量の1.2倍より低
いと金属粉末の燃焼が完全に行われず、生成金属酸化物
微粉末に未反応の金属粉末が混入する。
If the amount of oxygen in the oxygen-containing gas is lower than 1.2 times the theoretical amount of oxygen, combustion of the metal powder will not be completed completely, and unreacted metal powder will be mixed into the fine metal oxide powder produced.

金属粉末が燃焼する際の火炎温度は1000°C以上で
あることが好ましい。この温度より低いと金属粉末の燃
焼速度が小さくなるため、未反応金属の少ない金属酸化
物微粉末が得られにくくなる。
The flame temperature when the metal powder is combusted is preferably 1000°C or higher. If the temperature is lower than this, the combustion rate of the metal powder will be low, making it difficult to obtain a fine metal oxide powder with a small amount of unreacted metal.

金属粉末の燃焼が一旦開始されると連続的にその燃焼は
継続されるが、反応開始時には竪型円筒状反応器6を囲
む加熱装置13、たとえば電気炉によって金属粉末の燃
焼を起こすことができる。
Once the combustion of the metal powder is started, the combustion continues continuously, but at the start of the reaction, the combustion of the metal powder can be caused by a heating device 13 surrounding the vertical cylindrical reactor 6, such as an electric furnace. .

生成する金属酸化物微粉末は捕集器7、たとえばバグフ
ィルタ−によって捕集される。
The generated metal oxide fine powder is collected by a collector 7, for example, a bag filter.

(発明の効果) 本発明によれば、未反応金属が少なく、セラミックス焼
結体用原料、フィラーとして実用に供することができ、
平均粒径が1μm以下である金属酸化物微粉末を、簡単
な装置で効率よく製造することができる。
(Effects of the Invention) According to the present invention, there is less unreacted metal, and it can be practically used as a raw material for ceramic sintered bodies and as a filler.
Metal oxide fine powder having an average particle size of 1 μm or less can be efficiently produced using a simple device.

(実施例) 次に本発明の実施例を示す。(Example) Next, examples of the present invention will be shown.

第1図に示す装置を用いて金属酸化物微粉末を製造した
。筒状バーナーノズル4の口径は4mm、分散ガスノズ
ル5の口径は11TI111、反応室9の内径は105
mm、長さは1000mmであった。
A metal oxide fine powder was produced using the apparatus shown in FIG. The diameter of the cylindrical burner nozzle 4 is 4 mm, the diameter of the dispersion gas nozzle 5 is 11TI111, and the inner diameter of the reaction chamber 9 is 105 mm.
mm, and the length was 1000 mm.

実施例1〜6 100メツシユ篩を通過し200メツシユ篩を通過しな
い金属粉末8をフィーダー2により12g/分の割合で
定量供給し、管10から導入した51/分のバツクファ
イヤー防止用のアルゴンガスと共に筒状バーナ3へ搬送
した。次いで金属粉末8は、管11から22/分の割合
で導入し、分散ガスノズル5から85m/sの速度で噴
出したアルゴンガスにより分散させた後、筒状バーナー
ノズル4から10m/sの速度で電気炉13によって1
100°Cに加熱された反応室9内に噴出させた。同時
に管12から152/分の酸素ガスを反応室9に供給し
た。
Examples 1 to 6 Metal powder 8 that passes through a 100-mesh sieve but does not pass through a 200-mesh sieve is fed at a rate of 12 g/min by feeder 2, and 51 g/min of argon gas is introduced from pipe 10 to prevent backfire. It was also conveyed to the cylindrical burner 3. Next, the metal powder 8 is introduced from the tube 11 at a rate of 22/min, dispersed by argon gas ejected from the dispersion gas nozzle 5 at a speed of 85 m/s, and then introduced from the cylindrical burner nozzle 4 at a speed of 10 m/s. 1 by electric furnace 13
It was ejected into a reaction chamber 9 heated to 100°C. At the same time, oxygen gas was supplied from the tube 12 to the reaction chamber 9 at 152/min.

金属粉末の燃焼により生成した金属酸化物微粉末はハゲ
フィルター7で捕集した。
Fine metal oxide powder generated by combustion of the metal powder was collected by a bald filter 7.

金属粉末の種類を第1表のように種々変えて得られた金
属酸化物微粉末の粒子径を透過型電子顕微鏡で測定し、
また熱分析により未反応金属を定量した。その結果を第
1表に示す。
The particle size of metal oxide fine powder obtained by changing the type of metal powder as shown in Table 1 was measured using a transmission electron microscope,
In addition, unreacted metals were determined by thermal analysis. The results are shown in Table 1.

