[go: up one dir, main page]

JPH01275403A - ozone generator - Google Patents

ozone generator

Info

Publication number
JPH01275403A
JPH01275403A JP10311888A JP10311888A JPH01275403A JP H01275403 A JPH01275403 A JP H01275403A JP 10311888 A JP10311888 A JP 10311888A JP 10311888 A JP10311888 A JP 10311888A JP H01275403 A JPH01275403 A JP H01275403A
Authority
JP
Japan
Prior art keywords
electrode
flat
recess
sheet
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10311888A
Other languages
Japanese (ja)
Other versions
JPH0474281B2 (en
Inventor
Hiroichi Shioda
博一 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda R & D kk
Mitsui and Co Ltd
Original Assignee
Chiyoda R & D kk
Mitsui and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda R & D kk, Mitsui and Co Ltd filed Critical Chiyoda R & D kk
Priority to JP10311888A priority Critical patent/JPH01275403A/en
Publication of JPH01275403A publication Critical patent/JPH01275403A/en
Publication of JPH0474281B2 publication Critical patent/JPH0474281B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To utilize both creeping discharge and silent discharge, to remove effecting the discharge heat, to prevent the fatigue of an electrode, and to stabilize the O3 generation efficiency by superposing a counter electrode on both front and rear surfaces of one electrode of specified structure through a ceramic sheet. CONSTITUTION:Many flat parts 2, 2,... are arranged in parallel on the same plane on the front and rear outermost surfaces of a metallic flat sheet 1, the region of the flat sheet 1 other than the flat part 2 is formed with the recesses 3, 3,... having a depth successively increasing in the direction separating from the flat part 2, the recess 3 is allowed to extend from one to other sides of the flat sheet 1, and a small hole 4 communicating with the recess 3 on the front side and the recess 3 on the rear side is bored through the flat sheet 1 to constitute one thin sheet-shaped electrode 10. A ceramic sheet 11 is allowed to abut on both front and rear surfaces of the electrode 10 at the flat part 2, a conductive paint, for example, is applied on the outer surface of the ceramic sheet 11, or a thin metallic sheet is used to superpose the couter electrode 12 on the electrode 10, and a gaseous raw material is passed through the recess 3 from one side of the electrode 10 to the other side.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は酸素を放電によりオゾン化するオゾン発生装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application 1 The present invention relates to an ozone generator that converts oxygen into ozone by electric discharge.

r従来の技術」 従来この種のオゾン発生装置として最も一般的なものは
、無声放電式と称し高圧高周波電源を印荷する一方側電
極をガラスやセラミックス等の誘電体に対して所定の間
隙を有して対設し、ざらに該誘電体の一方側電極とは反
対側に接地側の相手方電極を配してなり、該一方側電極
と誘電体との間隙に強攻電界を発生せしめて、この放電
界中を酸素または空気等の原料気体を通過せしめるよう
になしている。
``Prior art'' The most common type of ozone generator in the past is called the silent discharge type, in which one electrode to which high-voltage, high-frequency power is applied is placed with a predetermined gap between it and a dielectric material such as glass or ceramics. and a counter electrode on the ground side is arranged on the opposite side of the one side electrode of the dielectric body, and a strong electric field is generated in the gap between the one side electrode and the dielectric body, A source gas such as oxygen or air is allowed to pass through this discharge field.

また、近時は誘電体の一面に金属箔状の一方側電極パタ
ーンを、他面に相手方電極を積層(該誘電体内に相手方
+’Tt4,4を埋設することもある)し、該一方何電
極パターンを積層した面に沿面放電を発生させ、この沿
面放電界に原料気体を接触させる沿面放電式のオゾン発
生装置が提案されているr本発明が解決しようとする問
題点」 しかし、上記従来のオゾン発生装置は放電により発生す
る熱をいかに効率的に除去するかという課題と、放電界
にいかに原料気体を効率的に接触させるかという課題と
かが残存している。
Also, recently, one side electrode pattern in the form of metal foil is laminated on one side of a dielectric, and the other side electrode is laminated on the other side (sometimes the other side +'Tt4,4 is buried in the dielectric). A creeping discharge type ozone generator has been proposed in which a creeping discharge is generated on a surface where electrode patterns are laminated, and a raw material gas is brought into contact with this creeping discharge field.The problems to be solved by the present invention In the ozone generator, there remain problems such as how to efficiently remove the heat generated by discharge, and how to efficiently bring the raw material gas into contact with the discharge field.

