[go: up one dir, main page]

JPH01274325A - Touch panel - Google Patents

Touch panel

Info

Publication number
JPH01274325A
JPH01274325A JP63104986A JP10498688A JPH01274325A JP H01274325 A JPH01274325 A JP H01274325A JP 63104986 A JP63104986 A JP 63104986A JP 10498688 A JP10498688 A JP 10498688A JP H01274325 A JPH01274325 A JP H01274325A
Authority
JP
Japan
Prior art keywords
spacer
touch panel
electrodes
mean
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104986A
Other languages
Japanese (ja)
Inventor
Masanori Shimizu
正憲 清水
Hirohiko Naito
内藤 裕彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunze Ltd
Original Assignee
Gunze Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunze Ltd filed Critical Gunze Ltd
Priority to JP63104986A priority Critical patent/JPH01274325A/en
Publication of JPH01274325A publication Critical patent/JPH01274325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Push-Button Switches (AREA)

Abstract

PURPOSE:To prevent the interruption of the line of a graphics with an input dead angle reduced by movably arranging a spacer having a given shape and dimension between electrode substrates. CONSTITUTION:A touch panel 1 is formed with a spacer 5 movably arranged between substrates 4 and 4' in which electrodes 3 and 3' are formed on insulation substrates 2 and 2'. The spacer 5 has the dimension and shape of the sphere having a mean diameter of 2-100mu, the polyhedron having a mean maximum diameter of one side of 2-100mu, or the cylinder having a mean diameter of 2-100mu aid a mean length of 20-200mu. For example, in the sphere having a mean diameter of 30mu and in which micro beads are used and randomly arranged to have a mean intervals of 2mm, the spacer is easily moved by the pressing of a stylus, and an input dead angle caused with the spacer is unrecognized.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は入力死角の少ない構成を有するタッチパネルに
関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a touch panel having a configuration with few input blind spots.

〈従来の技術〉 従来より電極の形成された基板2枚をスペーサーを介し
て前記電極が対向するように形成してなるタッチパネル
は各方面で使用されているが、これら従来のものは、そ
のスペーサーが固着状に配置されているため、死角が存
在し、スペーサーの配置点及びその極く近傍では押圧し
ても入力、即ち前記電極同志の接触が不可能となってい
た。
<Prior Art> Conventionally, touch panels formed by forming two substrates on which electrodes are formed so that the electrodes face each other with a spacer in between have been used in various fields. Since the electrodes are arranged in a fixed manner, there is a blind spot, and it is impossible to input, that is, contact between the electrodes, even if the electrodes are pressed at the arrangement point of the spacer and in the very vicinity thereof.

こうした現象は誤入力、誤作動等を防止すべくスペーサ
ーの数を増やせば増やす程大きくなり、精密な入力を拒
む一因となっていた。
These phenomena become more severe as the number of spacers is increased to prevent erroneous inputs, malfunctions, etc., and becomes a factor in preventing precise inputs.

例えば抵抗膜式電圧分割型といわれるタッチパネル用い
て繊細な図形等を入力しようとする場合、スペーサーが
固着配置されている従来のタッチパネルにおいては2図
形等の一部がスペーサーの配置部と重なる際、その配置
部やその極く近傍では入力できないという欠点があり1
図形等の線の連続性等が得られないという問題もあった
For example, when trying to input delicate figures using a touch panel called a resistive film type voltage division type, when a part of two figures etc. overlap with the spacer arrangement part on a conventional touch panel in which a spacer is fixedly arranged, There is a drawback that input cannot be made at the location or very close to it.
There was also the problem that continuity of lines in figures etc. could not be obtained.

く問題点を解決するための手段〉 本発明はこれら従来の問題点を解決すべくなされたもの
で、その特徴とするところは、電極の形成された基板2
枚をスペーサーを介して前記電極が対向するように形成
してなるタッチパネルにおいて、スペーサーが少なくと
も外力により遊動可能に配置した点にある。
Means for Solving the Problems> The present invention has been made to solve these conventional problems, and is characterized by a substrate 2 on which electrodes are formed.
In the touch panel formed by forming two sheets with the electrodes facing each other with a spacer in between, the spacer is arranged to be movable by at least an external force.

