[go: up one dir, main page]

JPH01274152A - Exposure device - Google Patents

Exposure device

Info

Publication number
JPH01274152A
JPH01274152A JP63102683A JP10268388A JPH01274152A JP H01274152 A JPH01274152 A JP H01274152A JP 63102683 A JP63102683 A JP 63102683A JP 10268388 A JP10268388 A JP 10268388A JP H01274152 A JPH01274152 A JP H01274152A
Authority
JP
Japan
Prior art keywords
wavelength
light
exposure
specific value
pulse light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63102683A
Other languages
Japanese (ja)
Other versions
JP2526983B2 (en
Inventor
Shoichi Tanimoto
昭一 谷元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP63102683A priority Critical patent/JP2526983B2/en
Publication of JPH01274152A publication Critical patent/JPH01274152A/en
Application granted granted Critical
Publication of JP2526983B2 publication Critical patent/JP2526983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength

Landscapes

  • Lasers (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To maintain waveform at a specific value at all times without hastening the consumption of components and gas by oscillating pulse light before the time when variation in the wavelength exceeds a specific range is elapsed in a nonexposure state, and detecting and controlling the wavelength. CONSTITUTION:This exposure device is equipped with the resonator mirrors 1 and 2 of an excimer laser, etalons 3 and 4, a gas chamber 5, a wavelength monitor 12, an exposure control part 10, a wavelength controller 11, a 1st lighting optical system 7, a 2nd lighting system 9, a reticle R, a projection lens L, and a wafer W. Then the pulse light is oscillated intermittently by a light source before the time when the variation in the previously measured wavelength of the pulse light exceeds the constant range is elapsed except in the irradiation period of light to an object, thereby controlling the wavelength to a specific value. Namely, a wavelength detecting means 12 detects the wavelength of the pulse light and the wavelength is controlled to the specific value according to its detection signal. Consequently, a shift in the center of a spectrum due to the thermal deformation, etc., of an optical element during the nonexposure state is prevented to maintain the wavelength at the specific value at all times.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は集積回路の製造に用いられるエキシマレーザ等
を光源とする露光装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an exposure apparatus using an excimer laser or the like as a light source used in the manufacture of integrated circuits.

[従来の技術] クリプトンフロライド(KrF)等のエキシマレーザを
光源とする遠紫外線(deepU V )領域の露光装
置は、0.5 μm以下のパターンを形成するリソグラ
フィー工程の主力装置になる可能性が強いものとして注
目されており、特に投影レンズの光学材料として透過率
の高い石英だけを使用し、エキシマレーザの発振スペク
トル幅を自然発振状態よりも狭くして光源として用いた
タイプの露光装置は早期実用化が期待されている。
[Prior Art] Exposure equipment in the deep UV range that uses an excimer laser such as krypton fluoride (KrF) as a light source has the potential to become the main equipment in lithography processes that form patterns of 0.5 μm or less. This type of exposure equipment is attracting attention as having a strong oscillation, and in particular uses only quartz, which has a high transmittance, as the optical material for the projection lens, and uses the excimer laser as a light source by narrowing the oscillation spectrum width of the excimer laser compared to its natural oscillation state. Early commercialization is expected.

かかる露光装置におけるエキシマレーザ光源の共振器内
には波長選択手段としてエタロンやプリスム、グレーテ
ィング等の分散素子が配置されており、発振するスペク
トルの中心は共振器内に入れた前記分散素子の波長選択
性で決まる。また、投影レンズを石英のみで構成した場
合、色収差が発生し、特定のスペクトルでしか収差が補
正されないため、発振スペクトルの中心が特定の設定値
から限られた範囲外ヘシフトすると投影倍率が変化した
り、合焦しなくなったりする。即ち、かかる露光装置に
おいては発振スペクトル中心の安定化を図ることが重要
である。
In such an exposure apparatus, a dispersive element such as an etalon, a prism, or a grating is arranged as a wavelength selection means in the resonator of the excimer laser light source, and the center of the oscillated spectrum is determined by the wavelength selection of the dispersive element placed inside the resonator. Determined by gender. Additionally, if the projection lens is made of quartz only, chromatic aberration will occur and the aberration can only be corrected for a specific spectrum, so if the center of the oscillation spectrum shifts from a specific setting value to outside a limited range, the projection magnification will change. or out of focus. That is, in such an exposure apparatus, it is important to stabilize the center of the oscillation spectrum.