高温放電界でのオゾン生成は、−反発生したオゾンが加
熱により分解され、その結果としてオゾン発生効率を低
減するし、空気を原料とした場合は有害なNOxが共に
発生することが知られている。このNOxの発生理由は
必ずしも明確には判明していないがオゾンが分解する際
に活性化した酸素が窒素と化合するのが主たる原因とさ
れている。
It is known that ozone generation in a high-temperature discharge field is caused by the generated ozone being decomposed by heating, which reduces the ozone generation efficiency, and also generates harmful NOx when air is used as the raw material. There is. Although the reason for the generation of NOx is not necessarily clear, the main cause is thought to be that oxygen activated when ozone decomposes combines with nitrogen.

すなわち、上記した従来のオゾン発生装置においては、
前者の無声放電式は、一方何電極の外面と相手方電極の
外面とを夫々電気的には絶縁した状態で冷却する必要が
有り、冷却装置が複雑化する欠点を有している。具体的
には冷却に冷却水を循環させるとしたら、一方何電極の
冷却水系と相手方電極の冷却水系とは電気的に接続され
ることなく分離しなくてはならないことになる。
That is, in the conventional ozone generator described above,
The former silent discharge type has the disadvantage that it is necessary to cool the outer surface of one electrode and the outer surface of the other electrode while electrically insulating each other, making the cooling device complicated. Specifically, if cooling water is to be circulated for cooling, the cooling water system of one electrode and the cooling water system of the other electrode must be separated without being electrically connected.

また、後者の沿面放電式は、一方何電極と誘電体と相手
方電極とが面接触しているため、相手方電極の外面を冷
却することで効率的に沿面放電界を冷却することができ
、ざらに沿面放電界の上方は適宜絶縁材で覆っておきこ
の絶縁材と誘電体との間を原料気体が通過するようにな
せば、相手方電極の外面とこの絶縁材の外面とを電気的
に導通した簡易な冷却手段で冷却することもできる利点
も有するが、この沿面放電式は一方側電極パターンおよ
び沿面放電層が薄いため、一方何電極が放電により消耗
・破損されることが有り耐久性に劣るという欠点と、通
過する原料気体が沿面放電界と面接触するかの状態を呈
し原料気体の全量が放電界と接触しずらくオゾン発生効
率が低くなるという欠点を有していた。
In addition, in the latter creeping discharge type, since the surface contact between one electrode, the dielectric, and the other electrode makes it possible to efficiently cool the creeping discharge field by cooling the outer surface of the other electrode, If the upper part of the creeping discharge field is appropriately covered with an insulating material and the raw material gas is allowed to pass between this insulating material and the dielectric material, electrical continuity can be established between the outer surface of the other electrode and the outer surface of this insulating material. However, since the creeping discharge type has a thin electrode pattern and creeping discharge layer on one side, the electrodes on the other side may be worn out or damaged due to discharge, resulting in poor durability. It has the disadvantage that the raw material gas passing through it comes into surface contact with the creeping discharge field, making it difficult for the entire amount of the raw material gas to come into contact with the discharge field, resulting in a low ozone generation efficiency.