この結果、例えば鉄筆等で図形等を入力しようとする場
合、鉄筆等でタッチパネル面を押圧しながら鉄筆等を移
動させるに際しては、当然ながら押圧点の下面の電極同
志の接触点も移動することになり、この際、その進路に
存在するスペーサーは、少なくとも外力により遊動可能
であるため、容易に押しおけられて進路から排除され、
スペーサーの配置点及びその極く近傍でも入力が可能と
なるのである。
As a result, when trying to input figures, etc. with a pencil, for example, when moving the pen while pressing the touch panel surface with the pen, the contact point between the electrodes on the lower surface of the pressing point will naturally also move. At this time, the spacer existing in the path is movable by at least an external force, so it is easily pushed aside and removed from the path.
Input can be made even at the spacer arrangement point and in the very vicinity thereof.

本発明に係るタッチパネルとは第1図に示す抵抗膜式電
圧分割型のものや、第2図に示す如きX−Yマトリクス
型ものを例示でき、特に制限はない。
The touch panel according to the present invention can be exemplified by a resistive film voltage division type as shown in FIG. 1 or an X-Y matrix type as shown in FIG. 2, and is not particularly limited.

第1図のタッチパネル1を更に詳述すると、絶縁基板2
.2°上に電極3.3°が形成された基板4.4°を2
枚用い、各電極3.3が対向するようにスペーサー5を
介して形成したもので、押圧により上面の基板4が変形
して電極3.3同志が接し、導通状態となるものである
。かかるタッチパネル1は、電極として−様な抵抗性の
ものを用いており、押圧座標を電位傾度により検出する
方式のもので、6.6°に示すは電極3.3°の相対向
するエツジに配された電圧印加用の導電ラインである。
To explain the touch panel 1 in FIG. 1 in more detail, the insulating substrate 2
.. The substrate 4.4° with the electrode 3.3° formed on the 2°
The electrodes 3.3 are formed with a spacer 5 in between so that they face each other, and when pressed, the upper substrate 4 is deformed and the electrodes 3.3 come into contact with each other, creating a conductive state. This touch panel 1 uses resistive electrodes such as -, and is of a type that detects the pressed coordinates based on the potential gradient. This is a conductive line for applying voltage.

第3図のタッチパネル10は絶縁基板2、z上にたんざ
く状の電極3,3゛が形成された基板4゜4”を2枚用
い、片面の電極3と他面の電極3°とが例えば直交し、
かつ対向するようにスペーサー5を介して形成したもの
で、押圧座標を直接検出するものである。
The touch panel 10 shown in Fig. 3 uses two substrates 4゜4'' in which tanzag-shaped electrodes 3, 3゛ are formed on insulating substrates 2, z, and the electrode 3 on one side and the electrode 3゛ on the other side are connected to each other. For example, orthogonal,
They are formed so as to face each other with a spacer 5 interposed therebetween, and the pressed coordinates are directly detected.

かかるタッチパネルlOは1例えば絶縁基板全面に形成
された導電薄膜を、エツチング等により不要部を除去し
、たんざ〈状の電極3,3°として形成したものであり
、この際、7.7°で示すはリード線の印刷部である。
Such a touch panel 10 is made by removing unnecessary parts of a conductive thin film formed on the entire surface of an insulating substrate by etching or the like, and forming electrodes 3.3 degrees in the shape of a tanza. The part shown with is the printed part of the lead wire.

ここに例示される第1図、第2図のものは絶縁基板、電
極共に透明状に形成されたものであるため、上面から透
視できるものである。
In the case illustrated in FIGS. 1 and 2, both the insulating substrate and the electrodes are formed in a transparent manner, so that they can be seen through from the top.

本発明に係るスペーサー5は遊動自存であること、即ち
電極の形成された基板面に固着されず、少なくとも外力
により遊動可能であることが必要である。こうしたスペ
ーサーはタッチパネルとされた状態で、少なくとも外力
により遊動可能な形状、構造等を有するものならば特に
制限はない。
The spacer 5 according to the present invention is required to be free-floating, that is, not to be fixed to the substrate surface on which the electrodes are formed, and to be able to move at least by an external force. There are no particular restrictions on such a spacer as long as it has a shape, structure, etc. that allows it to move at least by an external force when used as a touch panel.