従来、この種の露光装置における波長の制御はパルス光
の波長を検出して、この検出信号に基づいて行われてい
るので、波長の安定化を図るには対象物に光を照射しな
い期間でも露光時と同様にパルス光を発振し続けること
が望ましい。
Conventionally, wavelength control in this type of exposure equipment is performed by detecting the wavelength of pulsed light and based on this detection signal, so in order to stabilize the wavelength, even during periods when the target is not irradiated with light, It is desirable to continue oscillating pulsed light in the same way as during exposure.

[発明が解決しようとする課題] しかし、エキシマレーザの共振器内部のガスや内部と外
部を分離する窓、その他の分光素子(エタロン、ブソズ
ム等)、電気素子等の部品の寿命は発振パルス数によっ
て限定されており、上記のように常に露光時と同様にエ
キシマレーザを発振させておくことは現実的ではない。
[Problem to be solved by the invention] However, the lifespan of parts such as the gas inside the excimer laser resonator, the window that separates the inside and outside, other spectroscopic elements (etalon, busosm, etc.), and electric elements depends on the number of oscillation pulses. Therefore, it is not practical to always oscillate the excimer laser in the same way as during exposure as described above.

即ち、これらの消耗品や部品の寿命が早く尽き、短いサ
イクルで交換又はクリーニングをしなければならなくな
ってしまい、ランニングコストがかさむ上、たびたび交
換のために露光装置の運転を停止しなければならずスル
ーブツトも低下する。
In other words, these consumables and parts expire quickly and must be replaced or cleaned in short cycles, which increases running costs and requires frequent shutdowns of the exposure equipment for replacement. The throughput also decreases.

この発明は、かかる点に鑑みてなされたものであり、部
品等の消耗を早めることなく、常に発振スペクトル中心
を所定の値に維持できる露光装置を提供することを目的
とするものである。
The present invention has been made in view of these points, and it is an object of the present invention to provide an exposure apparatus that can always maintain the center of the oscillation spectrum at a predetermined value without accelerating the wear and tear of components.

[課題を解決するための手段] この発明においては、対象物への光の照射期間以外の期
間に、予め測定されたパルス光の波長変化が一定範囲を
越える所定の時間が経過する前に光源から間欠的にパル
ス光を発振させ、所定の値に波長を制御するようにした
ことによって上記の課題を達成している。
[Means for Solving the Problems] In the present invention, the light source is turned off before a predetermined time period has elapsed in which the previously measured wavelength change of the pulsed light exceeds a certain range during a period other than the light irradiation period to the target object. The above problem has been achieved by intermittently oscillating pulsed light from the source and controlling the wavelength to a predetermined value.

[作 用] 本発明においては、対象物に光を照射しない期間に、パ
ルス光の波長変化が一定範囲以上となる所定の時間が経
過する前に光源から間欠的にパルス光を発振させるので
、このパルス光の波長を波長検出手段によって検出し、
該検出信号に基づいて波長を所定の値に制御することが
できる。このため、非露光時において光学素子の熱的な
変形等でスペクトルの中心がシフトしてしまうのを防い
で、常に波長を所定の値に維持しておくことができる。
[Function] In the present invention, the light source intermittently oscillates pulsed light before a predetermined time period has elapsed during which the wavelength change of the pulsed light exceeds a certain range during a period in which the target object is not irradiated with light. The wavelength of this pulsed light is detected by a wavelength detection means,
The wavelength can be controlled to a predetermined value based on the detection signal. Therefore, it is possible to prevent the center of the spectrum from shifting due to thermal deformation of the optical element during non-exposure, and to maintain the wavelength at a predetermined value at all times.

ここで、パルス光の波長変化が一定範囲を越える時間は
、光源の構成に依存して定まる値であり、予め測定して
露光制御部等に記憶しである。
Here, the time period during which the wavelength change of the pulsed light exceeds a certain range is a value determined depending on the configuration of the light source, and is measured in advance and stored in the exposure control section or the like.

そして、この時間は通常数分程度であるので、非露光時
におけるパルス光の発振周波数は、露光時の周波数に比
較して2桁以上も低い値となる。このため、非露光時の
発振による共振器内部のガスや分光素子、放電電極やス
イッチング素子等の部品の消耗がほとんどない。このよ
うにして、本発明では部品の消耗を早めることなく、常
にスペクトルの中心を所定の値に維持しておくことがで
き、露光時には速やかに所定の波長の光を照射すること
ができる。
Since this time is usually about several minutes, the oscillation frequency of the pulsed light during non-exposure is more than two orders of magnitude lower than the frequency during exposure. Therefore, there is almost no wear and tear on gas inside the resonator, spectroscopic elements, discharge electrodes, switching elements, and other parts due to oscillation during non-exposure. In this way, the present invention can always maintain the center of the spectrum at a predetermined value without accelerating the wear of parts, and can promptly irradiate light of a predetermined wavelength during exposure.

なお、非露光時におりるパルス光の発振は、前述したよ
うに波長変化か一定範囲を越える前に行なえばよく、必
ずしも周期的である必要はない。
The oscillation of the pulsed light during non-exposure may be performed before the wavelength changes or exceeds a certain range, as described above, and does not necessarily have to be periodic.

[実施例] 第1図は本発明の実施例を示す構成図である。[Example] FIG. 1 is a block diagram showing an embodiment of the present invention.

1.2はエキシマレーザの共振器ミラーであり、スペク
トル幅を狭帯域にするためのエタロン3゜4および放電
部をrL備したエキシマレーザを励起する為のガス室(
チューブ)5が間に介装されている。かかるエキシマレ
ーザ光源から発振されるビームBの波長はエキシマレー
ザのゲインで決まるスペクトル幅内にあり、前記エタロ
ン3と4のビームBに対する角度により決る波長選択性
により、最終的に決定される。
1.2 is the resonator mirror of the excimer laser, which includes an etalon 3゜4 to narrow the spectrum width and a gas chamber (with a discharge part rL) for exciting the excimer laser.
A tube) 5 is interposed between them. The wavelength of the beam B emitted from the excimer laser light source is within the spectral width determined by the gain of the excimer laser, and is ultimately determined by the wavelength selectivity determined by the angle of the etalons 3 and 4 with respect to the beam B.

エキシマレーザ光源発掘したビームBはビームスプリッ
タ−6により一部が反射され、反射されたビームBは波
長モニター12に導かれる。波長モニター12は定めら
れた波長に対する発振波長の偏差を求める機能を持ち、
露光制御部10からの信号に制御される波長制御装置1
1に波長の偏差を出力する。そして、この波長制御装置
11は入力された偏差に応じてエタロン3又は4の角度
を所定量変化させて波長の制御を行なう。
A portion of the beam B extracted from the excimer laser light source is reflected by the beam splitter 6, and the reflected beam B is guided to the wavelength monitor 12. The wavelength monitor 12 has a function of determining the deviation of the oscillation wavelength from a predetermined wavelength,
Wavelength control device 1 controlled by a signal from exposure control section 10
Outputs the wavelength deviation to 1. The wavelength control device 11 then controls the wavelength by changing the angle of the etalon 3 or 4 by a predetermined amount in accordance with the input deviation.

一方、ビームスプリッタ−6を通過したビームは、露光
制御部10に制御される第1照明光学系7に入射する。
On the other hand, the beam that has passed through the beam splitter 6 enters a first illumination optical system 7 that is controlled by an exposure control section 10.

この第1照明光学系7はビームの強度を所定の減衰率で
減衰させる可変減衰器をイイし、強度分布の均一化やビ
ームサイズの拡大を行なう機能も備えている。次に第1
照明光学系7を出たビームは、反射ミラー8で反射され
、第2照明系(メインコンデンサーレンズ等を含む)9
を経てレチクルR上を照明する。そして、レチクルRの
下部に形成されたパターンは投影レンズしによって縮小
投影されてウェハW上に結像投影される。
The first illumination optical system 7 includes a variable attenuator that attenuates the intensity of the beam at a predetermined attenuation rate, and also has functions for making the intensity distribution uniform and expanding the beam size. Then the first
The beam exiting the illumination optical system 7 is reflected by a reflection mirror 8 and then transferred to a second illumination system (including a main condenser lens, etc.) 9
The top of the reticle R is illuminated through. Then, the pattern formed on the lower part of the reticle R is reduced in size and projected onto the wafer W by a projection lens.

ここで、ウェハWは露光制御部10からの信号によって
動作するウェハローダ13により自動的に搬送され、人
手に触れないでウェハホルダーWHへの設定、取り外し
が行われる。また、ウェハWはウェハホルダWHに吸着
された状態でウェハステージWSにより2次元(XY)
方向及び高さ(Z)方向の移動かなされ、1枚のウェハ
Wについて、アライメント動作の後にステップアンドリ
ピートの動作、即ちウェハステージWSの移動と露光の
繰返しが行なわれる。
Here, the wafer W is automatically transported by a wafer loader 13 operated by a signal from the exposure control section 10, and is set on and removed from the wafer holder WH without manual intervention. In addition, the wafer W is moved two-dimensionally (XY) by the wafer stage WS while being attracted to the wafer holder WH.
The wafer stage WS is moved in the direction and the height (Z) direction, and for one wafer W, a step-and-repeat operation is performed after the alignment operation, that is, the movement of the wafer stage WS and the repetition of exposure are performed.

第2図はエキシマレーザ発光のタイムチャートである。FIG. 2 is a time chart of excimer laser emission.

まず、露光状態T1ではウェハステージWSのステップ
動作毎にエキシマレーザ光源の最高の繰返し周波数で複
数のパルス光(e+ とe2)が発振され、ウェハWの
所定の領域が露光される。1枚のウェハWの全てのショ
ット領域に対して露光が済むと、ウェハWは次のウェハ
Wと交換されアライメント等のシーケンスに入る。図で
はこの非露光期間(アイドリング期間)をIで示してい
るが、本実施例においては、この間に波長変化が所定の
範囲以上となる時間が経過する前に光源からパルス光を
発振させる。即ち、露光時よりも小さな繰返し周波数で
アイドリング発振させておく。例えば、露光時の発振周
波数を200〜500 Hzとすると、アイドリング発
振時の周波数は1〜211z程度でよく、この程度の周
波数では光学部材等の消耗はほとんどない。なお、かか
るアイドリング発振時には、発振したパルス光が、アラ
イメント中又は待機中のウェハWに届かないように、光
路中の適宜の位置に設けたシャッターを動作させる等し
て光遮断する必要がある。
First, in the exposure state T1, a plurality of pulsed lights (e+ and e2) are oscillated at the highest repetition frequency of the excimer laser light source every time the wafer stage WS moves, and a predetermined area of the wafer W is exposed. When all shot areas of one wafer W have been exposed, the wafer W is replaced with the next wafer W and a sequence such as alignment begins. In the figure, this non-exposure period (idling period) is indicated by I, but in this embodiment, the light source oscillates pulsed light before the time period during which the wavelength change exceeds a predetermined range has elapsed. That is, idling oscillation is performed at a repetition frequency lower than that during exposure. For example, if the oscillation frequency during exposure is 200 to 500 Hz, the frequency during idling oscillation may be about 1 to 211 z, and at this frequency there is almost no wear on optical members, etc. Note that during such idling oscillation, it is necessary to block the oscillated pulsed light by operating a shutter provided at an appropriate position in the optical path so that the oscillated pulsed light does not reach the wafer W undergoing alignment or waiting.