そこで本発明は上記欠点に鑑み、一方何電極乃至放電界
を簡易な手段で効率的に冷却でき、しかも原料気体の全
量が確実に放電界中を通過することのできるオゾン発生
装置を提供することを目的としたものである。
SUMMARY OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides an ozone generator that can efficiently cool several electrodes and the discharge field by a simple means, and can also ensure that the entire amount of raw material gas passes through the discharge field. The purpose is to

r問題点を解決するための手段」 上記の目的に沿い、先述特許請求の範囲を要旨とする本
発明の構成は前述問題点を解決するために、金属製平板
1の表裏両最外面に同一平面上に並置される多数の平面
部2,2.2・・・を配し、該金属製平板1の各平面部
2以外の部位は該平面部2より離れる方向に向って順次
深くなる多数の凹部3,3.3・・・となし、この各凹
部3は少なくも該金属製平板1の一辺から他辺まで連続
するようなし、さらに該金属製平板1には表面側の凹部
3より裏面側の凹部3に連通ずる小孔4を開穿して一方
側電極10を構成し、上記一方何電極10の表裏両面に
は夫々セラミックス板11を介して相手方型8i12を
重合してなる技術的手段を講じたものである。
"Means for Solving the Problems" In line with the above-mentioned object, the structure of the present invention, which is summarized in the above-mentioned claims, has the same structure on both the front and back outermost surfaces of the metal flat plate 1 in order to solve the above-mentioned problems. A large number of flat parts 2, 2, 2, etc. are arranged side by side on a plane, and the parts of the flat metal plate 1 other than each flat part 2 are gradually deepened in the direction away from the flat part 2. The recesses 3, 3, 3, . A technique in which one side electrode 10 is formed by opening a small hole 4 communicating with the recess 3 on the back surface side, and a mating mold 8i12 is superimposed on both the front and back surfaces of the one side electrode 10 via ceramic plates 11, respectively. The measures taken were as follows.

r作用J それ故本発明オゾン発生装置は、一方何電極10と相手
方電極12.12との間に高圧高周波電源を印荷すると
、各凹部3内で放電界が形成される。
r Effect J Therefore, in the ozone generator of the present invention, when a high voltage, high frequency power source is applied between one electrode 10 and the other electrode 12, 12, a discharge field is formed within each recess 3.

上記各凹部3内での放電界は、平面部2がセラミックス
板11に重合しているため、この平面部2の外周近くで
は沿面放電が発生する。そして、平面部2の外周より離
れた部位においては間隙が順次大きくなるので無声放電
が発生することになる。この沿面放電と無声放電との組
合せは沿面放電が無声放電を誘発し尖頭電流等の急激な
電流値の変化を防ぐ作用を呈する。
In the discharge field within each of the recesses 3, creeping discharge occurs near the outer periphery of the flat portion 2 because the flat portion 2 overlaps the ceramic plate 11. Then, since the gap gradually becomes larger at a portion away from the outer periphery of the flat portion 2, a silent discharge occurs. This combination of creeping discharge and silent discharge has the effect that the creeping discharge induces silent discharge and prevents rapid changes in current value such as peak current.

そして、この放電状態にある凹部3には一方側電極10
の一辺側から他辺側に向って原料気体を通過せしめると
、該原料気体は該凹部3内に発生した放電界を通過して
オゾン化される。
One side electrode 10 is placed in the recess 3 in this discharge state.
When the raw material gas is passed from one side to the other side, the raw material gas passes through the discharge field generated in the recess 3 and is ozonized.

また、小孔4は原料気体が自由に金属製平板1の表裏側
に移動し、流路を?31雑化し一部に渦流をも形成し放
電界との接触確率と接触時間を多くなし、さらに、金属
製平板1の表裏側の流量を平均化しオゾン化効率の変動
を防止する作用を呈するさらに、一方側電極10の表裏
両面には夫々セラミックス板11を介して相手方電極1
2を重合してなるため、セラミックス板11の内面は一
方側電極10の平面部2に接触し、相手方電極12はそ
の内面をセラミックス板11の外面に接触すこととなり
、該一方側電極10は断熱性の高い空気層を介すること
なく熱伝導性を高効率的に保って相手方電極12.12
の外面にまで連結し、しかも該両相平方電極12.12
は電気的には同極となるものである。
In addition, the small holes 4 allow the raw material gas to freely move to the front and back sides of the metal flat plate 1, allowing it to flow through the flow path. 31 becomes rough and even forms eddy currents in some parts, increasing the probability of contact with the discharge field and the contact time.Furthermore, it has the effect of averaging the flow rate on the front and back sides of the metal flat plate 1 and preventing fluctuations in ozonization efficiency. , the other electrode 1 is connected to the front and back surfaces of the one side electrode 10 via ceramic plates 11, respectively.
2 are superposed, the inner surface of the ceramic plate 11 contacts the flat surface 2 of the one side electrode 10, and the inner surface of the other electrode 12 contacts the outer surface of the ceramic plate 11. The other electrode 12.12 maintains high thermal conductivity without passing through a highly insulating air layer.
connected to the outer surface of the two-phase square electrode 12.12
are electrically the same polarity.

