[go: up one dir, main page]

JPH01274741A - Radiant ray therapy part monitoring device - Google Patents

Radiant ray therapy part monitoring device

Info

Publication number
JPH01274741A
JPH01274741A JP63102787A JP10278788A JPH01274741A JP H01274741 A JPH01274741 A JP H01274741A JP 63102787 A JP63102787 A JP 63102787A JP 10278788 A JP10278788 A JP 10278788A JP H01274741 A JPH01274741 A JP H01274741A
Authority
JP
Japan
Prior art keywords
image
monitor
treatment
imaging plate
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63102787A
Other languages
Japanese (ja)
Inventor
Hiroshi Kikuchi
宏 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63102787A priority Critical patent/JPH01274741A/en
Publication of JPH01274741A publication Critical patent/JPH01274741A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation-Therapy Devices (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

PURPOSE:To monitor a remedied part during the radiant ray therapy by forming the distribution image of the radiant rays by arranging an imaging plate which forms the distribution of the fluorescent light intensity according to the distribution of the intensity of the radiant rays on the opposite side to a line source, having a remedied part interposed, and by converting said distribution image to the electric signals and displaying said image on a TV monitor. CONSTITUTION:An X-ray 5 which passes through the remedied part of a patient 7 reaches an imaging plate 11 and generates fluorescent light, and at this time, the reduction rate of the X-ray is large at the remedied part, and a dark part is formed, and an organ image in bright and dark parts is obtained on the imaging plate 11, with the image on the periphery of the organ. The fluorescent image of the imaging plate 11 is reflected by a mirror 13 in a supporting part 12 which forms a dark box which is constituted so that the intrusion of outside light is suppressed, and then photographing by a high sensitivity camera 14 is performed. The high sensitivity camera 14 can be achieved by using a low sensitivity camera which can sufficiently amplify fluorescent light. The photographed image is displayed on a TV monitor 15 through a cable 18. Therefore, the state of the organ in therapy can be monitored by using the X-ray 5 used for therapy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、放射線治療に際して、治療している放射線
を用いて患部の様子を実時間でモニタする放射線治療部
位モニタ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a radiotherapy site monitoring device that monitors the condition of an affected area in real time using the radiation being treated during radiotherapy.

〔従来の技術〕[Conventional technology]

第4図は従来の放射線治療部位モニタ装置であシ、図で
は医療用ライナックによる例を示す。図において、ライ
ナックの固定架台(1)にライナックの回転架台(2)
が回転駆動系(3)を介して結合されている。線源(4
)からはX線などの放射線(5)が発生される。ここで
はX線を例にとる。m 源(4)の下方にはX線の照射
野を制限するコリメータ(6)があり、その下部に治療
を受ける患者(7)が位置する。患者(7)の下には治
療用の天板(8)が治療台(9)に載置されて配設され
ている。また、X線フィルムを収納したフィルムカセッ
ト(21)がホルダ(22)に支持されて患者(7)の
下面に位置している。
FIG. 4 shows a conventional radiotherapy site monitoring device, and the figure shows an example using a medical linac. In the figure, the fixed linac mount (1) and the rotating linac mount (2) are shown.
are connected via a rotational drive system (3). Line source (4
) emits radiation (5) such as X-rays. Here, we will take X-rays as an example. m Below the source (4) there is a collimator (6) that limits the X-ray irradiation field, below which the patient (7) to be treated is located. A treatment top plate (8) is placed under the patient (7) on a treatment table (9). Further, a film cassette (21) containing an X-ray film is supported by a holder (22) and positioned on the lower surface of the patient (7).

以上の構成により、回転架台(2)は駆動系(3)によ
り回転中心軸(A)に関して回転し、患者(7)の周囲
から放射線治療を行う。Xl(5)k’!、線源(4)
で発生し、コリメータ(6)により、治療する照射野に
合わせてX#(5)の広がシが制限される。、患者(7
))工、治療台(9)に支持された天板(8)の上に横
臥し、治療台(9)が患者(7)の上下方向の位置を設
定し、天板(8)は患者(7)の前後、左右の方向の位
置を設定する。また、治療台(9)は、その支持脚を中
心に回転することができ、かつ、放射線(5)の中心軸
(B)を中心に回転することができる。
With the above configuration, the rotating pedestal (2) is rotated about the rotation center axis (A) by the drive system (3), and radiation therapy is performed from around the patient (7). Xl(5)k'! , source (4)
The spread of X# (5) is limited by the collimator (6) in accordance with the irradiation field to be treated. , patient (7
)) The patient lies down on the top plate (8) supported by the treatment table (9), and the treatment table (9) sets the vertical position of the patient (7). (7) Set the front/back and left/right positions. Furthermore, the treatment table (9) can rotate around its supporting legs and can also rotate around the central axis (B) of the radiation (5).