続いて次のウェハWの露光状態T2に入ると1領域ずつ
の露光がf +、f z、f 3・・・のパルス光群に
よりなされるが、アイドリング時Iにおける発光パルス
を用いて波長を常に制御しているので、露光開始時にお
ける波長の誤差がなく精度の高い露光ができる。また、
露光状態T2では発光パルスが非常に多いのて、この波
長を検出することにより波長制御が問題なく行われる。
Subsequently, when the next wafer W enters the exposure state T2, each area is exposed by a group of pulsed light of f+, fz, f3..., but the wavelength is changed using the light emission pulse at I during idling. Since it is constantly controlled, there is no wavelength error at the start of exposure, allowing for highly accurate exposure. Also,
In the exposure state T2, there are a large number of light emission pulses, so by detecting this wavelength, wavelength control can be performed without any problem.

なお、本発明において非露光時に発振されるパルス光は
、波長制御たけてなく、出力エネルギーの制御にも利用
でき、出力エネルギーの安定化を図ることもできる。ま
た、非露光時の発振の際に何等かの異常が発見されれば
、ウェハの露光の前に異常の原因を調べ適切な対処をす
ることができ、露光装置の可動率を向上させるとともに
、不良の発生を未然に防止することができる。
In addition, in the present invention, the pulsed light oscillated during non-exposure can be used not only for wavelength control but also for output energy control, thereby making it possible to stabilize the output energy. In addition, if any abnormality is discovered during oscillation during non-exposure, the cause of the abnormality can be investigated and appropriate measures taken before the wafer is exposed, which improves the operating rate of the exposure equipment and It is possible to prevent defects from occurring.

[発明の効果] 以上の様に本発明によれば、非露光時に、波長の変化が
所定の範囲を越える時間が経過する前にパルス光を発振
させ、この波長を検出して波長の制御を行っているので
、部品やガスの消耗を早めることなく、波長を常に所定
の値に維持することができる。このため、かかる露光装
置を用いれば露光開始時に波長の誤差を生じることがな
く、投影レンズの極めて良好な結像特性が安定して得ら
れる。また、露光開始時において波長の制御が正常に行
われるまでの待ち時間がなくなるので、スループットも
向上する。
[Effects of the Invention] As described above, according to the present invention, during non-exposure, pulsed light is oscillated before the wavelength change exceeds a predetermined range, and this wavelength is detected to control the wavelength. As a result, the wavelength can always be maintained at a predetermined value without accelerating the consumption of parts or gas. Therefore, if such an exposure apparatus is used, there will be no wavelength error at the start of exposure, and extremely good imaging characteristics of the projection lens can be stably obtained. Furthermore, since there is no waiting time until wavelength control is normally performed at the start of exposure, throughput is also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック図、第2図は第
1図に示された実施例の発光状態を示すタイムチャート
である。 [主要部分の符号の説明] 1.2・・・エキシマレーザ共振器ミラー3.4・!・
エタロン 11・・・波長制御装置 12・・・波長検出手段 R・・・レチクル し・・・投影レンズ W…ウェハ 代理人 弁理士 佐 藤 正 年
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a time chart showing the light emission state of the embodiment shown in FIG. [Explanation of symbols of main parts] 1.2... Excimer laser resonator mirror 3.4.!・
Etalon 11...Wavelength control device 12...Wavelength detection means R...Reticle...Projection lens W...Wafer agent Patent attorney Masatoshi Sato

Claims (1)

【特許請求の範囲】[Claims]  光源から発振されたパルス光の波長を検出する波長検
出手段を有し、該検出信号に基づいて波長を所定の値に
制御して、ほぼ一定の波長の光を対象物に照射する露光
装置において、前記対象物への光の照射期間以外の期間
に、予め測定されたパルス光の波長変化が一定範囲を越
える所定の時間が経過する前に前記光源から間欠的にパ
ルス光を発振させ、前記所定の値に波長を制御するよう
にしたことを特徴とする露光装置。
In an exposure apparatus that has a wavelength detection means for detecting the wavelength of pulsed light emitted from a light source, controls the wavelength to a predetermined value based on the detection signal, and irradiates a target with light of a substantially constant wavelength. , intermittently oscillating pulsed light from the light source during a period other than the period of light irradiation to the target object, before a predetermined time period has elapsed in which the wavelength change of the pulsed light measured in advance exceeds a certain range; An exposure apparatus characterized in that the wavelength is controlled to a predetermined value.
JP63102683A 1988-04-27 1988-04-27 Exposure equipment Expired - Lifetime JP2526983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63102683A JP2526983B2 (en) 1988-04-27 1988-04-27 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102683A JP2526983B2 (en) 1988-04-27 1988-04-27 Exposure equipment

Publications (2)

Publication Number Publication Date
JPH01274152A true JPH01274152A (en) 1989-11-01
JP2526983B2 JP2526983B2 (en) 1996-08-21

Family

ID=14334034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102683A Expired - Lifetime JP2526983B2 (en) 1988-04-27 1988-04-27 Exposure equipment

Country Status (1)

Country Link
JP (1) JP2526983B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051655A (en) * 1999-11-17 2001-06-25 다나카 아키히로 Excimer laser apparatus
JP2008016544A (en) * 2006-07-04 2008-01-24 Komatsu Ltd Method for adjusting spectral width of narrow-band laser
JP2011243995A (en) * 2011-07-11 2011-12-01 Komatsu Ltd Spectrum width adjustment method of narrow band laser
JP2014170961A (en) * 2014-05-07 2014-09-18 Komatsu Ltd Band narrowed laser device, and spectrum width adjustment method for the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010051655A (en) * 1999-11-17 2001-06-25 다나카 아키히로 Excimer laser apparatus
JP2008016544A (en) * 2006-07-04 2008-01-24 Komatsu Ltd Method for adjusting spectral width of narrow-band laser
US8804780B2 (en) 2006-07-04 2014-08-12 Komatsu Ltd. Method for adjusting spectral line width of narrow-band laser
JP2011243995A (en) * 2011-07-11 2011-12-01 Komatsu Ltd Spectrum width adjustment method of narrow band laser
JP2014170961A (en) * 2014-05-07 2014-09-18 Komatsu Ltd Band narrowed laser device, and spectrum width adjustment method for the same

Also Published As

Publication number Publication date
JP2526983B2 (en) 1996-08-21

Similar Documents

Publication Publication Date Title
US20240310736A1 (en) Forming multiple aerial images in a single lithography exposure pass
US4711568A (en) Exposure apparatus
JPWO2002103766A1 (en) Scanning exposure method, scanning type exposure apparatus, and device manufacturing method
JP2001267239A (en) Exposure method, exposure device and manufacturing method of device
JP3269231B2 (en) Exposure method, light source device, and exposure device
EP1376240A2 (en) Laser beam control for an exposure apparatus
JPH0758393A (en) Method and device for narrow-band laser oscillation and laser aligner employing them
JP2844696B2 (en) Laser processing equipment
US4968868A (en) Projection exposure system
EP1335460B1 (en) Laser apparatus, exposure apparatus and method
KR0167385B1 (en) Scanning Obstetric Device and Manufacturing Method Using Device Thereof
JPH01274152A (en) Exposure device
CN117397134A (en) Wavelength control method, laser device, and method for manufacturing electronic device
JP3278892B2 (en) Exposure apparatus and method, and device manufacturing method
JP3452057B2 (en) Laser beam harmonic generation apparatus, exposure apparatus using the same, laser beam harmonic generation method, exposure method using the same, and device manufacturing method using the same
JPH0894338A (en) Mask inspection device
JP2985089B2 (en) Exposure control apparatus, exposure apparatus and method
JPH02135723A (en) Exposure controlling device
WO2022003901A1 (en) Exposure system, exposure method, and method for manufacturing electronic device
JPH10270345A (en) Scanning exposure method and apparatus
JPH05343287A (en) Exposing method
JPS63213927A (en) Exposure system
JP2003282430A (en) Aligner and exposure method, device manufacturing method, and measurement method and apparatus
JP3344477B2 (en) Scanning exposure method, laser device, scanning type exposure device, and device manufacturing method
JP2001203141A (en) Aligner and light source device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term