「実施例」 次いで、本発明の実施例を添付図面に基いて説明する。"Example" Next, embodiments of the present invention will be described based on the accompanying drawings.

図中、1は一方側電極10を構成する金属製平板である
In the figure, 1 is a metal flat plate that constitutes one side electrode 10.

上記金属製平板1は、その表裏両最外面に同一平面上に
並置される多数の平面部2,2.2・・・を配し、該金
属製平板1の各平面部2以外の部 −位は該平面部2よ
り離れる方向に向って順次深くなる多数の凹部3,3.
3・・・となし、この各凹部3は少なくも該金属製平板
1の一辺から他辺まで連続するようなし、さらに該金属
製平板1には表面側の凹部3より裏面側の凹部3に連通
する小孔4を開穿して一方側電極10となしである。
The metal flat plate 1 has a large number of flat parts 2, 2, 2, . There are a large number of recesses 3, 3.
3..., each of the recesses 3 is continuous from at least one side of the metal flat plate 1 to the other side, and furthermore, the metal flat plate 1 has a recess 3 on the back side than the recess 3 on the front side. A small hole 4 is opened to communicate with the electrode 10 on one side.

上記平面部2と凹部3と小孔4とはプレス成形や掘削成
形さらにはエツチング成形等の従来公知な製法で形成す
ればよい。そして、該平面部2と凹部3との面積比は適
宜に選定すればよいが、両者は交互に位置して全面に均
一に配されることが望ましく、平面部2は後述セラミッ
クス板11との接触面を確保し、同一平面に位置させる
ここで機械的精度(一方側電極10と後述相手側電極1
2との距離精度)を簡単に得られるようになし、また該
接触面が所定の面積でセラミックス板11に接触するこ
とで熱伝導を良好に保ち、さらにはこの平面部2がセラ
ミックス板11の内面を均一に受けることで該セラミッ
クス板11の機械的強度を補うようになしている。
The flat portion 2, recessed portion 3, and small hole 4 may be formed by a conventionally known manufacturing method such as press molding, excavation molding, or etching molding. The area ratio between the flat part 2 and the recessed part 3 may be selected as appropriate, but it is preferable that the two are arranged alternately and uniformly over the entire surface. Ensure contact surfaces and position them on the same plane with mechanical precision (one side electrode 10 and the other side electrode 1 described later).
2), and the contact surface contacts the ceramic plate 11 with a predetermined area to maintain good heat conduction. By uniformly receiving the inner surface, the mechanical strength of the ceramic plate 11 is supplemented.