第  1  表 比較例1〜6 分散ガスの供給量をO、バツクファイヤー防止用のアル
ゴンガス供給を742/分とした以外は実施例1〜6と
同様にして金属酸化物微粉末を製造した。その結果を第
2表に示す。
Table 1 Comparative Examples 1 to 6 Metal oxide fine powders were produced in the same manner as in Examples 1 to 6, except that the supply rate of the dispersion gas was O and the supply of argon gas for backfire prevention was 742/min. The results are shown in Table 2.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を実施する装置の一例を示す概略図であ
る。 ■・・・・・・ホッパー   2・・・・・・フィーダ
ー3・・・・・・筒状バーナ  4・・・・・・筒状バ
ーナノズル5・・・・・・分散ガスノズル6・・・・・
・竪型円筒状反応器7・・・・・・捕集器    8・
・・・・・金属粉末9・・・・・・反応室    10
.11.12・旧・・管13・・・・・・加熱装置
FIG. 1 is a schematic diagram showing an example of an apparatus for implementing the present invention. ■・・・Hopper 2・・・Feeder 3・・・Cylindrical burner 4・・・Cylindrical burner nozzle 5・・・Dispersion gas nozzle 6・・・・
・Vertical cylindrical reactor 7...Collector 8・
...Metal powder 9 ...Reaction chamber 10
.. 11.12・Old・・Pipe 13・・・・Heating device

Claims (1)

【特許請求の範囲】[Claims] (1)筒状バーナー内部に設けた細管から30m/s以
上の高速ガスを噴出して金属粉末を分散させた後、該金
属粉末を筒状バーナーのノズルから30m/s以下の速
度で噴出させ、酸素含有気体中に浮遊させて燃焼させる
ことを特徴とする金属酸化物微粉末の製法。(2)細管
が筒状バーナーの中心軸と同軸に設けられ、そのノズル
口径が筒状バーナーのノズル口径の1/3以下である特
許請求の範囲第1項記載の金属酸化物微粉末の製法。
(1) After dispersing the metal powder by ejecting high-speed gas of 30 m/s or more from a thin tube provided inside the cylindrical burner, the metal powder is ejected from the nozzle of the cylindrical burner at a speed of 30 m/s or less. , a method for producing metal oxide fine powder, which is characterized by suspending it in an oxygen-containing gas and burning it. (2) The method for producing metal oxide fine powder according to claim 1, wherein the thin tube is provided coaxially with the central axis of the cylindrical burner, and the nozzle diameter is 1/3 or less of the nozzle diameter of the cylindrical burner. .
JP63103999A 1988-04-28 1988-04-28 Production of metal oxide fine powder Pending JPH01275410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103999A JPH01275410A (en) 1988-04-28 1988-04-28 Production of metal oxide fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103999A JPH01275410A (en) 1988-04-28 1988-04-28 Production of metal oxide fine powder

Publications (1)

Publication Number Publication Date
JPH01275410A true JPH01275410A (en) 1989-11-06

Family

ID=14368991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103999A Pending JPH01275410A (en) 1988-04-28 1988-04-28 Production of metal oxide fine powder

Country Status (1)

Country Link
JP (1) JPH01275410A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
JP2011209191A (en) * 2010-03-30 2011-10-20 Admatechs Co Ltd Method for quantifying unreacted metal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202490A (en) * 2009-02-04 2010-09-16 Ngk Insulators Ltd Method for producing transition metal oxide having spinel structure
JP2011209191A (en) * 2010-03-30 2011-10-20 Admatechs Co Ltd Method for quantifying unreacted metal

Similar Documents

Publication Publication Date Title
US4705762A (en) Process for producing ultra-fine ceramic particles
JPS61122106A (en) Method for producing finely powdered magnesium oxide
JP4304221B2 (en) Method for producing metal ultrafine powder
JPS6086312A (en) pulverized coal burner
JPH05193909A (en) Method for producing metal oxide powder
JPS6223063B2 (en)
JPH01275410A (en) Production of metal oxide fine powder
US4917866A (en) Production process of silicon carbide short fibers
JP2003532796A (en) Metal recovery method and apparatus
US2764109A (en) Method for combustion of metals
JP3723022B2 (en) Method for producing amorphous silica fine particles
JPH07247105A (en) Method and apparatus for producing metal oxide powder
JPH0256409B2 (en)
JPS63185803A (en) Spherical composite metal oxide particles and their manufacturing method
US5169620A (en) Method and apparatus for the manufacture of iron oxide particles
JP2010196117A (en) Apparatus for and method of manufacturing metal particle
JP2600181B2 (en) Method for producing oxide powder
JP2000302417A (en) Production of metal oxide
JPH01286919A (en) Production of fine particle of zinc oxide
JP2836239B2 (en) Continuous production equipment for zinc oxide whiskers
JPH0910731A (en) Method for producing fine spherical molten granules from sludge incineration ash
JPH05193908A (en) Production of metal oxide powder
RU1822397C (en) Method of production of ultradispersed powder of metal oxide
JP3253339B2 (en) Method for producing metal oxide powder
JPH05193911A (en) Production of metal oxide powder