[go: up one dir, main page]

JPH01272205A - Small-sized dipole antenna - Google Patents

Small-sized dipole antenna

Info

Publication number
JPH01272205A
JPH01272205A JP10051688A JP10051688A JPH01272205A JP H01272205 A JPH01272205 A JP H01272205A JP 10051688 A JP10051688 A JP 10051688A JP 10051688 A JP10051688 A JP 10051688A JP H01272205 A JPH01272205 A JP H01272205A
Authority
JP
Japan
Prior art keywords
dipole
dipoles
matching circuit
dielectric plate
ceramic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10051688A
Other languages
Japanese (ja)
Inventor
Tadashi Numazaki
正 沼崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP10051688A priority Critical patent/JPH01272205A/en
Publication of JPH01272205A publication Critical patent/JPH01272205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

PURPOSE:To simplify and miniaturize a dipole antenna without degrading the radiation characteristic by setting dipoles, feeders, and matching circuits, which consist of a ceramic compound of an oxide superconductor, to both faces of a dielectric plate with desired shapes and dimensions. CONSTITUTION:Dipoles 1a and 1b, feeders 2a and 2b, and matching circuits 5a and 5b consist of a ceramic compound of an oxide superconductor and are set to both faces of a dielectric plate 6. Parts of dipoles 1a and 1b are formed on opposite sides of the dielectric plate 6. The matching circuit 5a is formed on the rear face of the dipole 1a, and the matching circuit 5b is formed on the rear face of the dipole 1b, and these matching circuits have a micro strip line structure. That is, since dipoles 1a and 1b, feeders 2a and 2b, and matching circuits 5a and 5b consist of a ceramic compound, a superconductive state is obtained at a higher temperature in comparison with a general metallic conductor and the loss resistance is easily set by zero. Thus, the radiation efficiency is easily improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明1’jHF帯やVHF帯あるいはυHF帯の比
較的低い周波数で使用する通信あるいはレーダ用の小形
ダイポールアンテナに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention 1'j relates to a small dipole antenna for communications or radar that is used at relatively low frequencies in the HF band, VHF band, or υHF band.

〔従来の技術〕[Conventional technology]

第2図は例えば原本;”小形アンテナ“1.電子通信学
会誌、 Vol−60e No、4. p、394 (
昭52−4 )に示され之従来の小形ダイポールアンテ
ナの構造図であり、図において、(1g) 、(lb)
は金属導体のダイポール、(2m)、(2b)は給電線
路、(3)は給電回路、(4)は給電端子対である。
Figure 2 shows, for example, the original; "Small Antenna" 1. Journal of the Institute of Electronics and Communication Engineers, Vol-60e No. 4. p, 394 (
This is a structural diagram of a conventional small dipole antenna shown in 1972-4), and in the figure, (1g), (lb)
is a metal conductor dipole, (2m) and (2b) are power supply lines, (3) is a power supply circuit, and (4) is a power supply terminal pair.

1g2図のダイポール(la)、(lb)の長さ2Lは
小形化を目的として、0.1波長以下としている。さら
に、共振及び給電端子対(4)に接続される負荷と整合
をとるために整合回路(31を給電線路(2a)、(2
b)の後へ接続している。
The length 2L of the dipoles (la) and (lb) in Figure 1g2 is set to 0.1 wavelength or less for the purpose of miniaturization. Furthermore, in order to match the load connected to the resonant and feed terminal pair (4), a matching circuit (31) is connected to the feed line (2a), (2
It is connected after b).

ダイポール(im)、(lb)は微小ダイポールである
から放射抵抗が非常に小さいので、整合回路(31を含
むアンテナ全体を液体ヘリウムで冷却し、超電導状態に
して金属導体の損失抵抗を零にしていた。
Since the dipoles (im) and (lb) are minute dipoles, their radiation resistance is extremely small. Therefore, the entire antenna, including the matching circuit (31), is cooled with liquid helium to bring it into a superconducting state and reduce the loss resistance of the metal conductor to zero. Ta.

ここで放射効率η1は次式で表わされる。Here, the radiation efficiency η1 is expressed by the following equation.

但し、Pr1rlダイポールからの放射電力、pLdは
ダイポールでの損失電力、Pjnは給電線路、整合回路
での損失電力である。Prはダイポールの放射抵抗RT
に比例し、Pjd −P4m uそれぞれの金属導体の
損失抵抗R2に比例する。
However, the radiation power from the Pr1rl dipole, pLd is the power loss at the dipole, and Pjn is the power loss at the feed line and matching circuit. Pr is the dipole radiation resistance RT
Pjd - P4mu is proportional to the loss resistance R2 of each metal conductor.

式+11より、損失抵抗を零に近づければ放射効率が上
がることがわかる。
From equation +11, it can be seen that the radiation efficiency increases if the loss resistance approaches zero.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ダイポール(im)、(lb)には整合回路(3)を接
続するため、空間的にアンテナを支持する場合には支持
が難しく、また支持具や整合回路のしゃへいにより放射
特性が劣化するという問題点があった。
Since the matching circuit (3) is connected to the dipoles (im) and (lb), it is difficult to support the antenna spatially, and the radiation characteristics deteriorate due to shielding of the support and matching circuit. There was a point.

また、この小形ダイポールアンテナの構造上の問題とし
て、液体ヘリウムによる冷却装置が大がかりで高価にな
るという実用土の問題点もあった。
Another problem with the structure of this small dipole antenna is that the cooling device using liquid helium is large and expensive, which is a problem in practical use.

この発明は上記のような問題点を解消するためになされ
たもので、誘電体板上にダイポール、給電線路及び整合
回路を装着して平板状に構成し、放射特性全劣化させる
ことなく簡単な構造の小形ダイポールアンテナを得るこ
とを目的とする。
This invention was made in order to solve the above-mentioned problems, and by mounting a dipole, a feed line, and a matching circuit on a dielectric plate and configuring it in a flat plate shape, it can be easily realized without completely deteriorating the radiation characteristics. The purpose is to obtain a small dipole antenna with this structure.

〔課題を解決するための手段〕 この発明に係る小形ダイポールアンテナは誘電体の両面
に酸化物超電導体であるセラミックス化合物をダイポー
ル及び給電線路、整合回路を所望の形状1寸法に装着し
たものである。
[Means for Solving the Problems] A small dipole antenna according to the present invention has a dipole, a feed line, and a matching circuit mounted on both sides of a dielectric material using a ceramic compound that is an oxide superconductor in a desired shape and size. .

〔作用〕[Effect]

この発明におけるダイポール、給電線路及び整合回路は
誘電体板上に構成され、良好な放射特性が得られる。
The dipole, feed line, and matching circuit in this invention are constructed on a dielectric plate, and good radiation characteristics can be obtained.

〔実施例〕〔Example〕

以下、この発明の一実施例を説明する。第1図において
、(1m)、(lb)は長方形板状のダイポール、(2
m)−(2b)は給電線路、(5m)、(5b)は分布
定数線路で形成した整合回路、(6)は誘電体板である
An embodiment of this invention will be described below. In Figure 1, (1m) and (lb) are rectangular plate-shaped dipoles, (2
m)-(2b) is a feed line, (5m) and (5b) are matching circuits formed by distributed constant lines, and (6) is a dielectric plate.

ダイポール(1m)−(lb) e給電線路(2m)−
(2b) −整合回路(5m)、(5b)は全て酸化物
超電導体であるセラミックス化合物で形成し、誘電体板
(6)の両面に装着している。
Dipole (1m) - (lb) e feed line (2m) -
(2b) - The matching circuits (5m) and (5b) are all made of a ceramic compound which is an oxide superconductor, and are attached to both sides of the dielectric plate (6).

ダイポールの(10)と(1b)の部分は互いに誘電体
板+61の反対側に形成している。整合回路(5−)は
ダイポール(1m)の裏面に、整合回路(5b)はダイ
ポール(To)の裏面に形成しており、それぞれマイク
ロストリップ線路構造の整合回路である。
Portions (10) and (1b) of the dipole are formed on opposite sides of the dielectric plate +61. The matching circuit (5-) is formed on the back surface of the dipole (1m), and the matching circuit (5b) is formed on the back surface of the dipole (To), each having a microstrip line structure.

ダイポール(1m)、(lb) e給電線路(2m)−
(2b) #整合回路(5膳)、(5b)はセラミック
ス化合物にて製作しているので、一般の金属導体よりも
高温にて超電導状態が得られ、容易に損失抵抗を零にす
ることが可能である。すなわち、容易に放射効率を高め
ることができる。
Dipole (1m), (lb) e feed line (2m) -
(2b) #Matching circuit (5 sets), (5b) is made of a ceramic compound, so it can achieve a superconducting state at higher temperatures than ordinary metal conductors, and can easily reduce loss resistance to zero. It is possible. That is, radiation efficiency can be easily increased.

なお、以上はダイポールの一片の形状が長方形板状の場
合について説明したが、この発明はこれに限らず、円形
や楕円形とした場合についても全く同様にして実施でき
る。また、整合回路はマイクロストリップ線路の場合に
ついて説明したが、平行二線として給電線路の途中に接
続した場合についても同様の効果が得られる。
Although the case where the shape of one piece of the dipole is a rectangular plate has been described above, the present invention is not limited to this, and can be implemented in the same manner even when the shape is circular or oval. Moreover, although the case where the matching circuit is a microstrip line has been described, the same effect can be obtained when the matching circuit is connected as two parallel lines in the middle of the feed line.

〔発明の効果〕〔Effect of the invention〕

以上の説明のように、この発明によれば金属導体を酸化
物超電導体であるセラミックス化合物に置き換えて誘電
体板上に構成したので、ダイポール、整合回路の寸法精
度を高めることができるとともに、冷却装置も液体窒素
を用いたものなど装置全体を安価で、かつ簡単な全体構
造とすることができるので、通信あるいはレーダ用の小
形ダイポールアンアンテナとして大きな効果がある。
As explained above, according to the present invention, the metal conductor is replaced with a ceramic compound, which is an oxide superconductor, and is constructed on a dielectric plate, making it possible to improve the dimensional accuracy of dipoles and matching circuits, as well as improve cooling. Since the entire device is inexpensive and can have a simple structure, such as one using liquid nitrogen, it is highly effective as a small dipole antenna for communications or radar.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図はこの発明の一実施例による小形ダイポールアン
テナの構造図、1g2図は従来の小形ダイポールアンテ
ナの構造図である。 (im)、(lb) =ダイポール、(2m)−(2b
) −給電線路、(31,(5m)−(5b)・・・整
合回路、(6)・・・誘電体板。 なお、図中、同一符号は同一、又は相当部分を示す◎ 代私 大岩増雄
Figure 1 is a structural diagram of a small dipole antenna according to an embodiment of the present invention, and Figure 1g2 is a structural diagram of a conventional small dipole antenna. (im), (lb) = dipole, (2m) - (2b
) - Feeding line, (31, (5m) - (5b)... matching circuit, (6)... dielectric plate. In the figure, the same reference numerals indicate the same or equivalent parts. Masuo

Claims (1)

【特許請求の範囲】[Claims] (1)長さが0.1波長以下のダイポールと整合回路と
で構成される小形ダイポールアンテナにおいて、上記ダ
イポール及び整合回路とを酸化物超電導体であるセラミ
ックス化合物にて形成し、誘電体板の両面または一方の
面に装着したことを特徴とする小形ダイポールアンテナ
(1) In a small dipole antenna consisting of a dipole with a length of 0.1 wavelength or less and a matching circuit, the dipole and matching circuit are formed of a ceramic compound that is an oxide superconductor, and the dielectric plate is A small dipole antenna characterized by being attached to both sides or one side.
JP10051688A 1988-04-22 1988-04-22 Small-sized dipole antenna Pending JPH01272205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10051688A JPH01272205A (en) 1988-04-22 1988-04-22 Small-sized dipole antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10051688A JPH01272205A (en) 1988-04-22 1988-04-22 Small-sized dipole antenna

Publications (1)

Publication Number Publication Date
JPH01272205A true JPH01272205A (en) 1989-10-31

Family

ID=14276116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10051688A Pending JPH01272205A (en) 1988-04-22 1988-04-22 Small-sized dipole antenna

Country Status (1)

Country Link
JP (1) JPH01272205A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071869A (en) * 2005-03-17 2009-04-02 Fujitsu Ltd Tag antenna

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009071869A (en) * 2005-03-17 2009-04-02 Fujitsu Ltd Tag antenna

Similar Documents

Publication Publication Date Title
CA2063119C (en) Miniature dual mode planar filters
Hong et al. On the development of superconducting microstrip filters for mobile communications applications
JP3047836B2 (en) Meander line antenna
EP0769823B1 (en) High-frequency circuit element
US6122533A (en) Superconductive planar radio frequency filter having resonators with folded legs
US5512910A (en) Microstrip antenna device having three resonance frequencies
JPH0588003B2 (en)
CN109638427A (en) The low axis in broadband compares circular polarized antenna
US5990765A (en) Planar dual mode filters and a method of construction thereof
Ohshima High-temperature superconducting passive microwave devices, filters and antennas
US6484043B1 (en) Dual mode microwave band pass filter made of high quality resonators
JP3866716B2 (en) filter
JPH06508732A (en) Planar serpentine antenna
JPH01272205A (en) Small-sized dipole antenna
JPH04172001A (en) Antenna device
US6381478B2 (en) Superconductive high-frequency circuit element with smooth contour
KR100303464B1 (en) High frequency circuit device
JP2630387B2 (en) Dielectric filter
JPH05145316A (en) Filter antenna system
JPH05110329A (en) Superconducting antenna
JPH04170804A (en) Microstrip antenna
JPH05160616A (en) Thin film resonator
JP2005223446A (en) filter
JP4125842B2 (en) High frequency filter
JPH01272208A (en) Small-sized dipole array antenna