また、上記面凹部3は放電スペース及び原料気体の流路
を確保するもので第1図及び第3図実施例においては、
この凹部3は第2図及び3図に最も明かに示すごとく断
面台形の平行な直線状の?IIi状に構成され、平な底
面3°°と斜面部3’、3’を有してなり、該凹部3内
には表面側の凹部3より裏面側の凹部3に連通する小孔
4を並設してなる。なお、この凹部3は第3図に示され
るような直線状ではなく複雑に曲って金属製平板1の一
辺から他辺までの距離を長くするとともに、各列の凹部
3から他の列の凹部3へ原料気体が流れ込むことができ
るようになして通過原料気体が迷路状の複雑な流路を通
るようになすと放電界との接触確率と接触時間とを大き
くなすことが可能である第4図乃至第6図実施例は上記
の原料気体と放電界との接触確率と接触時間とを大きく
なす目的からして製造された一方側電極10で、金属製
平板1 (実際には、高純度チタン板を使用)を−度ラ
ス網状に加工し、該ラス網を挟圧ローラ等でプレスし表
裏面における最突出部を相互に連続しない程度に平面化
して製造している。したがって、ラス網の各網目が小孔
4となり、押潰された最突出部が平面部2となり、金属
製平板1に規則的(チドリ状の)なスリットを入れこの
金属製平板1を該スリットと直角方向に引伸した際に捻
じれた部位が傾斜面3′乃至凹部3を構成することにな
る。したがって、このラス網状の一方側電極10は従来
公知な加工法の組合せで上記のごとき複雑な形状を容易
に実現でき、通過気体はチドリ状に配された平面部2,
2.2・・・をぬって進むことになり、さらには適宜小
孔4より反対面側に第6図矢印Pで示すごとくに移動し
複雑に蛇行、渦流を生ずることになる。なお、この製法
による一方側電極10の表裏両面の形状は対称には表わ
れず、表面と裏面側とでは平面部2と凹部3との面積比
が相違するものであったが、後述するセラミックス板1
1.11を両面に重合して各凹部3で構成される流路に
原料気体を供送したところでは小孔4の存在により両面
側での内圧、及び流速は略一定となり、特別な支障を有
していないことが判明した。
In addition, the surface recess 3 secures a discharge space and a flow path for raw material gas, and in the embodiments shown in FIGS. 1 and 3,
As shown most clearly in FIGS. 2 and 3, this recess 3 has a trapezoidal cross section and parallel straight lines. It has a flat bottom surface of 3° and sloped parts 3', 3', and has a small hole 4 in the recess 3 that communicates with the recess 3 on the back side from the recess 3 on the front side. They will be installed side by side. Note that the recesses 3 are not linear as shown in FIG. 3, but are curved in a complicated manner to increase the distance from one side to the other side of the metal flat plate 1, and also to extend the distance from the recesses 3 of each row to the recesses of other rows. If the raw material gas is allowed to flow into the 4th stage and passes through a maze-like complicated flow path, it is possible to increase the probability of contact with the discharge field and the contact time. The embodiment shown in FIGS. 6 to 6 is a one-side electrode 10 manufactured for the purpose of increasing the contact probability and contact time between the raw material gas and the discharge field. A titanium plate (using a titanium plate) is processed into a lath net shape, and the lath net is pressed with a pressure roller or the like to flatten the most protruding parts on the front and back surfaces to such an extent that they are not continuous with each other. Therefore, each mesh of the lath net becomes a small hole 4, and the crushed most protruding part becomes a flat part 2. Regular (ploidy) slits are made in the metal flat plate 1 and the metal flat plate 1 is inserted into the slit. The twisted portion when stretched in the direction perpendicular to the curve constitutes the inclined surface 3' or the recessed portion 3. Therefore, this lath mesh-like one side electrode 10 can be easily formed into the above-mentioned complicated shape by combining conventionally known processing methods, and the gas passing through the flat parts 2 arranged in a zigzag pattern,
2.2..., and furthermore, as appropriate, moves toward the opposite side from the small hole 4 as shown by the arrow P in FIG. 6, creating a complicated meandering and vortex flow. Note that the shapes of the front and back surfaces of the one-side electrode 10 obtained by this manufacturing method did not appear symmetrical, and the area ratio of the flat portion 2 to the recessed portion 3 was different between the front and back sides. Board 1
When 1.11 is polymerized on both sides and the raw material gas is supplied to the flow path composed of each recess 3, the internal pressure and flow rate on both sides are approximately constant due to the presence of the small holes 4, and there is no special problem. It turned out that they did not have it.

そして、上記一方側電極10の表裏両皿には夫々セラミ
ックス板11を介して相手方電極12を重合してなる。
A counter electrode 12 is superimposed on both the front and back plates of the one side electrode 10 via a ceramic plate 11, respectively.