しかしながら、好ましくは球形の粒子や円柱状の粒子を
例示でき、その大きさも特に制限はないが、球形の場合
平均直径が2〜100%程度、好ましくはlO〜501
L程度1円柱状の場合平均直径が2〜100.程度、平
均長さが20〜200終程度、好ましくは平均直径がl
θ〜50#L程度、平均長さが30〜100終程度を例
示でき、円柱状のものは通常横にして用いるのが望まし
い、更に、多面形状のものも例示でき、この場合一辺の
平均最大径が2〜100%程度、好ましくはlO〜50
ル程度のものをあげることができる。このような数値の
範囲にある微細な粒子を用いると、タッチパネルが例え
透明状のものであっても、外部より視認できにくいとい
う利点もある。
However, preferred examples include spherical particles and cylindrical particles, and there is no particular restriction on the size, but in the case of spherical particles, the average diameter is about 2 to 100%, preferably lO to 501%.
In the case of a cylindrical shape of about L, the average diameter is 2 to 100. The average length is about 20 to 200 mm, preferably the average diameter is 1.
Examples include θ~50 #L, average length of 30~100 mm, cylindrical ones are usually used horizontally, and polyhedral ones, in which case the average maximum length of one side The diameter is about 2 to 100%, preferably lO to 50%.
I can give you about 100%. The use of fine particles within such a numerical range has the advantage that even if the touch panel is transparent, it is difficult to see from the outside.

またスペーサーの分布状態は特に制限はなく、その配置
密度は投影面積比率で、タッチパネルの実面積に対し5
0%以下、更には1%以下、好ましくは0.003〜0
.25%程度が望ましい。
There are no particular restrictions on the distribution of spacers, and their arrangement density is a projected area ratio of 5% to the actual area of the touch panel.
0% or less, further 1% or less, preferably 0.003 to 0
.. Approximately 25% is desirable.

この際、実面積とはタッチパネルとして作動する勤らき
面積を云う、スペーサーの材質としては。
In this case, the actual area refers to the actual area that operates as a touch panel, and the material of the spacer.

シリカ等の無機微粒子、ガラス、グラスファイバー、プ
ラスチック等の粒子を例示でき、非導電性であれば特に
制限はなく、ここで粒子とは微粒子、粉体、ビーズ、チ
ップ、ロッド等の適宜の小物体も含まれることは云うま
でもない。
Examples include inorganic particles such as silica, particles of glass, glass fiber, plastic, etc., and there are no particular restrictions as long as they are non-conductive. Needless to say, objects are also included.

このようなスペーサーは透明、半透明、不透明を問わな
いが、タッチパネル自身が第1〜2図に例示した如く、
透明体の場合はスペーサーも透明状物質のものを用いる
のが好ましく、こうすることにより、外部からスペーサ
ーが視認できにくく、身栄えがよいものとなる。従来の
固着型スペーサーではその構造上(スペーサーを、視認
できないほど小さく配置できにくいため)、例え透明体
を用いても、スペーサーが外部より視認され易いが、本
発明はスペーサーを透明、半透明等の如く選択使用する
ことにより、従来の前記した問題点の解決を図ることも
可能である。また、スペーサーとして不透明なものを用
いる場合であっても、微細である限り外部より視認でき
にくく、前記と同様の問題点の解決を図ることも可能で
ある。
Such a spacer may be transparent, translucent, or opaque, but as the touch panel itself is illustrated in Figures 1 and 2,
In the case of a transparent material, it is preferable to use a transparent material for the spacer as well.By doing so, the spacer is difficult to see from the outside and the spacer looks good. Due to the structure of conventional fixed spacers (because it is difficult to place the spacer so small that it cannot be seen), even if a transparent body is used, the spacer is easily visible from the outside, but the present invention makes the spacer transparent, semi-transparent, etc. It is also possible to solve the above-mentioned conventional problems by selectively using the following methods. Furthermore, even if an opaque spacer is used, as long as it is minute, it will be difficult to see from the outside, and it is possible to solve the same problem as above.

スペーサーをタッチパネルに配置するには種種の方法が
考えられ特に制限はないが、タッチパネルの組立時に、
一方の電極の形成された基板上に仮固定する方法を一例
としてあげることができる。仮固定には、スペーサーの
分散液を塗布し乾燥する方法もあり1機能の極く弱い接
着物質、粘着物質等を併用する方法等も考えられる。ま
た、静電塗布等も有効な手段である。
There are various ways to place spacers on the touch panel and there are no particular restrictions, but when assembling the touch panel,
One example is a method of temporarily fixing one electrode on a substrate. For temporary fixation, there is a method in which a dispersion of a spacer is applied and dried, and a method in which a very weak adhesive substance with a single function, an adhesive substance, etc. is used in combination can be considered. Further, electrostatic coating and the like are also effective means.

かかるスペーサーは、所定の配置密度でタッチパネルの
全面に配置することが望ましいが、効果が大幅に損なわ
れない範囲で、通常使用されるドツト状、線状、格子上
等の固着状のスペーサーを併用することはいっこうに差
しつかえない。
It is desirable to arrange such spacers on the entire surface of the touch panel at a predetermined arrangement density, but it is also possible to use commonly used fixed spacers in the form of dots, lines, grids, etc. to the extent that the effect is not significantly impaired. There is nothing I can do about it.

本発明に係るタッチパネルについては前記した通り特に
制限はなく、電極3.3°の形成された基板4.4°と
は、絶縁基板2.2゛に電極3.3が形成されてなるも
ので、この際絶縁基板としては絶縁板、ガラス、プラス
チックシート、フィルム等を例示でき特に制限はなく、
透明、不透明についても自由である。また電極としては
金属、金属酸化物等を絶縁基板上に形成したものや、導
電性塗料を基板上に塗布したものを例示でき、特に制限
はなく、その形状についても、基板上に全面形成された
ものから、たんざく状等各種の形状等に部分的に形成さ
れるものでもよく、特に制限はない、好ましい一態様と
しては絶縁基板として用いる透明プラスチックフィルム
、シート等の上に、電極として用いるインジウム−スズ
酸化物等の金属や金属酸化物等をスパッタリング、蒸着
、イオンブレーティング等の方法により形成した透明導
電性フィルムを、電極が形成された基板として用いる周
知のタッチパネルを例示できる。
As mentioned above, the touch panel according to the present invention is not particularly limited, and the substrate 4.4° on which the electrode 3.3° is formed is the one in which the electrode 3.3 is formed on the insulating substrate 2.2°. In this case, examples of the insulating substrate include insulating plates, glass, plastic sheets, films, etc., and there are no particular limitations.
Transparency or opacity is also free. Examples of electrodes include those formed by forming metals, metal oxides, etc. on an insulating substrate, and those formed by coating conductive paint on the substrate, and there are no particular restrictions on the shape. It may be partially formed into various shapes such as a tanzak shape, etc., and there is no particular restriction.One preferable embodiment is to use it as an electrode on a transparent plastic film, sheet, etc. used as an insulating substrate. An example is a well-known touch panel in which a transparent conductive film made of a metal such as indium-tin oxide or a metal oxide by a method such as sputtering, vapor deposition, or ion blating is used as a substrate on which electrodes are formed.

かかるタッチパネルの電極間の間隔はスペーサーの高さ
によって定まり、スペーサーの高さが均一な時は間隔も
均一となり、不均一の時は間隔も不均一となるが、機能
的に問題ないならばどちらでもよい。
The spacing between the electrodes of such a touch panel is determined by the height of the spacer. When the height of the spacer is uniform, the spacing is uniform, and when the height of the spacer is uneven, the spacing is uneven. However, as long as there is no functional problem, either But that's fine.

本発明タッチパネルの用途としては特に制限はなく、必
要に応じ広範に亘り得るが、例えば各種機器への入力用
のタッチスイッチ等に用いられ、デイスプレー等表示体
に直接配設して用いられることもある。
The use of the touch panel of the present invention is not particularly limited and may be used in a wide range of applications as required, but for example, it may be used as a touch switch for inputting to various devices, and may be used by being placed directly on a display such as a display. There is also.

〈実施例1〉 厚さ17.5.の透明状ポリエチレンフタレートフィル
ム2.2°の片面にインジウム−スズ酸化物からなる厚
さ400Aの金属薄膜層をスパッタリング法により形成
し、透明導電性フィルム即ち、透明電極の形成された基
板4.4°を得た。こうして得た基板4.4°の片方4
°の電極側にガラス製で平均直径30ILの微細な球形
のマイクロビーズを配置密度0.02%となるようにラ
ンダム状に配置し、速やかに他方の基板4を重ね、電極
3.3゜面が対向するように所定の方法により組み立て
、第1図の如き抵抗膜式電圧分割型のタッチパネルを得
た。かかるタッチパネルの実面積は15×20=300
  c♂で、マイクロビーズはランダム状に配置され、
かつ互の距離の平均間隔は2m閣であり、マイクロビー
ズが固定されず、スタイラスで押圧することにより容易
に遊動可能であった。この際スタイラスによりスペーサ
ーの真上を押圧したら、スペーサーが若干遊動し、その
部分が入力可能となり、スペーサーが原因での入力死角
がなくなった。
<Example 1> Thickness 17.5. A 400A thick metal thin film layer made of indium-tin oxide is formed on one side of a transparent polyethylene phthalate film 2.2° by a sputtering method, and a transparent conductive film, that is, a substrate 4.4 on which a transparent electrode is formed. Got °. One side of the substrate 4.4° 4 obtained in this way
Fine spherical microbeads made of glass and having an average diameter of 30IL were randomly arranged on the electrode side of the electrode at an arrangement density of 0.02%, and the other substrate 4 was immediately placed on top of the electrode. By assembling them by a predetermined method so that they faced each other, a resistive film type voltage division type touch panel as shown in FIG. 1 was obtained. The actual area of such a touch panel is 15 x 20 = 300
In c♂, the microbeads are randomly arranged,
Moreover, the average distance between them was 2 m, and the microbeads were not fixed and could be easily moved by pressing with a stylus. At this time, when I pressed the spacer directly above it with the stylus, the spacer moved slightly, making it possible to input data in that area, eliminating the input blind spot caused by the spacer.

また、かかるタッチパネルは、スペーサーが微細である
ため、外部からはほとんど視認できない好適なものであ
った。
Moreover, since the spacers in such a touch panel are minute, they are hardly visible from the outside.

〈実施例2〉 実施例1で得た透明導電性フィルムの所定部以外を化学
的エツチング法により除去し、7木と6木のたんざく型
透明電極3.3の形成された透明基板4,4を得、これ
らの透明電極同志が直交するようにスペーサーを介して
対向せしめ、所定の方法により組み立て、第2図に示す
如きx−Yマトリクス型タッチパネルを得た。この際使
用したスペーサーは平均ロッド径toIL、平均ロフト
長70ILの円柱状の透明状マイクロロッドを横にして
用いており、配置密度は0.05%で、タッチパネルの
実面積は100C♂であった。尚、マイクロロッドの軸
方向の向きは不規則とした。かかるマイクロロッドは手
指による押圧により容易に遊動可能であり、スペーサー
が原因での入力死角はなくなった。
<Example 2> The transparent conductive film obtained in Example 1 was removed by a chemical etching method except for the predetermined portions, and a transparent substrate 4 on which 7-wood and 6-wood tanzak-shaped transparent electrodes 3.3 were formed was obtained. 4, these transparent electrodes were made to face each other via a spacer so that they were perpendicular to each other, and assembled by a predetermined method to obtain an x-y matrix type touch panel as shown in FIG. The spacer used at this time was a cylindrical transparent microrod with an average rod diameter toIL and an average loft length of 70IL, placed horizontally, the arrangement density was 0.05%, and the actual area of the touch panel was 100C♂. . Note that the axial direction of the microrods was irregular. Such a microrod can be easily moved by pressing with fingers, and there is no input blind spot caused by the spacer.

また、かかるタッチパネルは、スペーサーが微細で透明
状のため、外部からはほとんど視認できない好適なもの
であった。
Moreover, since the spacers in such a touch panel are fine and transparent, they are hardly visible from the outside.

〈発明の効果〉 本発明はタッチパネルに用いられるスペーサーを少なく
とも外力により遊動可能な構成としたので、スペーサー
により死角が存在せず、必要とするあらゆる座標での入
力が可能であるため、極めて精密な入力も可能になるな
ど、従来のタッチパネルにない新規な機能を備えたもの
であり、今後の需要が大いに期待されるものである。
<Effects of the Invention> The present invention has a structure in which the spacer used in the touch panel can be moved at least by an external force, so there is no blind spot due to the spacer and input can be made at any required coordinates, making it possible to perform extremely precise input. It is equipped with new functions not found in conventional touch panels, such as the ability to input data, and is expected to be in high demand in the future.

【図面の簡単な説明】 第1図は本発明に係るタッチパネルの1実施例を示す平
面図であり、第2図はそのA−A線断面図であり、第3
図は他の実施例を示す平面図である。 ′It口 ヌ3(2) /Q
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a plan view showing one embodiment of the touch panel according to the present invention, FIG. 2 is a sectional view taken along line A-A, and FIG.
The figure is a plan view showing another embodiment. 'It mouth 3 (2) /Q

Claims (3)

【特許請求の範囲】[Claims] (1)、電極の形成された基板2板をスペーサーを介し
て前記電極が対向するように形成してなるタッチパネル
において、スペーサーを少なくとも外力により遊動可能
に配置したことを特徴とするタッチパネル。
(1) A touch panel formed by forming two substrates on which electrodes are formed so that the electrodes face each other with a spacer interposed therebetween, wherein the spacer is arranged so as to be movable by at least an external force.
(2)、スペーサーが球形、円柱形もしくは多面形の粒
子である請求項1記載のタッチパネル。
(2) The touch panel according to claim 1, wherein the spacer is a spherical, cylindrical or polyhedral particle.
(3)、スペーサーの大きさが平均直径2〜100μの
球形、一辺の平均最大径が2〜100μである多面形、
もしくは平均直径2〜100μで平均長さ20〜200
μからなる円柱形である請求項1もしくは2記載のタッ
チパネル。
(3) The size of the spacer is spherical with an average diameter of 2 to 100 μ, polyhedral with an average maximum diameter of 2 to 100 μ on one side,
Or average diameter 2-100μ and average length 20-200μ
The touch panel according to claim 1 or 2, which has a cylindrical shape made of μ.
JP63104986A 1988-04-26 1988-04-26 Touch panel Pending JPH01274325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104986A JPH01274325A (en) 1988-04-26 1988-04-26 Touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104986A JPH01274325A (en) 1988-04-26 1988-04-26 Touch panel

Publications (1)

Publication Number Publication Date
JPH01274325A true JPH01274325A (en) 1989-11-02

Family

ID=14395414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104986A Pending JPH01274325A (en) 1988-04-26 1988-04-26 Touch panel

Country Status (1)

Country Link
JP (1) JPH01274325A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477606B1 (en) * 2002-06-29 2005-03-18 엘지.필립스 엘시디 주식회사 Touch Panel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477606B1 (en) * 2002-06-29 2005-03-18 엘지.필립스 엘시디 주식회사 Touch Panel

Similar Documents

Publication Publication Date Title
CN201298221Y (en) Two-dimensional sensing structure of capacitive touch panel
US7244901B1 (en) Capacitive touch panel
JP2000029612A (en) Touch panel input device
JPS6122520A (en) Switch matrix device
JPS5933070Y2 (en) input device
KR20140122395A (en) Capacitive type touch panel
JP2001228975A (en) Pressure sensitive element, touch panel and liquid crystal display using the same
JPH01274325A (en) Touch panel
JPS59119621A (en) Touch input device
JP3145217B2 (en) Transparent touch panel
JPH08241646A (en) Transparent touch panel
JPH10326153A (en) Manufacturing method of large glass touch panel
JPH0628088A (en) Input panel and its production
JP2806566B2 (en) Touch panel
JPH10246605A (en) Pressure sensitive input panel sensor
TWI723820B (en) Touch sensor
JPS61163525A (en) Transparent touch panel
JPH0745785Y2 (en) Touch panel
JPS59114690A (en) Coordinate input device
JPH10301716A (en) Transparent tablet structure and transparent tablet inputting device
KR20170055243A (en) 3d touch sensor and preparing method thereof
JPS622679Y2 (en)
JPH1144590A (en) Pressure detector
JPS62195820A (en) touch panel input switch
JPS6215621A (en) Information input element