JPH01274002A - Laser length measuring apparatus - Google Patents
Laser length measuring apparatusInfo
- Publication number
- JPH01274002A JPH01274002A JP10272688A JP10272688A JPH01274002A JP H01274002 A JPH01274002 A JP H01274002A JP 10272688 A JP10272688 A JP 10272688A JP 10272688 A JP10272688 A JP 10272688A JP H01274002 A JPH01274002 A JP H01274002A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- wavelength
- laser
- voltage
- gas cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野コ
この発明はレーザ測長器に関し、詳細には半導体レーザ
素子を光源とした干渉旧方式の測長ムにおいて、該光源
の発振波長の変動による測定誤差を排除するものである
。[Detailed Description of the Invention] [Industrial Field of Application] This invention relates to a laser length measuring device, and more specifically, in an old interference type length measuring device using a semiconductor laser element as a light source, it is possible to use This eliminates measurement errors.
[従来の技術]
光学式測長器はレーザ光の干渉現象を利用して、波長オ
ーダの微小変位を測定するものである。[Prior Art] Optical length measuring instruments utilize the interference phenomenon of laser light to measure minute displacements on the order of wavelengths.
第3図はトワイマン・グリーン型とよばれるll渉計を
使用した測長器の原理図で、レーザ光源1よりのレーザ
ビームをビームスプリッタ2により測定対象物5の方向
の測定ビームmと、これに直角方向の参照ビームrに分
割する。測定ビームは測定対象物に取り付けられた再帰
性の測定ミラー4により反射されて戻り、ビームスプリ
ッタにより直角のr方に反射される。これに対して参!
K(ビームは一定の位置に固定された再帰性の参照ミラ
ー3により反射されてビームスプリッタを透過し、L記
の測定ビームと重ね合わされて干渉縞を生ずる。いま、
測定対象物が光軸Xの方向に移動すると干渉縞が移動し
、これを受光器6により受光すると、波長λの2分の1
をピンチ間隔とするパルス信号6aがえられる。この個
数をカウントしてλ/2を乗することにより測定対象物
の変位量が測定されるものである。Fig. 3 is a principle diagram of a length measuring device using a Twyman-Green type interferometer, in which a laser beam from a laser light source 1 is split into a measuring beam m in the direction of a measuring object 5 by a beam splitter 2. The reference beam r is split into a reference beam r perpendicular to the reference beam r. The measurement beam is reflected back by a recursive measurement mirror 4 attached to the object to be measured, and is reflected by a beam splitter in the right-angled direction r. Thank you for this!
K (The beam is reflected by the retroreflective reference mirror 3 fixed at a fixed position, passes through the beam splitter, and is superimposed with the measurement beam L to produce interference fringes.
When the object to be measured moves in the direction of the optical axis
A pulse signal 6a having a pinch interval of is obtained. By counting this number and multiplying it by λ/2, the amount of displacement of the object to be measured is measured.
さて、当初においては光源としてヘリウム・ネオンなど
のガスレーザ管が使用されていたが、これに代わって最
近では小型で小電力の半導体レーザ素子が用いられる趨
勢である。しかしながら、゛1′導体レーザ素子にはガ
スレーザ管に比較して発振波長が大きく変動する弱点が
あり、波長を一定として測長器に適用するときは測定誤
差が大きくて正確なデータかえられない。半導体レーザ
の発振波長は動作2見度と注入電流により左右されるの
で、これらを制御して波長の安定化が行われている。第
3図の温度制御器7においては、工l−導体レーザ素子
1を熱伝導率の良好なベース7aに固定し、その温度を
センサ7bで検出して温度制御回路7Cによりペルチェ
素子7dに制御電流を5えて炉室温度Ttに保持する。In the beginning, gas laser tubes such as helium and neon were used as light sources, but recently there has been a trend to use small, low-power semiconductor laser elements in their place. However, the ``1'' conductor laser element has the disadvantage that the oscillation wavelength fluctuates significantly compared to the gas laser tube, and when applied to a length measuring device with a constant wavelength, the measurement error is large and accurate data cannot be returned. Since the oscillation wavelength of a semiconductor laser is influenced by the operating dioptric power and the injection current, the wavelength is stabilized by controlling these factors. In the temperature controller 7 shown in FIG. 3, a conductor laser element 1 is fixed to a base 7a having good thermal conductivity, its temperature is detected by a sensor 7b, and the temperature is controlled by a Peltier element 7d by a temperature control circuit 7C. The current is increased by 5 to maintain the furnace chamber temperature at Tt.
他方、注入電流については発振波長の変動をなんらかの
方法で検出して、これによりi’、IE入主電流制御し
て発振波長を一定にする方法がある。波長変動の検出方
法としては、ある種の金属ガス、例えばルビジウムのス
ペクトル吸収線の選択特性を利用する方法が公知である
。第4図(a)、(b)はルビジウムを用いた気体セル
8の構造と特性を説明するもので、適当な容器8aにル
ビジウムの気体8bを1・を人する。ルビジウムは近赤
外域の゛1′−導体レーザ素rの発振波長領域内の78
0 n m付近に吸収線を有しており、この気体セルを
透過したビームは図(b)のように吸収線の波長λ0を
中心として極めて鋭い直線的な選択特性を示す。この気
体セルを使用して注入電流を制御する考案がこの発明の
発明者により実用新案登録出願r 83−135号、半
導体レーザ測長器の光源装置」として出願されている。On the other hand, regarding the injection current, there is a method of detecting fluctuations in the oscillation wavelength by some method and controlling the i' and IE input main currents based on this to keep the oscillation wavelength constant. As a method for detecting wavelength fluctuations, a method is known that utilizes the selective characteristics of spectral absorption lines of certain metal gases, such as rubidium. FIGS. 4(a) and 4(b) illustrate the structure and characteristics of a gas cell 8 using rubidium, in which 1 volume of rubidium gas 8b is poured into a suitable container 8a. Rubidium is within the oscillation wavelength region of the near-infrared 1'-conductor laser element r.
It has an absorption line near 0 nm, and the beam transmitted through this gas cell exhibits extremely sharp linear selection characteristics centered around the wavelength λ0 of the absorption line, as shown in Figure (b). The invention of controlling the injection current using this gas cell has been filed by the inventor of the present invention as a utility model registration application No. 83-135 titled "Light source device for semiconductor laser length measuring device".
この考案は、光源の発振波長の変動を検出する気体セル
を光源と別筐体の制御部に設け、これらの間にオプチカ
ルファイバによる光路を構成し、温度制御方法を併用し
て両者により発振波長の安定化を計ったものである。In this idea, a gas cell that detects fluctuations in the oscillation wavelength of the light source is installed in the light source and a control unit in a separate housing, an optical path is formed between them by an optical fiber, and a temperature control method is used in combination to adjust the oscillation wavelength from both. It was designed to stabilize the
[解決しようとする課題]
L記の実用新案登録出願にかかる考案においては、波長
の安定化のための温度制御器は極めて微小な温度変化、
例えば0.001’ Cオーダの精度で忠実に制御する
ものが必要で、ベース、ペルチェ素子などが必然的に大
型となるが、しかし温度制御にはある程度の時間遅延が
避けられず、高速、高精度の波長制御が困難である。ま
た、上記の各部品のために装置の小型化が未だ十分でな
い。[Problem to be solved] In the invention related to the utility model registration application described in L, the temperature controller for wavelength stabilization is designed to handle extremely small temperature changes,
For example, a device that faithfully controls the temperature with an accuracy on the order of 0.001' C is required, and the base, Peltier element, etc. are inevitably large. However, a certain amount of time delay is unavoidable in temperature control, and high Accurate wavelength control is difficult. Furthermore, the miniaturization of the device is not yet sufficient due to the above-mentioned components.
この発明においては上記に対して発想を転換し、かりに
波長が変動してもその正確な値が判れば正確な変位Mが
計算できることに着目し、波長の安定よりむしろ変動を
ある程度許容する。その方法は、上記の気体セルを透過
したビームの信号より、演算により刻々に変動する波長
をリアルタイムに求めるもので、同時に温度制御の精度
を大幅、例えば0.01°Cオーダに低下することが可
能となり、温度制御器を前記した従来のものより小型化
したレーザ測長器を提供することを目的とするものであ
る。In this invention, the idea is changed from the above, and attention is paid to the fact that even if the wavelength fluctuates, if the accurate value is known, an accurate displacement M can be calculated, and a certain amount of fluctuation is allowed rather than stabilization of the wavelength. This method uses calculations to calculate the ever-changing wavelength in real time from the signal of the beam transmitted through the gas cell. At the same time, it is possible to significantly reduce the accuracy of temperature control, for example on the order of 0.01°C. The object of the present invention is to provide a laser length measuring device which has a temperature controller that is more compact than the conventional device described above.
[課題を解決するための手段コ
この発明は、%l/、導体レーザ素子を光源とし、光源
のレーザビームを測定ビームと参照ビー11に分割し、
測定対象物に設けられた測定ミラーよりの測定ビームの
反射ビームと参照ビームのなす干渉縞の個数をカウント
して測定対象物の変位fltを計測する1渉計方式のレ
ーザ測長器であって、光源よりのレーザビームを分割す
る前置ビームスプリッタと、分割された一方のレーザビ
ームにより上記干渉計を構成し、他方のレーザビームを
波長選択して透過させる気体セルと、気体セルを透過し
た透過ビームを受光する受光器と、受光器の出力信号の
強度変化より、発振波長を求める演算回路とを具備し、
演算回路によりえられた発振波長のデータを、上記の干
渉計がカウントした干渉縞の個数に乗することにより、
測定対象物の変位量を出力する乗算器とにより構成され
たものである。[Means for Solving the Problems] This invention uses a conductive laser element as a light source, and divides the laser beam of the light source into a measurement beam and a reference beam 11,
A laser length measuring device with a 1-interval meter method that measures the displacement flt of an object to be measured by counting the number of interference fringes formed by a reference beam and a reflected beam of a measurement beam from a measurement mirror provided on the object to be measured, The interferometer is configured by a pre-beam splitter that splits the laser beam from the light source, one of the split laser beams, a gas cell that selects the wavelength of the other laser beam, and transmits the other laser beam, and a gas cell that selects the wavelength of the other laser beam and transmits it. It is equipped with a photoreceiver that receives the transmitted beam, and an arithmetic circuit that calculates the oscillation wavelength from changes in the intensity of the output signal of the photoreceiver.
By multiplying the oscillation wavelength data obtained by the arithmetic circuit by the number of interference fringes counted by the above interferometer,
It is composed of a multiplier that outputs the amount of displacement of the object to be measured.
」二記の演算回路は、光源に設けられた出力レベル検出
器の出力する光源レベル信号に対する受光器の出力信号
の比電圧Vを計算する除算器と、気体セルの選択特性直
線の中心の基準波長λcにおける光源レベル信号と受光
器の出力信号の比電圧を基準比電圧vcとして、変動す
る光源の発振波長λ(v)に対して除算器の出力する比
電圧Vより基準比電圧vcを減算する減算器と、減算器
の出力電圧(v−vc)に気体セルの選択特性直線の傾
斜係数kを乗算する係数乗算器、および係数乗算器の出
力電圧k(v−vc)に基準波長λcを加算する加算器
とにより構成されている。The two arithmetic circuits include a divider that calculates the ratio voltage V of the output signal of the light receiver with respect to the light source level signal output from the output level detector provided in the light source, and a reference for the center of the selection characteristic line of the gas cell. The ratio voltage between the light source level signal and the output signal of the optical receiver at the wavelength λc is set as the reference ratio voltage vc, and the reference ratio voltage vc is subtracted from the ratio voltage V output from the divider with respect to the varying oscillation wavelength λ(v) of the light source. a subtracter that multiplies the output voltage (v-vc) of the subtracter by the slope coefficient k of the selection characteristic straight line of the gas cell, and a coefficient multiplier that multiplies the output voltage (v-vc) of the subtracter by the slope coefficient k of the selection characteristic straight line of the gas cell, and the output voltage k (v-vc) of the coefficient multiplier is multiplied by the reference wavelength λc. It consists of an adder that adds .
[作用]
上記の構成によるこの発明のレーザ測長器においては、
光源よりのレーザビームは気体セルを透過して、その選
択特性直線により波長変動に従って出力の強度が変化す
る。演算回路においてこの強度変化した信号により変動
する発振波長をリアルタイムで求め、これを干渉計がカ
ウントした干渉縞の個数に乗じて、測定対象物の正確な
変位量をうるちのである。[Function] In the laser length measuring device of the present invention having the above configuration,
A laser beam from a light source passes through a gas cell, and the intensity of the output changes as the wavelength changes due to its selective characteristic straight line. An arithmetic circuit calculates the oscillation wavelength that fluctuates based on the signal whose intensity has changed in real time, and multiplies this by the number of interference fringes counted by the interferometer to determine the exact amount of displacement of the object to be measured.
ここで、上記の演算回路による演算について第1図(a
)、(b)により説明する。気体セルを透過したレーザ
ビームの強度は、図(a)に示す選択特性を有する。こ
の特性曲線のうちの例えば左側における受光電圧ya、
yb間の直線部分りをとり、縦軸と横軸を交換して図(
b)とする。図(b)における直線りの傾斜係数をに1
直線の中心点の受光電圧をvc、vcに対する波長を基
準波長λcとすると、受光電圧Vに対する発振波長λ(
v)は次式で表される。Here, regarding the calculation by the above calculation circuit, FIG.
) and (b). The intensity of the laser beam transmitted through the gas cell has the selection characteristic shown in Figure (a). For example, the light receiving voltage ya on the left side of this characteristic curve,
Take the straight line between yb and exchange the vertical and horizontal axes to create the figure (
b). The slope coefficient of the straight line in figure (b) is 1
If the light receiving voltage at the center point of the straight line is vc, and the wavelength with respect to vc is the reference wavelength λc, then the oscillation wavelength λ(
v) is expressed by the following formula.
λ(v) =k (v−vc)+λc・・・・・・(1
)ここで、
k=(λa−λb)/(va −vb) =”(2)
vc = (va + vb)/ 2 ””
(3)λc=(λa+λb)/2 ・・・・
・・(4)上記において、電圧Vは発振波長の変動のほ
か光源の出力レベルの変動によっても変化するので、除
算器により光源の出力レベルに対する比電圧をとってレ
ベル変動の影響を排除する。上記の各式における電圧V
はこの比電圧を意味するものとする。次に、気体セルの
選択特性より4二式のVc+λcおよびkは測定により
予め知ることができるもので、これらにより式(1)に
従って演算を行う。λ(v) =k(v-vc)+λc...(1
) Here, k=(λa-λb)/(va-vb)=”(2)
vc = (va + vb)/2””
(3) λc=(λa+λb)/2...
(4) In the above, since the voltage V changes not only due to fluctuations in the oscillation wavelength but also due to fluctuations in the output level of the light source, the influence of level fluctuations is eliminated by calculating the voltage relative to the output level of the light source using a divider. Voltage V in each of the above equations
shall mean this specific voltage. Next, from the selection characteristics of the gas cell, Vc+λc and k in Equation 42 can be known in advance by measurement, and calculations are performed using these in accordance with Equation (1).
すなわち減算器により(v−vc)かえられて係数乗算
器によりに倍され、加算器によりλcが加算されてλ(
v)が求められる。That is, (v-vc) is changed by a subtracter, multiplied by a coefficient multiplier, and λc is added by an adder to obtain λ(
v) is required.
以」−においては、第1図(a)の特性曲線の左側の直
線部を使用したが、右側の直線部によっても係数にの符
号を変えた同様の計算式が成σするので sr導体レし
ザ素rの発振波長の変動範囲を考慮していずれかにより
演算を行うものである。In the following, we used the straight line part on the left side of the characteristic curve in Figure 1(a), but the same calculation formula with different signs of the coefficients can also be obtained using the straight line part on the right side, so The calculation is performed by one of the following methods, taking into consideration the variation range of the oscillation wavelength of the laser element r.
[実施例]
第2図は、この発明によるレーザ測長器の実施例におけ
るブロック構成を示すものである。図において %tl
、導体レーザ素子1は、温度制御器7を設けて温度の安
定化を計る。ただしこの場合は発振波長の変動をある程
度許容するので、例えば0゜01°Cオーダの制御がで
きる小型なもので差し支えない。次に、レーザ素子より
のレーザビームはコリメータ1aにより平行ビームとさ
れて前置ビームスプリッタ9により分割され、一方のビ
ームは、ビームスプリッタ2、参照ミラー3、測定ミラ
ー4および受光器6よりなる干渉計に人力する。[Embodiment] FIG. 2 shows a block configuration of an embodiment of the laser length measuring device according to the present invention. In the figure %tl
, the conductive laser element 1 is provided with a temperature controller 7 to stabilize the temperature. However, in this case, since fluctuations in the oscillation wavelength are allowed to some extent, a small device that can be controlled on the order of, for example, 0°01°C may be used. Next, the laser beam from the laser element is made into a parallel beam by the collimator 1a and split by the pre-beam splitter 9. Manpower is used for the calculation.
前置ビームスプリッタ9により分割された他方のビーム
は、気体セル8によりレーザ素子の波長変動に従って強
度変化して受光器10に受光されて出力信号かえられる
。ここで、゛ト導体レーザ素子として近赤外領域の波長
のものを使用するとし、この波長領域内に吸収線を有す
るルビジウムの気体セルを使用する。次に、レーザ素子
にはレベル検出器が内蔵されており、これから出力され
る光源レベル信号と、受光器の出力信号はそれぞれ増幅
器11−1.1!−2により適当にレベルが調整された
後除算器12により比電圧Vが計算され、ついで、前記
の式:
%式%(1)
による演算が行われる。すなわち、減算7Si13によ
り気体セルの選択特性直線の中心に対する基準比電圧V
Cが除算器の出力する比電圧Vより減算される。えられ
た(v−vc)は基準比電圧VCに対する比電圧Vの変
動量であるので、これを電流制御回路14に人力して光
源の注入電流を制御して発振波長の一応の安定化が計ら
れる。ただし、この安定化には必ずしも高精度のものを
必要とせず、気体セルの選択直線の範囲内の変動が許さ
れるものでよい。ついでアナログデータ(v−vc)は
、A / I)変換器15によりデジタル化され、係数
乗算器16において選択特性直線の傾斜係数のに倍され
、さらに加算器z7により基準波長λcが加算されて発
振波長λ(v)が求められる。一方、前記の干渉計の受
光器6より出力される測定対象物の変位mxによるパル
ス信号は、パルスカウンタ18においてカウントされて
乗算119に転送され、ここで適当なトリガパルスpに
より発振波長λ(v)の2分の1の値が乗算されて測定
対象物の変位mxのデータが端子20に出力される。The other beam split by the front beam splitter 9 changes its intensity in accordance with the wavelength fluctuation of the laser element by the gas cell 8, and is received by the light receiver 10 and converted into an output signal. Here, it is assumed that a conductor laser element with a wavelength in the near-infrared region is used, and a rubidium gas cell having an absorption line within this wavelength region is used. Next, the laser element has a built-in level detector, and the light source level signal output from this and the output signal of the photoreceiver are transmitted to amplifiers 11-1.1!, respectively. After the level is appropriately adjusted by -2, the specific voltage V is calculated by the divider 12, and then the calculation according to the above formula: % formula % (1) is performed. That is, by subtracting 7Si13, the reference ratio voltage V with respect to the center of the selection characteristic line of the gas cell
C is subtracted from the specific voltage V output by the divider. Since the obtained (v-vc) is the variation amount of the specific voltage V with respect to the reference specific voltage VC, this can be manually input to the current control circuit 14 to control the current injected into the light source and stabilize the oscillation wavelength to some extent. It is measured. However, this stabilization does not necessarily require high precision, and may be one that allows variation within the range of the gas cell selection straight line. The analog data (v-vc) is then digitized by an A/I converter 15, multiplied by the slope coefficient of the selection characteristic straight line in a coefficient multiplier 16, and further added with a reference wavelength λc by an adder z7. The oscillation wavelength λ(v) is determined. On the other hand, a pulse signal based on the displacement mx of the object to be measured outputted from the light receiver 6 of the interferometer is counted by the pulse counter 18 and transferred to the multiplier 119, where the oscillation wavelength λ( v) is multiplied by a value of 1/2, and data on the displacement mx of the measurement object is output to the terminal 20.
以上においては、パルス信号の分解能をλ/2としたが
、干渉計の構成方法よってはλ/2をさらに細分してそ
の数分の1の分解能とするものがあり、これに対しては
相当するλの分数の乗算を好うものである。In the above, the resolution of the pulse signal was assumed to be λ/2, but depending on how the interferometer is configured, λ/2 may be further subdivided to have a resolution of a fraction of that. We prefer multiplication of fractions of λ.
[発明の効果]
以上の説明により明らかなように、この発明によるレー
ザ測長器においては、発振波長が変動する半導体レーザ
素子のレーザビームに対して、気体セルにより変動を検
出して発振波長をリアルタイムで求め、干渉計による干
渉縞のパルス数にこの発振波長を乗じて変位量を正確に
計測できるもので、波長変動をある程度許容するので、
従来のlH度および注入電流の制御により発振波長を一
定とする方式に比較して、波長変動に対して高速、高精
度に追従できる。また、温度制御器を従来よりさらに小
型にできるなど、半導体レーザ素子による測長器の測定
精度の向上と小型化に寄与する効果には大きいものがあ
る。[Effects of the Invention] As is clear from the above explanation, the laser length measuring device according to the present invention uses a gas cell to detect fluctuations in the laser beam of a semiconductor laser element whose oscillation wavelength fluctuates and determine the oscillation wavelength. It is calculated in real time and can accurately measure the amount of displacement by multiplying the number of pulses of interference fringes produced by the interferometer by this oscillation wavelength, and it allows for wavelength fluctuations to a certain extent.
Compared to the conventional method of keeping the oscillation wavelength constant by controlling the lH degree and injection current, it is possible to follow wavelength fluctuations at high speed and with high precision. Furthermore, the temperature controller can be made even smaller than before, and there are significant effects that contribute to improving the measurement accuracy and downsizing of the length measuring device using the semiconductor laser element.
第1図(a)および(b)はこの発明によるレーザ測長
器の演算回路において、気体セルの選択特性に対する演
算式を説明する図、第2図はこの発明によるレーザ測長
器の実施例におけるブロック構成図、第3図は半導体レ
ーザ素子を光源とするレーザ測長器の原理と発振波長の
変動およびその対策の説明図、第4図は気体セルの構造
と選択特性の説明〆1である。
l・・・半導体レーザ素F、 2・・・ビームスプリン
タ、3・・・参照ミラー、 4・・・測定ミラー
、5・・・測定対象物、 6・・・受光器、6a・
・・パルス信号、 7・・・温度制御器、8・・・気
体セル、 9・・・前置ビームスプリッタ、10・
・・受光器、 I!・・・増幅器、12・・・
除算器、 13・・・減算器、14・・・電流
制御回路、 I5・・・A/D変換器、16・・・係
数乗算器、t 7・・・加算器、18・・・パルスカウ
ンタ、!9・・・乗算器、20・・・端子。1(a) and (b) are diagrams illustrating the calculation formula for the selection characteristic of the gas cell in the calculation circuit of the laser length measurement device according to the present invention, and FIG. 2 is an embodiment of the laser length measurement device according to the invention. Fig. 3 is an explanatory diagram of the principle of a laser length measuring device that uses a semiconductor laser element as a light source, fluctuations in oscillation wavelength, and countermeasures against it, and Fig. 4 is an explanation of the structure and selection characteristics of the gas cell. be. 1... Semiconductor laser element F, 2... Beam splinter, 3... Reference mirror, 4... Measurement mirror, 5... Measurement object, 6... Light receiver, 6a.
...Pulse signal, 7. Temperature controller, 8. Gas cell, 9. Front beam splitter, 10.
...Receiver, I! ...Amplifier, 12...
Divider, 13... Subtractor, 14... Current control circuit, I5... A/D converter, 16... Coefficient multiplier, t7... Adder, 18... Pulse counter ,! 9... Multiplier, 20... Terminal.
Claims (2)
ームを測定ビームと参照ビームに分割し、測定対象物に
設けられた測定ミラーよりの該測定ビームの反射ビーム
と該参照ビームのなす干渉縞の個数をカウントして該測
定対象物の変位量を計測する干渉計方式の測長器におい
て、上記光源よりのレーザビームを分割する前置ビーム
スプリッタと、該分割された一方のレーザビームにより
上記干渉計を構成し、該分割された他方のレーザビーム
を波長選択して透過させる気体セルと、該気体セルを透
過した透過ビームを受光する受光器と、該受光器の出力
信号の強度変化により上記発振波長を求める演算回路と
を具備し、該演算回路によりえられた発振波長のデータ
を、上記干渉計がカウントした干渉縞の個数に乗算して
上記測定対象物の変位量を出力する乗算器とにより構成
されたことを特徴とするとするレーザ測長器。(1) A semiconductor laser element is used as a light source, the laser beam of the light source is divided into a measurement beam and a reference beam, and interference fringes are formed between the measurement beam reflected from a measurement mirror provided on the measurement object and the reference beam. In an interferometer-type length measuring instrument that measures the amount of displacement of an object by counting the number of objects, a pre-beam splitter splits a laser beam from the light source, and one of the split laser beams measures the amount of displacement of the object. The interferometer includes a gas cell that selects the wavelength of the other split laser beam and transmits it, a light receiver that receives the transmitted beam that has passed through the gas cell, and a light receiver that receives the transmitted laser beam. an arithmetic circuit for determining the oscillation wavelength, and a multiplier that multiplies the oscillation wavelength data obtained by the arithmetic circuit by the number of interference fringes counted by the interferometer and outputs the amount of displacement of the object to be measured. 1. A laser length measuring device comprising:
る光源レベル信号に対する上記受光器の出力信号の比電
圧vを計算する除算器と、上記気体セルの選択特性直線
の中心の基準波長λcにおける上記光源レベル信号と上
記受光器の出力信号の比電圧を基準比電圧vcとして、
上記光源の変動する発振波長λ(v)に対して上記除算
器の出力する比電圧vより上記基準比電圧vcを減算す
る減算器と、該減算器の出力電圧(v−vc)に上記気
体セルの選択特性直線の傾斜係数kを乗算する係数乗算
器、および該係数乗算器の出力電圧k(v−vc)に上
記基準波長λcを加算する加算器とにより上記演算回路
を構成する、請求項1記載のレーザ測長器。(2) a divider for calculating the ratio voltage v of the output signal of the light receiver with respect to the light source level signal output by the output level detector provided in the light source; and a reference wavelength λc at the center of the selection characteristic straight line of the gas cell. The ratio voltage between the light source level signal and the output signal of the light receiver at is set as a reference ratio voltage vc,
a subtracter that subtracts the reference specific voltage vc from the specific voltage v output from the divider with respect to the varying oscillation wavelength λ(v) of the light source; The arithmetic circuit is configured by a coefficient multiplier that multiplies a slope coefficient k of a cell selection characteristic straight line, and an adder that adds the reference wavelength λc to the output voltage k (v-vc) of the coefficient multiplier. The laser length measuring device according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10272688A JPH01274002A (en) | 1988-04-27 | 1988-04-27 | Laser length measuring apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10272688A JPH01274002A (en) | 1988-04-27 | 1988-04-27 | Laser length measuring apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01274002A true JPH01274002A (en) | 1989-11-01 |
Family
ID=14335267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10272688A Pending JPH01274002A (en) | 1988-04-27 | 1988-04-27 | Laser length measuring apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01274002A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0498575A2 (en) * | 1991-02-08 | 1992-08-12 | Hughes Aircraft Company | Stabilized two color laser diode interferometer |
US5875031A (en) * | 1994-09-13 | 1999-02-23 | Nikon Corporation | Distance measuring device based on laser interference with a baffle structure member |
US9175876B2 (en) | 2009-03-09 | 2015-11-03 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US9598186B2 (en) | 2009-03-09 | 2017-03-21 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US9603483B2 (en) | 2007-09-26 | 2017-03-28 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
-
1988
- 1988-04-27 JP JP10272688A patent/JPH01274002A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0498575A2 (en) * | 1991-02-08 | 1992-08-12 | Hughes Aircraft Company | Stabilized two color laser diode interferometer |
EP0498575A3 (en) * | 1991-02-08 | 1993-02-24 | Hughes Aircraft Company | Stabilized two color laser diode interferometer |
US5875031A (en) * | 1994-09-13 | 1999-02-23 | Nikon Corporation | Distance measuring device based on laser interference with a baffle structure member |
US9603483B2 (en) | 2007-09-26 | 2017-03-28 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US9175876B2 (en) | 2009-03-09 | 2015-11-03 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
US9598186B2 (en) | 2009-03-09 | 2017-03-21 | Heat Wave Technologies, Llc | Self-heating systems and methods for rapidly heating a comestible substance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4319843A (en) | Interferometer apparatus for the direct measurement of wavelength and frequency | |
JPH03108627A (en) | Temperature measurement and distributed type optical fiber temperature sensor | |
JPH07181007A (en) | Measuring device wherein interferometer is applied | |
JP2828162B2 (en) | Interferometric measurement method for absolute measurement and laser interferometer device suitable for this method | |
JPH01502296A (en) | Laser interferometric distance meter that measures length using an interferometer method | |
Downs et al. | Bi-directional fringe counting interference refractometer | |
CN111157127B (en) | System for measuring laser wavelength in real time | |
US5589641A (en) | Strain and fabry-perot etalon measurement system and method | |
JPH01274002A (en) | Laser length measuring apparatus | |
US6462823B1 (en) | Wavelength meter adapted for averaging multiple measurements | |
WO1986006845A1 (en) | Optical diffraction velocimeter | |
JPS635682B2 (en) | ||
EP0508583B1 (en) | Absolute gas refractometer | |
CN108627084B (en) | Laser instrument wavelength calibration system based on static michelson interferometer | |
US3520613A (en) | Interferometer with environmental correction computer | |
JPH0222502A (en) | Optical interference measuring instrument | |
JPH08101072A (en) | Light wavemeter | |
WO1991003729A1 (en) | Apparatus for measuring the refractive index of gaseous media | |
Shamir | Compact interferometer for accurate determination of optical constants of thin films | |
JP2687631B2 (en) | Interference signal processing method of absolute length measuring device | |
JPH0454407A (en) | Optical displacement gauge | |
JPS6035249A (en) | Dew point measuring instrument | |
JPH0484739A (en) | Refractive-index measuring apparatus | |
Rees et al. | A precision wavelength meter for a pulsed laser | |
Dochio et al. | A wavelength meter based on a rotating parallelepiped interferometer |