すなわち、このセラミックス板11はその内面を一方側
電極10の各平面部2に、外面を相手方電極12の内面
に夫々接触することになる。上記セラミックス板11は
アルミナ純度96%以上で厚みが1mm以下のものを使
用しており、また相手方電極12は導電性塗料をセラミ
ックス板11の外面に塗付してなるが、この相手方電極
12は金属薄板を使用したり、導電性の放熱板を使用し
てもよいことは無論である。
In other words, the ceramic plate 11 has its inner surface in contact with each flat surface 2 of the one electrode 10 and its outer surface in contact with the inner surface of the other electrode 12 . The ceramic plate 11 is made of alumina with a purity of 96% or more and a thickness of 1 mm or less, and the other electrode 12 is made by applying a conductive paint to the outer surface of the ceramic plate 11. Of course, a thin metal plate or a conductive heat sink may be used.

そして、第1図乃至第3図図示例においては上記両セラ
ミックス板11は二枚を一方側電極10の厚みと一致す
る間隔を有して対設し、両者の周縁には枠状シール剤2
0を配し、さらに中央部には下辺部まで到達しな仕切2
1を介在せしめて、二つの収納室Sl、S2と下部で両
数納室Sl。
In the examples illustrated in FIGS. 1 to 3, two ceramic plates 11 are disposed opposite each other with an interval corresponding to the thickness of one side electrode 10, and a frame-shaped sealing agent 2 is attached to the periphery of both.
0, and in the center there is a partition 2 that does not reach the bottom edge.
1 is interposed between two storage chambers SL and S2, and both storage chambers SL are located at the bottom.

S2を連結する連結路部S3とを形成しである。A connecting path S3 is formed to connect S2.

そして、この、両数納室Sl、S2内に一方側電極10
が夫々収納されるが、一方何の収納室S1の上辺部には
原料気体の流入口23が、他方側の収納室S2の上辺部
にはオゾン流出口24が配され、該流入口23より流入
した原料気体は先ず一方側の収納室S1を通過し次いで
連結路部S3を通って他方側の収納室S2内に流入し最
後にオゾン流出口24より流出するようになっている。
Then, one side electrode 10 is placed in both storage chambers Sl and S2.
are stored in each storage chamber S1, and an inlet 23 for the raw material gas is arranged at the upper side of the storage chamber S1 on the other side, and an ozone outlet 24 is arranged at the upper side of the storage chamber S2 on the other side. The inflowing raw material gas first passes through the storage chamber S1 on one side, then flows into the storage chamber S2 on the other side through the connecting passage S3, and finally flows out from the ozone outlet 24.

したがって、この場合一方側電極10.10はその凹部
3が連続する方向を第1図上下方向となしているのは熱
論である。
Therefore, in this case, it is a thermal theory that the direction in which the concave portion 3 of the one side electrode 10.10 continues is the vertical direction in FIG.

さらに、上記両セラミックス板11の外側には夫々相手
方N、Fi12が重合されるものである。また、図では
省略したが、本発明装置は冷却水循環水槽に浸漬して水
冷するか、相手方電極12の外面を外気または冷却用の
気流に接触させて空冷するようになしである。
Further, on the outside of both the ceramic plates 11, the mating members N and Fi 12 are respectively superposed. Although not shown in the drawings, the device of the present invention is either water-cooled by being immersed in a cooling water circulation tank, or air-cooled by bringing the outer surface of the other electrode 12 into contact with outside air or a cooling air flow.

なお、図中、30は上記一方側電極10と両相子方電極
12との間に高圧高周波供給電源を供給する従来公知な
電源装置を示すものである。
In the figure, reference numeral 30 denotes a conventionally known power supply device for supplying high-voltage, high-frequency power between the one-side electrode 10 and both phase-side electrodes 12.