患者(7)の患部は、別のシミュレータ装置やX線CT
@により体内患部の位置を同定しているが、放射線治療
を始める前K、治療X線により治療位置の確認を行う。
The affected area of patient (7) was examined using another simulator or X-ray CT.
The location of the affected part in the body is identified using @, but before starting radiotherapy, the treatment location is confirmed using therapeutic X-rays.

このため、ホルダ(22)Kフィルムを収納したフイル
ム力セツ) (2L:)を固定して患部をはさんで線源
(4)と対向し、フィルムに患部のX@透過像が映るよ
うにフィルムカセット(21)を設定する。
For this reason, fix the holder (22) containing the K film (2L:) and place it facing the radiation source (4) across the affected area so that the X@ transmission image of the affected area is reflected on the film. Set the film cassette (21).

X線(6)の照射野は患部の周囲を含んで見えるように
十分広くとシ、治療放射線量に対して十分少ないX線(
5)を照射して患部とその近傍のX線透過儂をフィルム
に収める。ライナックを用いる場合、これをライナック
グラフィという。このフィルムはすぐに現俸され、要部
の位置と照射される範囲を確認してから放射線治療を開
始する。
The irradiation field of X-rays (6) should be wide enough to include the surrounding area of the affected area, and the field of X-rays (6) should be sufficiently small for the treatment radiation dose.
5) irradiate the area and record the X-ray transmission area of the affected area and its vicinity on film. When a linac is used, this is called linac graphics. This film is immediately dispensed, and radiation treatment begins after confirming the location of the main part and the area to be irradiated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の放射線治療部位モニタ装置は以上のように構成さ
れているので、治療の前に、患部の位置や放射線照射野
を確認した後に、その治療部位は常に変化しないという
ことを前提として治療しており、治療中の治療部位の確
認はできない。また、ライナックグラフィは同じ患者で
治療毎に行うことは、治療時間を大幅に延長するため、
治療計画を変更する毎程度(約、治療数回分)の頻度で
しかできず、治療部位のモニタは実際上容易でない等の
問題があった。
Conventional radiation therapy site monitoring devices are configured as described above, so before treatment, after confirming the location of the affected area and the radiation irradiation field, the treatment area can be treated on the assumption that the area to be treated will not change at all times. Therefore, it is not possible to confirm the treatment area during treatment. In addition, performing linacgraphy on the same patient for each treatment will significantly lengthen the treatment time.
This can only be done every time the treatment plan is changed (approximately for several treatments), and there are problems in that it is not easy to monitor the treated area in practice.

この発明は上記の課題を解決するため罠なされたもので
、放射線治療中に治療部のモニタを可能にする放射線治
療部位モニタ装置を得ることを目的とする。
The present invention was made in order to solve the above-mentioned problems, and an object of the present invention is to obtain a radiation treatment site monitoring device that enables monitoring of a treatment area during radiation treatment.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る放射線治療部位モニタ装置は、治療部位
をはさんで、線源と反対側に蛍光板のような放射線の強
度分布に応じて蛍光強度の分布ができるイメージングプ
レートを配置して放射線の分布像をつくシ、これを電気
信号に変換してTVモニタに映し出すようにしてなるも
のである。
The radiation treatment site monitoring device according to the present invention has an imaging plate, such as a fluorescent screen, that can distribute the fluorescence intensity according to the intensity distribution of the radiation, disposed on the opposite side of the radiation source across the treatment site. It creates an image, converts it into an electrical signal, and displays it on a TV monitor.

〔作用〕[Effect]

この発明においては、回転架台に取付けたイメージング
プレート上の蛍光分布を高感度のカメラにより撮影し、
直ちにTVモニタに表示する。さらにこのTVモニタに
表示されている像を任意にディジタル化し、画像メモリ
に記憶させたシ、また、部位の寸法が判別できるような
目盛を映し込むこともできる。
In this invention, the fluorescence distribution on an imaging plate attached to a rotating mount is photographed using a highly sensitive camera.
Immediately display it on the TV monitor. Furthermore, the image displayed on the TV monitor can be arbitrarily digitized and stored in an image memory, and a scale can also be reflected thereon so that the dimensions of the body parts can be determined.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第3図について説
明する。なお、第4図と相当または同一部分11Ck1
同一符号を用いているので、この項での説明は省略する
。第り図において、蛍光板のようなイメージングプレー
ト(11)が回転架台(2)の支持部(12)に取付け
られており、患者(7)をはさみ線源(4)と対向する
位置にイメージングプレート(IL)が設定されている
。イメージングプレー ト(11)の下部に傾斜して配
置された鏡(13)に対向して高感度のカメラ(14)
が配置されている。さらに、TVモニタ(L5)、TV
モニタ像の任意の画像をディジタル化して記憶する画像
メモIJ(16)、ライナックの遠隔操作器(17)が
設げられている。カメラ(14)とTVモニタ(16)
間はケーブル(18)で接続されている。イメージング
プレート(Ll)上には、X線(5)によりイメージン
グプレート(11)に映し込まれる金属等のX線減衰率
の犬さい材質でなる目盛(31)が配置されるとともに
、目盛(31)とは別の方法でTVモニタ(15)に目
盛を表示できるよう、線源(4)からの患部の距離を入
力することによp TVモニタ(15)上の患部寸法を
演算し、表示すべぎ目盛を画像メモ’)(16)K記憶
させる目盛演算装置(32)が配置されている。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. In addition, the corresponding or the same part 11Ck1 as in Fig. 4
Since the same reference numerals are used, the explanation in this section will be omitted. In Figure 3, an imaging plate (11), such as a fluorescent screen, is attached to the support (12) of the rotating pedestal (2), and the patient (7) is placed between the imaging plate and the scissor radiation source (4). (IL) is set. A high-sensitivity camera (14) faces a mirror (13) tilted at the bottom of the imaging plate (11).
is located. Furthermore, TV monitor (L5), TV
An image memo IJ (16) for digitizing and storing arbitrary images on the monitor and a linac remote controller (17) are provided. Camera (14) and TV monitor (16)
They are connected by a cable (18). On the imaging plate (Ll), a scale (31) made of a material with a high X-ray attenuation rate, such as metal, which is reflected on the imaging plate (11) by the X-rays (5), is arranged. ) In order to display the scale on the TV monitor (15) in a different way, by inputting the distance of the affected area from the radiation source (4), the dimensions of the affected area on the TV monitor (15) are calculated and displayed. A scale calculating device (32) for storing the scale scale as an image memo (16) is arranged.

が、X線減衰率の小さい材質、例えばアクリルでなるア
ーム(34)Kそれぞれ支持されている。寸材質である
are supported by arms (34) K made of a material with a low X-ray attenuation rate, for example, acrylic. The material is sized.

第3図は放射線治療を行う際の機器配置の例で、放射線
を発生する治療室(51)、放射線治療装置を遠隔操作
する操作室(52)、治療室(61)への出入のための
もので室外への放射線漏洩を防いでいる扉(63)、コ
ンクリートでなシ治療室(51)内で発生した放射線が
操作室(62)を含めた周囲に対して十分減衰するのに
必要な厚さの壁(54)等からなり、治療室(61)内
の患者の様子はITVカメラ(56)で撮影し、ITV
モニタ(55)で監視する。
Figure 3 shows an example of the equipment arrangement when performing radiotherapy, including a treatment room (51) that generates radiation, a control room (52) that remotely controls the radiotherapy equipment, and a room for access to and from the treatment room (61). The door (63) is made of concrete to prevent radiation leakage to the outside, and the door (63) is made of concrete. It consists of thick walls (54), etc., and the state of the patient in the treatment room (61) is photographed by an ITV camera (56).
Monitor with a monitor (55).

次に動作について説明する。患者(7)の治療部位を透
過したX線(5)はイメー・ジングプレート(11)に
達してイメージングプレート(Ll)の蛍光を発生させ
るが、このとき、治療部位は通常X線の減衰率が大きく
、暗くうつシ、その周囲の臓器の影とともに、イメージ
ングプレート(11)上に明暗の臓器像かできあがる。
Next, the operation will be explained. The X-rays (5) that have passed through the treatment area of the patient (7) reach the imaging plate (11) and generate fluorescence on the imaging plate (Ll). The organ is large and dark, and together with the shadows of the surrounding organs, a bright and dark organ image is created on the imaging plate (11).

このイメージングプレー) (11)の蛍光像は、外部
からの光の漏れ込みを押えるように構成された暗箱にな
っている支持部([2)内の鏡(13)に反射され、高
感度カメラ(14)で撮影される。高感度カメラ(14
)は、蛍光を増幅するのに十分な、低照度カメラを用い
て達成できる。ここで撮影された像は、ケーブル4も (18)を44てTVモニタ(15)にX出される。従
って、治療に用いるX線(5)を使って治療中の臓器の
様子をモニタすることができる。
The fluorescent image of this imaging plate (11) is reflected by the mirror (13) in the support part (2), which is a dark box configured to suppress the leakage of light from the outside, and is captured by the high-sensitivity camera. Photographed at (14). High sensitivity camera (14
) can be achieved using a low light camera, sufficient to amplify the fluorescence. The image photographed here is output to the TV monitor (15) via the cable 4 (18) 44. Therefore, the state of the organ undergoing treatment can be monitored using the X-rays (5) used for treatment.

治療中のX線(5)の照射野は極力治療部位に近付ける
ので、治療部位とその近傍の臓器が監視できるのである
が、さらに広い領域の状態を知ることができると治療中
の臓器監視がさらに有効になる。そこで、ライナックグ
ラフィの場合と同様に、治療の前に治療部位の周囲状況
を知るに十分な広さの照射野としてX線(5)を1度照
射する。このときのX線量は、治療のためのX、g量に
対して十分少ない値でなければならないが、撮影した後
、これを画像メモ’J(16)に記憶すれば良いだけな
ので、十分可能である。TVモニタ(16)に映し出さ
れている映像の一画面、または同一映像で複数画像の重
ね合わせたものをディジタル化することにより、映像を
メモリに記憶することが可能となシ、複数外の映像を記
憶するに十分な容量を持つメモリを用意して、ビデオメ
モリを介してTVモニタ(15)と接続すれば、画像メ
モ’) (16)Kよる映像もTVモニタ(15)に映
し出せる。ライナックグラフィと同様にして得た治療前
の臓器映像は、画像メモ’J(16)に記憶されている
ので、これを治療実行中に実時間の治療部位映像と交互
に映し出すか、lね合わせて映し出すことにより、周囲
臓器と治療部位の関係を常に監視することができ、放射
線治療を安全に、かつ、精度よく実行することができる
During treatment, the irradiation field of X-rays (5) is brought as close as possible to the treatment area, so the treatment area and nearby organs can be monitored.However, being able to know the status of an even wider area would make it easier to monitor organs during treatment. becomes even more effective. Therefore, as in the case of linacography, before treatment, X-rays (5) are irradiated once as an irradiation field large enough to know the surrounding situation of the treatment site. The X-ray dose at this time must be a sufficiently small value compared to the amount of X and g for treatment, but it is possible as it is only necessary to memorize this in the image memo 'J (16) after taking the image. It is. By digitizing one screen of the image displayed on the TV monitor (16) or a superimposition of multiple images of the same image, it is possible to store the image in memory. If you prepare a memory with sufficient capacity to store the image memo') (16) and connect it to the TV monitor (15) via a video memory, you can also display the image from the image memo') (16) on the TV monitor (15). Pre-treatment organ images obtained in the same way as linacgraphy are stored in the image memo 'J (16), so they can be displayed alternately with real-time treatment area images during treatment, or combined. By displaying the images, it is possible to constantly monitor the relationship between surrounding organs and the treatment area, and radiotherapy can be performed safely and accurately.

また、治療中の任意の画像も画像メモ!J(16)に記
憶させれば、これを治療の実績の証拠とすることができ
る。
You can also take notes of any images taken during treatment! If J(16) memorizes this, it can be used as evidence of the treatment results.

以上のままでは患部の寸法が不明であるので、治療部位
の寸法をTVモニタ(16)上に映し出す目盛(31)
をイメージングプレート(11)の上に取付けておけば
、X線(5)による目盛(31)の影がイメージングプ
レー) (11)に投影され、そのまま、TVモニタ(
16)に映し出され、かつ、画像メモIJ(16)に映
像の一部として記憶される。
Since the dimensions of the affected area are unknown as described above, the scale (31) displays the dimensions of the treatment area on the TV monitor (16).
If the is mounted on the imaging plate (11), the shadow of the scale (31) produced by the
16) and stored as part of the image in the image memo IJ (16).

X線(5)は、第1図に示すように、円錐状に放射して
いる。このため治療部位の像のイメージングプレー) 
(11)への投影は実寸法よシ拡大して投影されている
ことKなる。治療部位に目盛(31)を置くことはでき
ないので(多くの場合治療部位ヲ1体内である)、イメ
ージンググレート(11)上で目盛(31)の大きさを
調節してやればよい。例えは目盛間隔は約束事として値
を決めておくと(5mN間隔程度が実際的)、その目盛
がTVモニタ(15)に投影されれば実寸法が判別でき
る。そこで、第2図のようK、アーム(34)に連結さ
れた目盛片(33)はX線減衰率が大きいので影となっ
て映し出されるが、アーム(34)は減衰率が非常に小
さいのでほとんど映し出されない。目盛片(33)とア
ーム(34)は寸法設定装置(35)に連結されている
ので、寸法設定装置(35)を大きく傾ければ、目盛片
(33)の間隔は広がり、逆に、寸法設定装置(35)
の傾きを小さくすれば、目盛片(33)の間隔は縮まる
As shown in FIG. 1, the X-rays (5) are emitted in a conical shape. For this purpose, the imaging plate of the image of the treatment area)
The projection onto (11) is an enlarged projection of the actual size. Since the scale (31) cannot be placed on the treatment site (in most cases, the treatment site is within the body), the size of the scale (31) can be adjusted on the imaging grating (11). For example, if the scale interval is determined as a convention (approximately 5 mN interval is practical), then the actual size can be determined by projecting the scale on the TV monitor (15). Therefore, as shown in Fig. 2, the scale piece (33) connected to the K arm (34) has a large X-ray attenuation rate, so it appears as a shadow, but the arm (34) has a very small attenuation rate, so Almost not shown. The scale piece (33) and arm (34) are connected to the dimension setting device (35), so if the dimension setting device (35) is tilted greatly, the interval between the scale pieces (33) will increase, and conversely, the dimension Setting device (35)
If the slope of is made smaller, the interval between the scale pieces (33) will be reduced.

従って、寸法設定装置(35)の角度が線源(4)と治
療部位との間隔に相当するよう関係ずけておけば、正確
に治療部位の寸法を示す目盛片(33)の間隔を設定す
ることができる。
Therefore, if the angle of the dimension setting device (35) is set to correspond to the distance between the radiation source (4) and the treatment area, the interval between the scale pieces (33) that accurately indicates the size of the treatment area can be set. can do.

以上と同じ考え方により、目盛演算装置(32)を用い
て目盛をTVモニタ(15)K映し出すこともできる。
Based on the same idea as above, the scale can also be displayed on the TV monitor (15) K using the scale calculating device (32).

すなわち、線源(4)とイメージングプレート(11)
の間隔は固定であるので、線源(4)と治療部位の間隔
がわかればイメージングプレー) (11)上への像の
拡大率は容易に計算できる。
That is, the radiation source (4) and the imaging plate (11)
The distance between the radiation source (4) and the treatment area is fixed, so if the distance between the radiation source (4) and the treatment area is known, the magnification of the image above (11) can be easily calculated.

高感度カメラ(14)を介したTVモニタ(L5)上の
画素間隔は決っているので、約束事として決めである目
盛間隔(例えば5 m )がTVモニタ(15)上の相
当する画素数が計算でき、これを画像メモリ(16)上
に目盛として、画像しておき、ビデオラムを介して表示
してやれば、第2図の目盛とは別の方法で目盛をTVモ
ニタ(15)に表示することができ、治療部位の実寸法
を読取ることができる。
Since the pixel interval on the TV monitor (L5) through the high-sensitivity camera (14) is fixed, the number of pixels corresponding to the scale interval (for example, 5 m), which is fixed as a convention, on the TV monitor (15) is calculated. If you image this as a scale on the image memory (16) and display it via the video ram, you can display the scale on the TV monitor (15) in a different way from the scale shown in Figure 2. The actual dimensions of the treatment area can be read.

第3図の放射線治療装置では、治療放射線の漏れかない
ような治療室(51)の外の操作室(52)で装置を遠
隔操作器(17)で運転し、TVモニタ([5)で治療
部位の監視をする。また、患者の様子は、ITVカメラ
(56)で撮影し、これをITVモニタ(65)で監視
する。
In the radiation therapy device shown in Fig. 3, the device is operated using a remote controller (17) in a control room (52) outside the treatment room (51) where no therapeutic radiation leaks, and the treatment is monitored using a TV monitor ([5)]. Monitor the area. Furthermore, the condition of the patient is photographed by an ITV camera (56) and monitored by an ITV monitor (65).

ここで、イメージングプレート([1)と高感度カメラ
(14)は蛍光増倍管で代替しても同等の効果が得られ
る。また、支持部(12)は、回転架台(2)の中に収
納可能な機構を付加すれば、患者(力の設定のとぎに技
師の足元が自由になυ、設定が容易となるので、可動機
構を付加してもよい。ケーブル(18)は直接TVモニ
タ(L6)に接続されているが、AD変換して画像メモ
!J (16)のビデオメモリに接続してもよい。
Here, the same effect can be obtained even if the imaging plate ([1) and the high-sensitivity camera (14) are replaced with fluorescence multiplier tubes. In addition, if a mechanism that can be stored in the rotating mount (2) is added to the support part (12), the patient (the technician's feet will be free when setting the force) and the setting will become easier. A movable mechanism may be added.Although the cable (18) is directly connected to the TV monitor (L6), it may be AD converted and connected to the video memory of Image Memo!J (16).

なお、上記実施例では医療用ライナックについて説明し
たが、コバルト60治療装置、ベータートロン、マイク
ロトロン等の放射線治療装置にも同様に適用が可能で、
近年建設が進められている重粒子、π中間子、中性子治
療装置等にも適用することができる。
In addition, although the above embodiment describes a medical linac, it can be similarly applied to radiation therapy devices such as a cobalt-60 treatment device, a betatron, a microtron, etc.
It can also be applied to heavy particle, π meson, and neutron therapy equipment, etc., which have been under construction in recent years.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、治療部位をは′さん
で線源と対向するイメージングプレートを配置し、この
イメージングプレートによる放射線4市 強度分布を電気信号に変換してTVモニタに、抽′出す
るようにしたので、放射線治療中に治療放射線を用いて
治療部位の臓器の様子を監視することができ、治療が正
しく行われているかの確認が常に可能で、放射線治療の
安全性の向上と治療精度の向上が得・られる効果がある
As described above, according to the present invention, an imaging plate is arranged facing a radiation source across the treatment area, and the radiation intensity distribution in four areas by this imaging plate is converted into an electrical signal and extracted on a TV monitor. This makes it possible to monitor the state of the organs in the treatment area using therapeutic radiation during radiotherapy, and it is always possible to confirm whether the treatment is being performed correctly, thereby improving the safety of radiotherapy. This has the effect of improving treatment accuracy and treatment accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の概略側面図、第2図は第
1図における治療部位寸法の目盛の平面図、第3図は当
該実施例の放射線治療装置の配置を示す平断面図、第4
図は従来の放射線治療部位モニタ装置の概略側面図であ
る。 (4)・・線源、(6)・・放射線、(11)φΦイメ
ージングプレート、(14)・・高感度カメラ(電気信
号に変換する手段)、(16)・・TVモニタ、(L6
)・・画像メモリ、(31)・・目盛。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  曾  我  道  照   ゛心2図 市4図
FIG. 1 is a schematic side view of an embodiment of the present invention, FIG. 2 is a plan view of the scale of treatment area dimensions in FIG. , 4th
The figure is a schematic side view of a conventional radiotherapy site monitoring device. (4)...Radiation source, (6)...Radiation, (11)φΦ imaging plate, (14)...High sensitivity camera (means for converting into electrical signals), (16)...TV monitor, (L6
)...Image memory, (31)...Scale. In each figure, the same reference numerals indicate the same or corresponding parts. Agent Zeng Wa Dao Teru ゛Heart 2 City Figure 4

Claims (1)

【特許請求の範囲】[Claims]  治療部位をはさんで放射線の線源と反対部位に配置さ
れ前記放射線の強度に応感するイメージングプレートと
、このイメージングプレートによる放射線強度分布を電
気信号に変換する手段と、前記電気信号により前記放射
線強度分布を抽出するTVモニタとを備えてなる放射線
治療部位モニタ装置。
an imaging plate that is placed opposite to the radiation source across the treatment area and is sensitive to the intensity of the radiation; a means for converting the radiation intensity distribution by the imaging plate into an electrical signal; A radiotherapy site monitoring device comprising a TV monitor for extracting intensity distribution.
JP63102787A 1988-04-27 1988-04-27 Radiant ray therapy part monitoring device Pending JPH01274741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102787A JPH01274741A (en) 1988-04-27 1988-04-27 Radiant ray therapy part monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102787A JPH01274741A (en) 1988-04-27 1988-04-27 Radiant ray therapy part monitoring device

Publications (1)

Publication Number Publication Date
JPH01274741A true JPH01274741A (en) 1989-11-02

Family

ID=14336839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102787A Pending JPH01274741A (en) 1988-04-27 1988-04-27 Radiant ray therapy part monitoring device

Country Status (1)

Country Link
JP (1) JPH01274741A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048423A1 (en) * 1998-03-25 1999-09-30 Mitsubishi Denki Kabushiki Kaisha High resolution real-time x-ray image apparatus
DE102008004445A1 (en) 2007-06-01 2008-12-11 Mitsubishi Electric Corp. Particle beam treatment system
JP2010183976A (en) * 2009-02-10 2010-08-26 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus controller and irradiation method
US9196082B2 (en) 2008-02-22 2015-11-24 Loma Linda University Medical Center Systems and methods for characterizing spatial distortion in 3D imaging systems
US9213107B2 (en) 2009-10-01 2015-12-15 Loma Linda University Medical Center Ion induced impact ionization detector and uses thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999048423A1 (en) * 1998-03-25 1999-09-30 Mitsubishi Denki Kabushiki Kaisha High resolution real-time x-ray image apparatus
DE102008004445A1 (en) 2007-06-01 2008-12-11 Mitsubishi Electric Corp. Particle beam treatment system
US7579608B2 (en) 2007-06-01 2009-08-25 Mitsubishi Electric Corporation Particle-beam treatment system
US9196082B2 (en) 2008-02-22 2015-11-24 Loma Linda University Medical Center Systems and methods for characterizing spatial distortion in 3D imaging systems
JP2010183976A (en) * 2009-02-10 2010-08-26 Mitsubishi Heavy Ind Ltd Radiotherapy apparatus controller and irradiation method
US8005190B2 (en) 2009-02-10 2011-08-23 Mitsubishi Heavy Industries, Ltd. Radiotherapy apparatus controller and irradiation method
US9213107B2 (en) 2009-10-01 2015-12-15 Loma Linda University Medical Center Ion induced impact ionization detector and uses thereof

Similar Documents

Publication Publication Date Title
US20210369217A1 (en) Imaging Systems and Methods for Image-Guided Radiosurgery
Meertens et al. First clinical experience with a newly developed electronic portal imaging device
JPH1052421A (en) Device and method for inspecting radioactive rays supplied to object
US5712482A (en) Portable electronic radiographic imaging apparatus
JP4268794B2 (en) System and method for measuring radiation quality and measuring dose by electron field imaging
US5396889A (en) Stereotactic radiosurgery method and apparatus
Visser et al. Performance of a prototype fluoroscopic radiotherapy imaging system
US20250152115A1 (en) Tracking systems and methods for image-guided radiosurgery
US5818901A (en) Medical examination apparatus for simultaneously obtaining an MR image and an X-ray exposure of a subject
US20220071573A1 (en) Upright advanced imaging apparatus, system and method for the same
JP4664489B2 (en) Radiation therapy planning system
US5409001A (en) Medical therapy system
KR101806026B1 (en) Virtual x-ray radiography system for practical training in medical imaging
JP2009153589A (en) X-ray equipment
US11540789B1 (en) Self-shielded x-ray computed tomography system
JPH01274741A (en) Radiant ray therapy part monitoring device
JP4178332B2 (en) X-ray diagnostic equipment
JP7140251B2 (en) radiography equipment
JPH0626608B2 (en) Treatment device
JP2002272863A (en) Radiation medical treating system
CN112656437B (en) Medical image diagnosis device, X-ray computed tomography device, and medical image diagnosis support method
JP7665388B2 (en) Medical image diagnostic device and control method
JPH06254171A (en) Constant position type radioactive ray therapeutic device
JPH09192245A (en) Radiotherapy system
JPH1119234A (en) Beam radiating device and radiotherapy apparatus using the beam radiating device