r発明の効果」 本発明は上記のごときで一方側電極10の平面部2がセ
ラミックス板11に重合しているため、該セラミックス
5板11の強度は補強され、このセラミックス板11を
薄いものを使用でき効率的な放電ができ、また、沿面放
電と無声放電とを共に利用するため、尖頭電流による電
源への負担セラミックス板11の疲労等が防止でき、ま
た、セラミックス板11を薄く構成できることに加え一
方側電極10とセラミックス板11と相手方電極12と
は全面ではないが相互に接触する面を有するため、放電
により生じた熱は最外面の両相子方電極12.12まで
高い熱伝導率で伝わり、この両相子方電極12.12つ
冷却することで効率的に放電熱を除去するができるオゾ
ン発生装置を提供することができるものである。
r Effects of the Invention In the present invention, as described above, since the flat portion 2 of the one side electrode 10 is superimposed on the ceramic plate 11, the strength of the ceramic plate 11 is reinforced, and the ceramic plate 11 can be made thin. In addition, since creeping discharge and silent discharge are used together, it is possible to prevent fatigue of the ceramic plate 11 that burdens the power supply due to peak current, and the ceramic plate 11 can be made thin. In addition, since the one side electrode 10, the ceramic plate 11, and the other side electrode 12 have surfaces that are in contact with each other, although not the entire surface, the heat generated by the discharge is highly thermally conducted to the outermost side electrodes 12 and 12. It is possible to provide an ozone generator that can efficiently remove discharge heat by cooling both phase and side electrodes.

また、木本発明は凹部3に小孔4を配したことにより、
原料空気は一方側電極10の一面側から他面側へ穆動す
ることが有り、この際の曲流は気流を乱して渦流を惹起
し原料気体を混合して放電界との全量接触を確保し、常
に安定した効率でオゾンを発生するオゾン発生装置を提
供することができるものである。
Furthermore, in the Kimoto invention, by arranging the small hole 4 in the recess 3,
The raw material air may move from one side of the one side electrode 10 to the other side, and the curved flow at this time disturbs the airflow and causes a vortex, which mixes the raw material gas and prevents the entire amount from coming into contact with the discharge field. Therefore, it is possible to provide an ozone generator that always generates ozone with stable efficiency.

さらに、特筆すべきは、本発明オゾン発生装置は一方側
電極10と一対のセラミックス板11゜11と同じく一
対の相手方電極12.12の五層構造であるため全体と
して薄型に構成でき、しかも両性面側は電気的に同極の
相手方電極12,12であるため全体を冷却水槽に浸漬
するなどの簡易な方法で効率的に放電熱を除去できるも
のである。
Furthermore, it should be noted that the ozone generator of the present invention has a five-layer structure consisting of one side electrode 10, a pair of ceramic plates 11 and 11, and a pair of opposite electrodes 12 and 12, so that it can be constructed thin as a whole, and it is amphoteric. Since the opposite electrodes 12 and 12 are electrically of the same polarity on the surface side, discharge heat can be efficiently removed by a simple method such as immersing the entire body in a cooling water tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明オゾン発生装置の一実施例を示す正面図
、第2図はA−A線拡大断面図、第3図は本発明に使用
される一方側電極の平面図、第4図は別の実施例におけ
る一方側電極の平面図、第5は同一方側電極の底面図、
第6図はB−B線拡大断面図である。
Fig. 1 is a front view showing an embodiment of the ozone generator of the present invention, Fig. 2 is an enlarged sectional view taken along the line A-A, Fig. 3 is a plan view of one side electrode used in the present invention, and Fig. 4. 5 is a plan view of one side electrode in another example, 5th is a bottom view of the same one side electrode,
FIG. 6 is an enlarged sectional view taken along line B-B.

Claims (1)

【特許請求の範囲】 金属製平板1の表裏両最外面に同一平面上に並置される
多数の平面部2,2,2・・・を配し、該金属製平板1
の各平面部2以外の部位は該平面部2より離れる方向に
向って順次深くなる多数の凹部3,3,3・・・となし
、この各凹部3は少なくも該金属製平板1の一辺から他
辺まで連続するようなし、さらに該金属製平板1には表
面側の凹部3より裏面側の凹部3に連通する小孔4を開
穿して薄板状の一方側電極10を構成し、 上記一方側電極10の表裏両面には夫々セラミックス板
11を介して相手方電極12を重合してなるオゾン発生
装置。
[Scope of Claims] A large number of flat parts 2, 2, 2... arranged on the same plane on both the outermost surfaces of the front and back surfaces of a flat metal plate 1,
The parts other than each flat part 2 are formed with a large number of recesses 3, 3, 3, etc. which become deeper in order in the direction away from the flat part 2, and each recess 3 is at least one side of the metal flat plate 1. The metal flat plate 1 has a small hole 4 that communicates from the recess 3 on the front side to the recess 3 on the back side to form a thin plate-like one side electrode 10. This ozone generator is formed by superimposing opposing electrodes 12 on both the front and back surfaces of the one-side electrode 10 via ceramic plates 11, respectively.
JP10311888A 1988-04-26 1988-04-26 ozone generator Granted JPH01275403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10311888A JPH01275403A (en) 1988-04-26 1988-04-26 ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10311888A JPH01275403A (en) 1988-04-26 1988-04-26 ozone generator

Publications (2)

Publication Number Publication Date
JPH01275403A true JPH01275403A (en) 1989-11-06
JPH0474281B2 JPH0474281B2 (en) 1992-11-25

Family

ID=14345671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10311888A Granted JPH01275403A (en) 1988-04-26 1988-04-26 ozone generator

Country Status (1)

Country Link
JP (1) JPH01275403A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901983A1 (en) * 1996-03-04 1999-03-17 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Ozonizer
JP2007181603A (en) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd Washing machine and ozone generator
WO2013042711A1 (en) * 2011-09-20 2013-03-28 株式会社村田製作所 Ozone generator and method for manufacturing same
JP2015188845A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 Discharge unit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0901983A1 (en) * 1996-03-04 1999-03-17 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Ozonizer
JP2007181603A (en) * 2006-01-10 2007-07-19 Sanyo Electric Co Ltd Washing machine and ozone generator
WO2007080755A1 (en) * 2006-01-10 2007-07-19 Sanyo Electric Co., Ltd. Washing machine, and ozone generator
US8875547B2 (en) 2006-01-10 2014-11-04 Haier Group Corporation Washing machine, and ozone generator
WO2013042711A1 (en) * 2011-09-20 2013-03-28 株式会社村田製作所 Ozone generator and method for manufacturing same
JP5664792B2 (en) * 2011-09-20 2015-02-04 株式会社村田製作所 Ozone generator and manufacturing method thereof
JP2015188845A (en) * 2014-03-28 2015-11-02 ダイキン工業株式会社 Discharge unit

Also Published As

Publication number Publication date
JPH0474281B2 (en) 1992-11-25

Similar Documents

Publication Publication Date Title
JP4700910B2 (en) Fuel cell flow field plate
JP4763974B2 (en) Plasma processing apparatus and plasma processing method
JP2010050106A (en) Apparatus and method for plasma processing
US7771673B2 (en) Plasma generating electrode and plasma reactor
KR20020002262A (en) Ozone generator
JP2003532257A (en) High performance miniature capacitively coupled plasma reactor / generator and method
KR101078132B1 (en) Fuel cell and heating device for a fuel cell
JPH01275403A (en) ozone generator
JP3654409B2 (en) Discharge cell for ozone generator and manufacturing method thereof
KR100624732B1 (en) Creeping discharge type air purifier
JP4180179B2 (en) Discharge cell for ozone generator
WO2014154067A1 (en) Water-cooled ozone generator ground electrode
US20040197244A1 (en) Corona discharge plate electrode ozone generator
JPH09241005A (en) Ozone generator
JPS62281427A (en) Electrode for electric discharge machining
JPS6223434B2 (en)
JP4070342B2 (en) Creeping discharge ozone generator
KR20120026248A (en) Plasma irradiation apparatus
JP3839179B2 (en) Ozone generator
KR101085182B1 (en) Treatment device using plasma
KR101963401B1 (en) Plasma supplying apparatus and substrate processing apparatus
JP3256158B2 (en) Ozone generator
JPS63242903A (en) Ozonizer
KR101761256B1 (en) Atmospheric pressure plasma head having uniform distribution of gas and high input impedance
JP2540627Y2 (en) Gas discharge reactor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees