[go: up one dir, main page]

JPH01271642A - Device for controlling fuel injection quantity of internal combustion engine - Google Patents

Device for controlling fuel injection quantity of internal combustion engine

Info

Publication number
JPH01271642A
JPH01271642A JP10086488A JP10086488A JPH01271642A JP H01271642 A JPH01271642 A JP H01271642A JP 10086488 A JP10086488 A JP 10086488A JP 10086488 A JP10086488 A JP 10086488A JP H01271642 A JPH01271642 A JP H01271642A
Authority
JP
Japan
Prior art keywords
intake pipe
pipe pressure
time
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10086488A
Other languages
Japanese (ja)
Other versions
JP2615811B2 (en
Inventor
Toshihiko Suzuki
敏彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10086488A priority Critical patent/JP2615811B2/en
Publication of JPH01271642A publication Critical patent/JPH01271642A/en
Application granted granted Critical
Publication of JP2615811B2 publication Critical patent/JP2615811B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve the accuracy of air-fuel ratio control by correcting a temporary estimated intake pipe pressure at the point of intake time which is calculated from an intake pipe pressure at the point of detecting time by a feedback gain, etc. based on a dynamic physical model, and calculating an estimated intake pipe pressure. CONSTITUTION:At the time of determining a fuel feeding quantity by a control means M7 based on the engine speed of an internal combustion engine M1 detected by an operating condition detecting means M2 and an estimated intake pipe pressure, a temporary estimated intake pipe pressure at the point of intake time is calculated by a temporary estimating means M4 from the intake pipe pressure at the point of detecting time based on a dynamic physical model. The temporary estimated intake pipe pressure is subjected to feedback correction by an estimating means M5 based on the deviation between an intake pipe pressure at the point of detecting time obtained from an estimated intake pressure at the point of intake time and an intake pipe pressure at the point of detecting time, and a correcting quantity calculated by a correcting means M6 from a feedback gain determined based on a dynamic physical model, to always accurately calculate the estimated intake pipe pressure. Thereby, a proper quantity of fuel can be fed even in a transient operating condition.

Description

【発明の詳細な説明】 1豆二亘皿 [産業上の利用分野コ 本発明は、内燃機関に供給された燃料の燃焼室吸入時点
における吸気管圧力をその吸入時点以前に検出された吸
気管圧力から予測し、少なくとも、この予測した吸気管
圧力に基づいて燃料噴射量を制御する内燃機関の燃料噴
射量制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to the method of measuring the intake pipe pressure at the time when the fuel supplied to the internal combustion engine is taken into the combustion chamber by measuring the intake pipe pressure detected before the intake time. The present invention relates to a fuel injection amount control device for an internal combustion engine that predicts from pressure and controls the fuel injection amount based on at least the predicted intake pipe pressure.

[従来の技術] 内燃機関の燃料噴射量制御装置として、スピードデンシ
ティ方式(所謂、D−J方式)を採用したものが知られ
ている。この方式は、内燃機関の吸気管圧力および回転
速度を検出し、これらの検出結果に基づいて、内燃機関
の吸気行程にある気筒に吸入される空気量を算出し、空
燃比が目標空燃比となるように燃料噴射量を算出して燃
料噴射を行なう。
[Prior Art] As a fuel injection amount control device for an internal combustion engine, one that employs a speed density method (so-called DJ method) is known. This method detects the intake pipe pressure and rotational speed of the internal combustion engine, calculates the amount of air taken into the cylinder during the intake stroke of the internal combustion engine based on these detection results, and determines whether the air-fuel ratio matches the target air-fuel ratio. The fuel injection amount is calculated so that the fuel injection is performed.

一般に、気筒に吸入される空気量の算出に使用する吸気
管圧力の検出時点は、その空気量が実際に気筒に吸入さ
れる吸入時点より所定時間、すなわち、内燃機関の行程
で2〜3ストローク、遅れている。このため、例えば、
急加減速等の過渡運転状態では、吸気管圧力の時間当り
の変動が大きいので、検出時点の吸気管圧力と吸入時点
の吸気管圧力とは大きく異なり、燃料噴射量の算出精度
の低下により空燃比が大きく乱れ、排気特性や運転性能
等に支障をきたす。従って、D−J方式で正確な燃料噴
射制御を実行するには、検出時点における吸気管圧力か
ら、吸入時点における吸気管圧力である推定吸気管圧力
を推定し、この推定吸気管圧力と回転速度とに基づいて
燃料噴射量を算出する必要がある。この問題に対する対
策として、従来より、例えば、以下のような技術が提案
されている。すなわち、 (1) 吸入時点(k+i)における推定吸気管圧力p
M(k+i)を、(n+1)個の過去のデータ(PM(
k)、PM(k−1)、 ・・−、PM(k−n))の
線形結合として、次式(1)に示す線形予測器により予
測するもの。
In general, the point in time when the intake pipe pressure used to calculate the amount of air taken into a cylinder is detected is a predetermined time from the point in time when the amount of air is actually taken into the cylinder, that is, 2 to 3 strokes in the stroke of the internal combustion engine. ,Running late. For this reason, for example,
In transient operating conditions such as sudden acceleration/deceleration, the intake pipe pressure fluctuates greatly over time, so the intake pipe pressure at the time of detection is significantly different from the intake pipe pressure at the time of intake, and the calculation accuracy of the fuel injection amount decreases, causing the air pressure to increase. The fuel ratio is greatly disturbed, causing problems with exhaust characteristics, driving performance, etc. Therefore, in order to perform accurate fuel injection control using the DJ method, the estimated intake pipe pressure, which is the intake pipe pressure at the time of intake, is estimated from the intake pipe pressure at the time of detection, and the estimated intake pipe pressure and rotational speed are It is necessary to calculate the fuel injection amount based on the following. As a countermeasure to this problem, the following techniques have been proposed in the past, for example. That is, (1) Estimated intake pipe pressure p at the time of intake (k+i)
M(k+i) is expressed as (n+1) past data (PM(
k), PM(k-1), . . . -, PM(k-n)) predicted by the linear predictor shown in the following equation (1).

pM(k+i) =末α(j)・P M(k−j)  
 ・・・ (1)但し、係数α(j)は、吸気管圧力P
 M(k−j)および回転速度Ne(k−j)等から定
まる値。
pM(k+i) = final α(j)・PM(k-j)
... (1) However, the coefficient α(j) is the intake pipe pressure P
A value determined from M(k-j), rotational speed Ne(k-j), etc.

(2) スロットルバルブが動いたときの吸気管圧力の
挙動を表すスロットルバルブ開度から吸気管圧力への伝
達特性を、次式(2)、  (3)に示す自己回帰移動
平均モデル(Autoregressive  Mov
ing−AverageModel)により表現する。
(2) The transfer characteristic from the throttle valve opening to the intake pipe pressure, which represents the behavior of the intake pipe pressure when the throttle valve moves, is expressed by the autoregressive moving average model (Autoregressive Mov) shown in the following equations (2) and (3).
ing-AverageModel).

さらに、次式(4)により、上記式(2)、  (3)
の状態変数x(k)の推定値x(k+1)を算出し、吸
気管圧力の基準値からの変化分△P M(k)を求める
「内燃機関の燃料噴射制御方法」 (特願昭60−20
6241号公報)、「内燃機関の燃料噴射制御装置」 
(特願昭60−206242号公報)、[内燃機関の燃
料噴射制御方法」 (特願昭6O−20E3243号公
報)、「内燃機関の燃料噴射制御方法」 (特願昭60
−206244号公報)、「内燃機関の燃料噴射制御装
置」 (特願昭60−206245号公報)。
Furthermore, according to the following equation (4), the above equation (2), (3)
``Fuel injection control method for an internal combustion engine'' which calculates the estimated value x(k+1) of the state variable x(k) and determines the change in intake pipe pressure from the reference value ΔP M(k) -20
6241), “Fuel injection control device for internal combustion engine”
(Japanese Patent Application No. 60-206242), [Fuel Injection Control Method for Internal Combustion Engine] (Japanese Patent Application No. 60-20E3243), "Fuel Injection Control Method for Internal Combustion Engine" (Japanese Patent Application No. 1982)
``Fuel injection control device for internal combustion engine'' (Japanese Patent Application No. 60-206245).

x(k+1)== A−x(k)+ B◆△T H(k
)・・・ (2)ΔPM(k) = C−x(k)  
      ・・・ (3)交(k+1) =  (A
−F−C) ・交(k)+ B◆ΔTH(k)+  F
・ΔP M(k)  ・・・  (4)但し、A、 E
、 Cは定数行列、ΔTH,ΔPMは予め設定された基
準値からのスロットルバルブ開度、吸気管圧力の変化分
、Fは推定ゲインを示す定数行列。
x(k+1)==A−x(k)+B◆△T H(k
)... (2) ΔPM(k) = C-x(k)
... (3) Intersection (k+1) = (A
-F-C) ・Cross(k)+B◆ΔTH(k)+F
・ΔP M(k) ... (4) However, A, E
, C is a constant matrix, ΔTH and ΔPM are changes in throttle valve opening and intake pipe pressure from preset reference values, and F is a constant matrix indicating estimated gain.

[発明が解決しようとする課題] しかし、上記従来技術には、以下のような問題があった
。すなわち、 (1) 線形予測器を用いた構成では、過去の吸気管圧
力P M(k)に基づいて、将来の推定吸気管圧力PM
(k+i)を算出している。ところが、吸気管圧力PM
(k)は、スロットルバルブを通過する空気量と気筒内
に吸入される空気量との差に応じて定まる。従って、吸
気管圧力と上記雨空気量との相互関係を考慮する必要が
ある。しかし、この相互関係を満たすよう°に上記線形
予測器の係数を設定できないので、内燃機関の広範囲に
亘る運転状態に適応する推定吸気管圧力PM(k+i)
の算出は極めて困難であるという問題点があった。これ
により、推定吸気管圧力pM(k+i)に基づく燃料噴
刺量制御の応答遅れや制御量のオーバシュートが生じて
いた。
[Problems to be Solved by the Invention] However, the above-mentioned conventional technology has the following problems. That is, (1) In a configuration using a linear predictor, the estimated future intake pipe pressure PM is calculated based on the past intake pipe pressure PM(k).
(k+i) is being calculated. However, the intake pipe pressure PM
(k) is determined according to the difference between the amount of air passing through the throttle valve and the amount of air sucked into the cylinder. Therefore, it is necessary to consider the interrelationship between the intake pipe pressure and the amount of rain air. However, since it is not possible to set the coefficients of the linear predictor described above to satisfy this correlation, the estimated intake pipe pressure PM(k+i) that adapts to a wide range of operating conditions of the internal combustion engine
The problem was that it was extremely difficult to calculate. This causes a response delay and an overshoot of the control amount in the fuel injection amount control based on the estimated intake pipe pressure pM(k+i).

(2) また、一般に、スロットルバルブ開度から吸気
管内圧力への伝達特性は非線形である。
(2) Generally, the transmission characteristic from the throttle valve opening to the intake pipe pressure is nonlinear.

従って、線形自己回帰移動平均モデル(ARMA)では
、スロットルバルブ開度から吸気管圧力への伝達特性を
正確に表現できない。そこで、予め定められた基準値近
傍での線形近似により、その基準値近傍の変化分の間で
のみ成立する線形数学モデルを複数使用していた。この
ため、内燃機関の運転状態の変化に応じて、基準値を切
り換える必要がある。しかし、内燃機関の広範囲に亘る
全ての運転状態に対応可能な数だけ線形数学モデルを有
し、その係数等を記憶することは不可能である。
Therefore, the linear autoregressive moving average model (ARMA) cannot accurately express the transfer characteristic from the throttle valve opening to the intake pipe pressure. Therefore, a plurality of linear mathematical models have been used that are valid only between changes in the vicinity of a predetermined reference value by linear approximation in the vicinity of a predetermined reference value. Therefore, it is necessary to switch the reference value according to changes in the operating state of the internal combustion engine. However, it is impossible to have as many linear mathematical models as possible to cover all operating conditions over a wide range of internal combustion engines and to store their coefficients and the like.

しかも、吸気管圧力P M(k)やスロットルバルブ開
度TH(k)の基準値からの変化分へPM(k)、ΔT
H(k)に基づいて推定値を算出する論理手IllI(
Algorithm)は、外乱やセンサ雑音によるパラ
メータ変動の影響を受は易い。このため、外乱特性仕様
(感度仕様)およびロバスト安定性仕様(センサ雑音特
性仕様)の何れもが低下し、推定値の安定性も充分保証
できなかった。
Furthermore, PM(k) and ΔT are calculated based on the changes in intake pipe pressure PM(k) and throttle valve opening TH(k) from the reference values.
A logical hand IllI(
Algorithm) is easily affected by parameter fluctuations due to disturbances and sensor noise. As a result, both the disturbance characteristic specification (sensitivity specification) and the robust stability specification (sensor noise characteristic specification) deteriorated, and the stability of the estimated value could not be sufficiently guaranteed.

(3) このように、′推定吸気管圧力pM(k+i)
の算出精度が不十分であったため、燃料噴IiJ量制御
の精度も低下し、空燃比の乱れを招いていた。
(3) In this way, 'estimated intake pipe pressure pM(k+i)
Because the accuracy of calculation was insufficient, the accuracy of fuel injection IiJ amount control also decreased, causing disturbances in the air-fuel ratio.

このため、過渡運転状態では、排気特性、燃料消費効率
および運転性能が特に悪化した。
As a result, exhaust characteristics, fuel consumption efficiency, and operating performance were particularly deteriorated during transient operating conditions.

(4) さらに、複数の線形数学モデルに各々対応する
複数のパラメータの記憶や、各種の複雑な演算を実行す
る必要があるため、大きな記憶容量および高度な演算能
力等が要求されると共に、スロットルバルブ開度T H
(k)やアクセル操作量を、高精度で検出してアナログ
信号として出力する専用のセンサが必要になるので、装
置構成の複雑化を招いていた。
(4) Furthermore, it is necessary to memorize multiple parameters corresponding to multiple linear mathematical models and to execute various complex operations, which requires large storage capacity and advanced computing power. Valve opening T H
(k) and the accelerator operation amount with high precision and output them as analog signals, a dedicated sensor is required, resulting in a complicated device configuration.

本発明は、過渡運転状態等、吸気管圧力変動が急激なと
きでも、簡単な装置構成で、検出時点に検出された吸気
管圧力から、該検出時点の吸気管圧力に基づいて算出さ
れた量の燃料を含む潰合気が気筒内に吸入される吸入時
点における吸気管圧力を正確に推定し、燃料噴射量を算
出する内燃機関の燃料噴射量側′a装置の提供を目的と
する。
The present invention enables a simple device configuration to calculate the amount calculated based on the intake pipe pressure detected at the time of detection, even when the intake pipe pressure fluctuates rapidly, such as during transient operating conditions. An object of the present invention is to provide a fuel injection amount side 'a device for an internal combustion engine that accurately estimates the intake pipe pressure at the time of suction when compressed air containing fuel is drawn into a cylinder, and calculates the fuel injection amount.

a豆工且瓜 [課題を解決するための手段] 上記目的を達成するためになされた本発明は、第1図に
例示するように、 内燃機関M1の、少なくとも吸気管圧力および回転速度
を含む運転状態を検出する運転状態検出手段M2と、 外部から指令された量の燃料を上記内燃機関M1に供給
する燃料供給手段M3と、 を具備し、上記運転状態検出手段M2の検出結果に応じ
て定まる量の燃料を上記燃料供給手段M3から供給する
内燃機関の燃料噴射量制御装置において、 さらに、上記内燃機関M1の吸入空気量に関する質量保
存則に従って構築した動的物理モデルに基づき、上記運
転状態検出手段M2により検出時点に検出された吸気管
圧力および回転速度から、該検出時点に検出された吸気
管圧力に応じて定まる量の燃料が上記内燃機関M1の吸
気行程にある気筒に吸入される吸入時点における該内燃
機関M1の予測吸気管圧力に相当する暫定推定吸気管圧
力を算出する暫定推定手段M4と、 該暫定推定手段M4の算出した暫定推定吸気管圧力を、
外部から指示される補正量に基づいてフィードバック補
正し、上記内燃機関M1の吸入時点における吸気管圧力
に相当する推定吸気管圧力を算出する推定手段M5と、 該推定手段M5の算出した推定吸気管圧力から求めた検
出時点における上記内燃機関M1の吸気管圧力と、上記
運転状態検出手段M2により検出時点に検出された吸気
管圧力との偏差および前記動的物理モデルに基づいて定
まるフィードバックゲインから上記補正量を算出して上
記推定手段M5に指示する補正手段M6と、 上記運転状態検出手段M2の検出した回転速度および上
記推定手段M5の算出した推定吸気管圧力に基づいて決
定した量の燃料供給を上記燃料供給手段M3に指令する
制御手段M7と、を備えたことを特徴とする内燃機関の
燃料噴射量制御装置を要旨とするものである。
[Means for Solving the Problems] The present invention, which has been made to achieve the above object, as illustrated in FIG. 1, includes at least the intake pipe pressure and rotational speed of the internal combustion engine M1. An operating state detection means M2 for detecting an operating state; and a fuel supply means M3 for supplying an amount of fuel commanded from the outside to the internal combustion engine M1, and according to the detection result of the operating state detection means M2. In the fuel injection amount control device for an internal combustion engine that supplies a predetermined amount of fuel from the fuel supply means M3, the operating state is further controlled based on a dynamic physical model constructed according to the law of conservation of mass regarding the intake air amount of the internal combustion engine M1. Based on the intake pipe pressure and rotational speed detected at the time of detection by the detection means M2, an amount of fuel determined according to the intake pipe pressure detected at the time of detection is taken into the cylinder in the intake stroke of the internal combustion engine M1. a provisional estimation means M4 that calculates a provisional estimated intake pipe pressure corresponding to the predicted intake pipe pressure of the internal combustion engine M1 at the time of intake;
an estimating means M5 that performs feedback correction based on a correction amount instructed from the outside and calculates an estimated intake pipe pressure corresponding to the intake pipe pressure at the time of intake of the internal combustion engine M1; and an estimated intake pipe calculated by the estimating means M5. From the feedback gain determined based on the deviation between the intake pipe pressure of the internal combustion engine M1 at the time of detection determined from the pressure and the intake pipe pressure detected at the time of detection by the operating state detection means M2 and the dynamic physical model, a correction means M6 that calculates a correction amount and instructs the estimation means M5; and supply of fuel in an amount determined based on the rotational speed detected by the operating state detection means M2 and the estimated intake pipe pressure calculated by the estimation means M5. The gist of the present invention is a fuel injection amount control device for an internal combustion engine, characterized by comprising: a control means M7 for instructing the fuel supply means M3 to perform the following steps.

運転状態検出手段M2とは、内燃機関M1の、少なくと
も吸気管圧力および回転速度を含む運転状態を検出する
ものである。例えば、半導体圧力センサ等からなる吸気
管圧力センサ、電磁ピックアップ式の回転速度センサ等
により実現できる。
The operating state detection means M2 detects the operating state of the internal combustion engine M1, including at least intake pipe pressure and rotational speed. For example, it can be realized by an intake pipe pressure sensor made of a semiconductor pressure sensor or the like, an electromagnetic pickup type rotation speed sensor, or the like.

燃料供給手段M3とは、外部から指令された量の燃料を
内燃機関M1に供給するものである。例えば、電磁式、
あるいは、圧電素子を利用した燃料噴射弁により実現で
きる。
The fuel supply means M3 supplies an amount of fuel commanded from the outside to the internal combustion engine M1. For example, electromagnetic
Alternatively, it can be realized by a fuel injection valve using a piezoelectric element.

暫定推定手段M4とは、内燃機関M1の吸入空気量に関
する質量保存則に従って構築した動的物理モデルに基づ
き、運転状態検出手段M2により検出時点に検出された
吸気管圧力および回転速度から、検出時点に検出された
吸気管圧力に応じて定まる量の燃料が内燃機関M1の吸
気行程にある気筒に吸入される吸入時点における内燃機
関M1の予測吸気管圧力に相当する暫定推定吸気管圧力
を算出するものである。ここで、動的物理モデルとは、
例えば、質量保存則に基づき、内燃機関M1の吸入空気
量の時間変化を、スロットルバルブを通過する吸入空気
量と吸気行程にある気筒に吸入される吸入空気量との差
により表記した式を、気体の状態方程式、断熱変化にお
ける状態変化の式等により変形すると構築できる。従っ
て、例えば、吸入時点における内燃機関M1の予測吸気
管圧力を、検出時点における内燃機関M1の吸気管圧力
、吸気管圧力の時間変化量、気高内吸入空気量および回
転速度に依存するパラメータにより記述する演算式等に
より構成できる。
The provisional estimating means M4 is based on a dynamic physical model constructed according to the law of conservation of mass regarding the intake air amount of the internal combustion engine M1, and calculates the detection time from the intake pipe pressure and rotational speed detected at the detection time by the operating state detection means M2. Calculate a provisional estimated intake pipe pressure corresponding to the predicted intake pipe pressure of the internal combustion engine M1 at the time of intake when an amount of fuel determined according to the intake pipe pressure detected in the intake stroke of the internal combustion engine M1 is taken into the cylinder in the intake stroke of the internal combustion engine M1. It is something. Here, the dynamic physical model is
For example, based on the law of conservation of mass, the equation expressing the time change in the amount of intake air of the internal combustion engine M1 as the difference between the amount of intake air passing through the throttle valve and the amount of intake air taken into the cylinder in the intake stroke is expressed as: It can be constructed by transforming it using the equation of state of gas, the equation of state change in adiabatic change, etc. Therefore, for example, the predicted intake pipe pressure of the internal combustion engine M1 at the time of intake can be determined by parameters that depend on the intake pipe pressure of the internal combustion engine M1 at the time of detection, the amount of change in intake pipe pressure over time, the intake air amount in the air height, and the rotation speed. It can be configured by the arithmetic expressions, etc. to be written.

推定手段M5とは、暫定推定手段M4の算出した暫定推
定吸気管圧力を、外部から指示される補正量に基づいて
フィードバック補正し、内燃機関M1の吸入時点におけ
る吸気管圧力に相当する推定吸気管圧力を算出するもの
である。ここで、補正量とは、推定吸気管圧力の時点を
、吸入時点から検出時点に逆変換して得られる検出時点
の推定吸気管圧力と検出時点で実際に検出された吸気管
圧力との偏差をフィードバック補正する量である。
The estimating means M5 feedback-corrects the provisionally estimated intake pipe pressure calculated by the provisional estimating means M4 based on a correction amount instructed from the outside, and calculates an estimated intake pipe pressure corresponding to the intake pipe pressure at the time of intake of the internal combustion engine M1. It calculates pressure. Here, the correction amount is the difference between the estimated intake pipe pressure at the detection time obtained by inversely converting the estimated intake pipe pressure from the intake time to the detection time and the intake pipe pressure actually detected at the detection time. is the amount of feedback correction.

補正手段M6とは、推定手段M5の算出した推定吸気管
圧力から求めた検出時点における内燃機関M1の吸気管
圧力と、運転状態検出手段M2により検出時点に検出さ
れた吸気管圧力との偏差および前記動的物理モデルに基
づいて定まるフィードバックゲインから補正量を算出し
て推定手段M5に指示するものである。ここで、フィー
ドバックゲインとは、内燃機関M1の吸入空気量の挙動
をモデリングの対象とした場合の人力であるスロットル
バルブ通過吸入空気量を、その質量保存則に則って構築
した動的物理モデルに人力した場合の出力である推定吸
気管圧力と、内燃機関M1の検出された吸気管圧力との
偏差を動的物理モデルにフィードバックするときのフィ
ードバックゲインである。このフィードバックゲインは
、例えば、内燃機関M1の吸入空気系統を制御対象とし
、上記動的物理モデルに基づく状態観測器、所謂オブザ
ーバを構成する場合と同様な手法により決定できる。
The correction means M6 refers to the difference between the intake pipe pressure of the internal combustion engine M1 at the time of detection obtained from the estimated intake pipe pressure calculated by the estimation means M5 and the intake pipe pressure detected at the time of detection by the operating state detection means M2. A correction amount is calculated from the feedback gain determined based on the dynamic physical model and is instructed to the estimation means M5. Here, the feedback gain refers to the amount of intake air passing through the throttle valve, which is human power, when the behavior of the amount of intake air in the internal combustion engine M1 is modeled, and the amount of intake air passing through the throttle valve, which is a human input, is expressed in a dynamic physical model constructed in accordance with the law of conservation of mass. This is a feedback gain when the deviation between the estimated intake pipe pressure, which is the output when manually applied, and the detected intake pipe pressure of the internal combustion engine M1 is fed back to the dynamic physical model. This feedback gain can be determined, for example, using the same method as in the case where the intake air system of the internal combustion engine M1 is controlled and a state observation device based on the above-mentioned dynamic physical model, that is, a so-called observer is configured.

制御手段M7とは、運転状態検出手段M2の検出した回
転速度および推定手段M5の算出した推定吸気管圧力に
基づいて決定した量の燃料供給を燃料供給手段M3に指
令するものである。例えば、回転速度および推定吸気管
圧力と燃料供給量との相互関係を規定したマツプ、もし
くは、演算式により実現できる。また、例えば、上記の
ように算出した燃料供給量を、内燃機関M1の運転状態
である、冷却水温度、吸入空気温度、排気中酸素淵度等
に応じてさらに増減補正するよう構成しても良い。
The control means M7 instructs the fuel supply means M3 to supply fuel in an amount determined based on the rotational speed detected by the operating state detection means M2 and the estimated intake pipe pressure calculated by the estimation means M5. For example, it can be realized by a map or an arithmetic expression that defines the correlation between the rotational speed, estimated intake pipe pressure, and fuel supply amount. For example, the fuel supply amount calculated as described above may be further corrected to increase or decrease depending on the operating state of the internal combustion engine M1, such as the cooling water temperature, intake air temperature, exhaust oxygen level, etc. good.

上記暫定推定手段M4、推定手段M5、補正手段M6、
制御手段M7は、例えば、周知のCPUを始めとしてR
OM、RAMおよびその他の周辺回路素子から成る論理
演算回路が、予め定められた処理手順を実行する構成に
より実現できる。
The provisional estimating means M4, the estimating means M5, the correcting means M6,
The control means M7 includes, for example, a well-known CPU, R
A logic operation circuit consisting of OM, RAM, and other peripheral circuit elements can be realized by a configuration that executes a predetermined processing procedure.

[作用] 本発明の内燃機関の燃料噴射量制御装置は、第1図に例
示するように、内燃機関M1の吸気管圧力および回転速
度を、運転状態検出手段M2は検出時点に検出する。す
ると、暫定推定手段M4は、内燃機関M1の吸入空気量
に関する質量保存則に従って構築した動的物理モデルに
基づき、上記検出時点に検出された吸気管圧力に応じて
定まる量の燃料が上記内燃機関M1の吸気行程にある気
筒に吸入される吸入時点における内燃機関M1の予測吸
気管圧力に相当する暫定推定吸気管圧力を算出する。さ
らに、推定手段M5は、暫定推定吸気管圧力を、外部か
ら指示される補正量に基づいてフィードバック補正し、
上記内燃機関M1の吸入時点における吸気管圧力に相当
する推定吸気管圧力を算出する。一方、補正手段M6は
、推定吸気管圧力から求めた検出時点における上記内燃
機関M1の吸気管圧力と、上記運転状態検出手段M2に
より検出時点に検出された吸気管圧力との偏差および前
記動的物理モデルに基づいて定まるフィードパ・ンクゲ
インから上記補正量を算出して上記推定手段M5に指示
する。そして、制御手段M7が、上記運転状態検出手段
M2の検出した回転速度および上記推定手段M5の算出
した推定吸気管圧力に基づいて決定した量の燃料供給を
燃料供給手段M3に指令するよう働く。
[Operation] In the fuel injection amount control device for an internal combustion engine of the present invention, as illustrated in FIG. 1, the operating state detection means M2 detects the intake pipe pressure and rotational speed of the internal combustion engine M1 at the time of detection. Then, based on a dynamic physical model constructed according to the law of conservation of mass regarding the amount of intake air of the internal combustion engine M1, the provisional estimating means M4 determines that an amount of fuel determined according to the intake pipe pressure detected at the time of the detection is applied to the internal combustion engine M1. A provisional estimated intake pipe pressure corresponding to the predicted intake pipe pressure of internal combustion engine M1 at the time of intake into the cylinder in the intake stroke of M1 is calculated. Further, the estimating means M5 performs feedback correction on the provisionally estimated intake pipe pressure based on a correction amount instructed from the outside,
An estimated intake pipe pressure corresponding to the intake pipe pressure at the time of intake of the internal combustion engine M1 is calculated. On the other hand, the correction means M6 corrects the deviation between the intake pipe pressure of the internal combustion engine M1 at the time of detection obtained from the estimated intake pipe pressure and the intake pipe pressure detected at the time of detection by the operation state detection means M2, and The correction amount is calculated from the feed punch gain determined based on the physical model and is instructed to the estimation means M5. The control means M7 operates to instruct the fuel supply means M3 to supply fuel in an amount determined based on the rotational speed detected by the operating state detection means M2 and the estimated intake pipe pressure calculated by the estimation means M5.

すなわち、内燃機関M1の回転速度および推定吸気管圧
力に基づいて供給燃料量を決定するに際′し、上記内燃
機関M1の吸入空気量に関する質量保存則に従って構築
した動的物理モデルに基づき、検出時点に検出した吸気
管圧力から算出した吸入時点の暫定推定吸気管圧力を、
吸入時点の推定吸気管圧力から求めた検出時点の吸気管
圧力と検出時点に検出した吸気管圧力との偏差および上
記動的物理モデルに基づいて定まるフィードバックゲイ
ンから算出した補正量でフィードバック補正して推定吸
気管圧力を算出するのである。
That is, when determining the amount of fuel to be supplied based on the rotational speed and estimated intake pipe pressure of the internal combustion engine M1, detection The provisional estimated intake pipe pressure at the time of intake calculated from the intake pipe pressure detected at the time,
Feedback correction is performed using the correction amount calculated from the feedback gain determined based on the deviation between the intake pipe pressure at the time of detection obtained from the estimated intake pipe pressure at the time of intake and the intake pipe pressure detected at the time of detection, and the above dynamic physical model. It calculates the estimated intake pipe pressure.

従って、本発明の内燃機関の燃料噴射量制御装置は、推
定吸気管圧力を常時正確に算出し、過渡運転状態でも適
切な量の燃料を供給するよう働く。
Therefore, the fuel injection amount control device for an internal combustion engine according to the present invention always accurately calculates the estimated intake pipe pressure and works to supply an appropriate amount of fuel even under transient operating conditions.

以上のように本発明の各構成要素が作用することにより
、本発明の技術的課題が解決される。
The technical problems of the present invention are solved by each component of the present invention acting as described above.

[実施例] 次に本発明の好適な実施例を図面に基づいて詳細に説明
する。本発明の一実施例であるエンジンの燃料噴射量制
御装置のシステム構成を第2図に示す。
[Example] Next, a preferred example of the present invention will be described in detail based on the drawings. FIG. 2 shows a system configuration of a fuel injection amount control device for an engine, which is an embodiment of the present invention.

同図に示すように、エンジンの燃料噴射量制御装置1は
、エンジン2およびこれを制御する電子制御装置(以下
、単にECUと呼ぶ。)3から構成されている。
As shown in the figure, an engine fuel injection amount control device 1 includes an engine 2 and an electronic control unit (hereinafter simply referred to as ECU) 3 that controls the engine 2.

エンジン2は、シリンダ4、ピストン5およびシリンダ
ヘッド6から燃焼室7を形成し、該燃焼室7には点火プ
ラグ8が配設されている。
The engine 2 includes a cylinder 4, a piston 5, and a cylinder head 6 to form a combustion chamber 7, and a spark plug 8 is disposed in the combustion chamber 7.

該エンジン2の吸気系は、上記燃焼室7と吸気バルブ9
を介して連通ずる吸気管10、吸気管10に配設されて
燃料を噴射する電磁式の燃料噴射弁11、吸入空気の脈
動を吸収するサージタンク12、アクセルペダルに連動
して吸入空気量を調節するスロットルバルブ13および
エアクリーナ14から構成されている。
The intake system of the engine 2 includes the combustion chamber 7 and the intake valve 9.
An intake pipe 10 that communicates with the intake pipe 10, an electromagnetic fuel injection valve 11 that is installed in the intake pipe 10 and injects fuel, a surge tank 12 that absorbs the pulsation of intake air, and an intake air amount that is linked to the accelerator pedal. It is composed of a throttle valve 13 and an air cleaner 14 to be adjusted.

上記エンジン2の排気系は、上記燃焼室7と排気バルブ
15を介して連通ずる排気マニホルド16、三元触媒を
充填した触媒コンバータ17および排気管1日から構成
されている。
The exhaust system of the engine 2 includes an exhaust manifold 16 communicating with the combustion chamber 7 via an exhaust valve 15, a catalytic converter 17 filled with a three-way catalyst, and an exhaust pipe.

上記エンジン2の点火系は、点火に必要な高電圧を出力
するイグニッションコイルを備えたイグナイタ19およ
び図示しないクランク軸に連動して上記イグナイタ19
で発生した高電圧を点火プラグに分配供給するディスト
リビュータ20から構成されている。
The ignition system of the engine 2 includes an igniter 19 equipped with an ignition coil that outputs a high voltage necessary for ignition, and an igniter 19 that is connected to a crankshaft (not shown).
It consists of a distributor 20 that distributes and supplies the high voltage generated by the spark plug to the spark plug.

エンジンの燃料噴射量制御装置1は検出器として、エア
クリーナ14下流に設けられて吸入空気温度を測定する
吸気温センサ21、上記スロットルバルブ13に連動し
てスロットルバルブ開度を検出するスロットルポジショ
ンセンサ22、スロットルバルブ13の全開状態を検出
するアイドルスイッチ23、サージタンク12に連通し
て吸気管圧力を検出する吸気管圧力センサ24、シリン
ダブロック4aの冷却系統に配設されて冷却水温度を検
出する水温センサ25、排気マニホールド16内に設け
られて排気中の残存酸素濃度を検出する酸素濃度センサ
26、ディストリビュータ200カムシヤフトの1回転
毎に、すなわち、図示しないクランク軸の2回転毎に基
準信号を出力する気筒判別センサ27、ディストリビュ
ータ20のカムシャフトの1/24回転毎に、すなわち
、クランク角0°から30°の整数倍毎に回転角信号を
出力する回転速度センサを兼ねた回転角センサ28を備
えている。
The engine fuel injection amount control device 1 includes, as detectors, an intake air temperature sensor 21 that is installed downstream of the air cleaner 14 and measures the intake air temperature, and a throttle position sensor 22 that detects the throttle valve opening degree in conjunction with the throttle valve 13. , an idle switch 23 that detects the fully open state of the throttle valve 13, an intake pipe pressure sensor 24 that communicates with the surge tank 12 and detects the intake pipe pressure, and an intake pipe pressure sensor 24 that is installed in the cooling system of the cylinder block 4a and detects the cooling water temperature. A water temperature sensor 25, an oxygen concentration sensor 26 installed in the exhaust manifold 16 to detect the residual oxygen concentration in the exhaust gas, and a distributor 200. A reference signal is output every 1 revolution of the camshaft, that is, every 2 revolutions of the crankshaft (not shown). A rotation angle sensor 28 that also serves as a rotation speed sensor that outputs a rotation angle signal every 1/24 revolution of the camshaft of the distributor 20, that is, every integer multiple of the crank angle from 0° to 30°. We are prepared.

上記各センサおよびスイッチの検出信号はECU3に人
力され、ECU3はエンジン2を制御する。ECU3は
、CPU3a、  ROM3b、  RAM3c、バッ
クアップRAM3dを中心に論理演算回路として構成さ
れ、コモンバス3eを介して人出力部3fに接続されて
外部との人出力を行なう。CPU3aは、上述した各セ
ンサおよびスイッチの検出信号を人出力部3fを介して
人力する。
Detection signals from the sensors and switches described above are input manually to the ECU 3, and the ECU 3 controls the engine 2. The ECU 3 is configured as a logic operation circuit mainly including a CPU 3a, a ROM 3b, a RAM 3c, and a backup RAM 3d, and is connected to a human output section 3f via a common bus 3e to perform human output with the outside. The CPU 3a manually outputs the detection signals of the above-mentioned sensors and switches via the human output section 3f.

一方、CPU3aは、人出力部3fを介して燃料噴射弁
11およびイグナイタ19を駆動制御する。
On the other hand, the CPU 3a drives and controls the fuel injection valve 11 and the igniter 19 via the human output section 3f.

次に、本第1実施例の制御系を第3図に示す制御系統図
に基づいて説明する。なお、第3図は制御系を示す図で
あって、ハード的な構成を示すものではない。第3図に
示す制御系は、実際には第5図にフローチャートで示し
た燃料噴射量算出処理および第7図に示した燃料噴射制
御処理の実行により、離散系として実現される。
Next, the control system of the first embodiment will be explained based on the control system diagram shown in FIG. Note that FIG. 3 is a diagram showing the control system, and does not show the hardware configuration. The control system shown in FIG. 3 is actually realized as a discrete system by executing the fuel injection amount calculation process shown in the flowchart of FIG. 5 and the fuel injection control process shown in FIG.

同図に示すように、吸気管圧力変化量算出部P1は、制
御対象であるエンジン2の検出時点kにおける吸気管圧
力PM(k)に時間遅れ演算子z −1を作用させた量
から吸気管圧力変化量△PM(k)を算出するものであ
る。
As shown in the figure, the intake pipe pressure change amount calculation unit P1 calculates the intake pipe pressure from the amount obtained by applying a time delay operator z −1 to the intake pipe pressure PM(k) at the detection time point k of the engine 2, which is the controlled object. This is to calculate the amount of change in pipe pressure ΔPM(k).

検出時点に相当する時点にのシリンダ吸入空気量算出部
P2は、検出時点kにおける吸気管圧力PM(k)、回
転速度Ne(k)から検出時点にのシリンダ吸入空気量
Ga(k)を算出するものである。
The cylinder intake air amount calculation unit P2 at the time corresponding to the detection time calculates the cylinder intake air amount Ga(k) at the detection time from the intake pipe pressure PM(k) and rotational speed Ne(k) at the detection time k. It is something to do.

第1暫定推定吸気管圧力算出部P3は、検出時点kにお
ける吸気管圧力P M(k)に係数に1を掛けた蛍、吸
気管圧力変化量へPM(k)に係数に2を掛けた量から
、吸入時点に相当する時点に+iの第1暫定推定吸気管
圧カアMall(k+i)を算出するものである。
The first provisional estimated intake pipe pressure calculation unit P3 calculates the intake pipe pressure P M (k) at the detection time point k multiplied by a coefficient of 1, and calculates the amount of change in intake pipe pressure by multiplying PM (k) by a coefficient of 2. From the amount, a first provisional estimated intake pipe pressure (k+i) of +i is calculated at a time point corresponding to the intake time point.

吸入時点に相当する時点に+iのシリンダ吸入空気量算
出部P4は、吸入時点に相当する時点に+1の第1暫定
推定吸気管圧力pM(1’(k+i)、検出時点にの回
転速度Ne(k)から、時点に+iのシリンダ吸入空気
量″Qa(k+i)を算出するものである。
The cylinder intake air amount calculation unit P4 of +i at the time corresponding to the intake time calculates the first provisional estimated intake pipe pressure pM(1'(k+i)) of +1 at the time corresponding to the intake time, and the rotational speed Ne( at the detection time) k), the cylinder intake air amount "Qa(k+i)" of +i at time point is calculated.

第2暫定推定吸気管圧力算出部P5は、吸入時点に+i
の第1暫定推定吸気管圧力pM”(k+i)に係数に3
を掛けた量、検出時点にのシリンダ吸入空気量Ga(k
)に係数に4を掛けた量、吸入時点に+iのシリンダ吸
入空気量Qa(k+i)に係数に5を掛けた量から第2
暫定推定吸気管圧力p M + 21 (k+りを算出
するものである。
The second provisional estimated intake pipe pressure calculation unit P5 calculates +i at the time of intake.
The first provisional estimated intake pipe pressure pM” (k+i) is given a coefficient of 3.
The cylinder intake air amount Ga(k
) multiplied by a coefficient of 4, and the cylinder intake air amount Qa(k+i) of +i at the time of intake multiplied by a coefficient of 5.
This is to calculate the provisional estimated intake pipe pressure p M + 21 (k+).

推定吸気管圧力算出部P6は、第2暫定推定吸気管圧力
pM”(k+i)に係数に6を掛けた量、吸入時点に+
iの推定吸気管圧力PM(k+i)に時間遅れ演算子2
−・を作用させた量と検出時点にの吸気管圧力PM(k
)との偏差E r r (k)に係数に7を掛けた量か
ら推定吸気管圧力PM(k+i)を算出するものである
The estimated intake pipe pressure calculation unit P6 calculates an amount obtained by multiplying the second provisional estimated intake pipe pressure pM'' (k+i) by a coefficient of 6, + at the time of intake.
Time delay operator 2 is applied to the estimated intake pipe pressure PM(k+i) of i.
−· is applied and the intake pipe pressure PM at the time of detection (k
) is calculated by multiplying the coefficient by 7 to calculate the estimated intake pipe pressure PM(k+i).

燃料噴射量算出部P7は、推定吸気管圧力PM(k+i
)と回転速度N e (k)とから燃料噴射時間TAU
(k+i)を算出するものである。
The fuel injection amount calculation unit P7 calculates the estimated intake pipe pressure PM(k+i
) and the rotational speed N e (k), the fuel injection time TAU
(k+i) is calculated.

そして、上記燃料噴射時間TAU(k+i)に亘ってエ
ンジン2に燃料が供給されるのである。
Then, fuel is supplied to the engine 2 over the fuel injection time TAU(k+i).

以上、エンジンの燃料噴射量制御装置1のハード的な構
成および後述する各処理の実行により実現される制御系
の構成について説明した。そこで、次に、エンジン2の
吸気系の動的物理モデルの構築および各係数Kl、  
K2.  K3. K4.  K5゜K6.に7の算出
について説明する。
The hardware configuration of the engine fuel injection amount control device 1 and the configuration of the control system realized by executing each process described later have been described above. Therefore, next, we will construct a dynamic physical model of the intake system of engine 2 and each coefficient Kl,
K2. K3. K4. K5゜K6. The calculation of 7 will be explained below.

まず、エンジン2の吸気系の動的物理モデルを構築する
。エンジン2の吸気系を流れる吸入空気量の質量保存則
は、次式(5)のように記述できる。
First, a dynamic physical model of the intake system of the engine 2 is constructed. The mass conservation law for the amount of intake air flowing through the intake system of the engine 2 can be described as shown in the following equation (5).

dM/dt  =  mt  −ga  ・・・  (
5)但し、d/d t :時間微分演算子 M:サージタンク12内の空気質量、 mt:単位時間内にスロットルバルブ13を通過してサ
ージタンク12に流れ込む流入空気量、ga:単位時間
内にサージタンク12から吸気行程を迎えたシリンダ内
に吸入される吸入空気量。
dM/dt = mt - ga... (
5) However, d/d t: time differential operator M: mass of air in the surge tank 12, mt: amount of inflowing air that passes through the throttle valve 13 and flows into the surge tank 12 within a unit time, ga: within a unit time The amount of intake air drawn from the surge tank 12 into the cylinder that has reached the intake stroke.

一方、理想気体の状態式は次式(6)、音速の定義式は
次式(7)、断熱変化の状態変化の式は次式(8)、の
ように各々記述できる。
On the other hand, the equation of state for an ideal gas can be described as the following equation (6), the defining equation for the speed of sound can be described as the following equation (7), and the equation for adiabatic change in state can be described as the following equation (8).

PM◆ρ−1=R◆T      ・・・ (6)c2
== に◆R◆T       ・・・ (7)PMφ
ρ−に=Const    −(8)また、次式(9)
の関係が成立する。
PM◆ρ−1=R◆T... (6)c2
== to ◆R◆T... (7) PMφ
ρ- = Const - (8) Also, the following equation (9)
The relationship holds true.

ρ =M/V           ・・・ (9)但
し、PM:吸気管圧力、ρ:吸入空気密度、R:吸入空
気ガス定数、T:吸入空気温度、C:音速、に:比熱比
、V:サージタンク容積。
ρ = M/V ... (9) However, PM: intake pipe pressure, ρ: intake air density, R: intake air gas constant, T: intake air temperature, C: sound velocity, NI: specific heat ratio, V: surge Tank volume.

従って、上記式(5)を、上記式(6)〜(9)を用い
て変形すると、次式(10)のように記述でき、さらに
、次式(11)を得る。
Therefore, when the above equation (5) is transformed using the above equations (6) to (9), it can be written as the following equation (10), and furthermore, the following equation (11) is obtained.

dM/dt  =  (V/c2) ・(dPM/dt
)・・・ (10) dPM/d t  =  (c”/V) φ (mt−
ga)・・・ (11) 上記式(11)を、エンジンサイクルの吸気行程時間に
亘って、次式(12)のように積分する。
dM/dt = (V/c2) ・(dPM/dt
)... (10) dPM/d t = (c”/V) φ (mt-
ga)... (11) The above equation (11) is integrated over the intake stroke time of the engine cycle as shown in the following equation (12).

乳(dPM/d t)d t  = S”、’* ((C2/V) ・ (mt−ga) ) dt  −(12)ここで、
スロットルバルブ13を通過してサージタンク12に流
れ込む流入空気量mtは、積分時間中一定値m t (
k)であるため、次式(13)の関係が成立する。
Milk (dPM/d t) d t = S”, '* ((C2/V) ・ (mt-ga) ) dt - (12) where,
The amount of incoming air mt that passes through the throttle valve 13 and flows into the surge tank 12 is a constant value m t (
k), the following equation (13) holds true.

S’、’m t d t  = m t (k) ◆(
tl−tO)=mt(k)・(1/2) 舎(Ne/60) = mt(k)◆(30/Ne) ・・・ (13) また、サージタンク12から吸気行程を迎えたシリンダ
内に吸入される吸入空気量gaは、次式(14)の関係
が成立する。
S','m t d t = m t (k) ◆(
tl-tO) = mt(k)・(1/2) (Ne/60) = mt(k)◆(30/Ne) ... (13) Also, the cylinder that has reached the intake stroke from the surge tank 12 The following equation (14) holds true for the intake air amount ga taken into the engine.

、V:gadt  = Ga(k)       −(
14)従って、上記式(12)を、上記式(13)。
, V:gadt = Ga(k) −(
14) Therefore, the above formula (12) is changed to the above formula (13).

(14)により変形すると次式(15)が得られる。By transforming according to (14), the following equation (15) is obtained.

PM(k÷1)= PM(k) +  (c”/V)  ◆mt(k)・ (30/Ne
)−(C2/V)  φGa(k)  −(15)但し
、PM (tl)  =  PM(k+1)、PM (
tO)  =  PM(k)である。
PM (k÷1) = PM (k) + (c”/V) ◆mt(k)・ (30/Ne
) - (C2/V) φGa(k) - (15) However, PM (tl) = PM (k+1), PM (
tO) = PM(k).

ここで、吸気管圧力の増加量は変化しないものとすると
、次式(16)の関係が成立する。
Here, assuming that the amount of increase in intake pipe pressure does not change, the following relationship (16) holds true.

PM(k+1)−PM(k) = PM(k+j) −PM(k+j−1)  ・・・
 (16)(j  =  1. 2.・・・、i)そこ
で、次式(17)、  (1B)のように表記を改める
と、次式19が得られる。
PM(k+1)-PM(k) = PM(k+j)-PM(k+j-1)...
(16) (j = 1. 2..., i) Therefore, by changing the notation as in the following equations (17) and (1B), the following equation 19 is obtained.

A(i)=  i  X  (c”/V)   −(1
7)B(i)= −i  X  (c”/V)  ・・
・ (1B)PM(k÷1)= PM(k) + A (j) ・mt(k)・(30/Ne)+  
B  (i)  舎 Ga(k)    ・・・   
(19)従って、エンジン2の吸気系の動的物理モデル
は、上記式(19)から得られる、次式(20)の離散
系の状態方程式、次式(21)の出力方程式により記述
できる。
A(i)=iX(c”/V)−(1
7) B(i)=-i X (c"/V)...
・(1B) PM(k÷1)= PM(k) + A (j) ・mt(k)・(30/Ne)+
B (i) building Ga(k)...
(19) Therefore, the dynamic physical model of the intake system of the engine 2 can be described by the discrete state equation of the following equation (20) and the output equation of the following equation (21) obtained from the above equation (19).

PM(k+1) = Φ◆PM(k) +  [” ・G a(k)+  E
◆mt(k)  ・・・  (20)PM(k)=  
CφPM(k)       ・・・  (21)但し
、係数φは値1、係数Fは値B (i)、係数Eは値A
(i)◆(30/Ne)、係数Cは値1である。
PM(k+1) = Φ◆PM(k) + [” ・Ga(k)+E
◆mt(k) ... (20) PM(k)=
CφPM(k) ... (21) However, the coefficient φ is the value 1, the coefficient F is the value B (i), and the coefficient E is the value A
(i)◆(30/Ne), the coefficient C has a value of 1.

なお、上記式(15)を同定基礎式とし、人力と出力と
を実験により測定し、例えば、最小2乗法等のシステム
同定手法により、各項の係数であるc ” / Vを決
定することもできる。
Note that it is also possible to use the above equation (15) as the basic identification equation, measure human power and output through experiments, and determine the coefficient c''/V of each term using a system identification method such as the method of least squares. can.

次に、推定吸気管圧力P M (k + i )を算出
するための諸量の算出について説明する。
Next, calculation of various quantities for calculating the estimated intake pipe pressure P M (k + i) will be explained.

上記式(15)より、吸気管圧力変化量△PM(k)は
、次式(22)のように記述できる。
From the above equation (15), the intake pipe pressure change amount ΔPM(k) can be written as shown in the following equation (22).

ΔPM(k)= PM(k+1)−PM(k)= A 
(1)  ・mt(k)・ (30/Ne)+ B (
1) ◆Ga(k) =−(22)上記式(19)、 
 (22)から、第1暫定推定吸気管圧力[)M”’(
k+i)は、次式(23)のように算出できる。
ΔPM(k)=PM(k+1)−PM(k)=A
(1) ・mt(k)・ (30/Ne)+ B (
1) ◆Ga(k) =-(22) Above formula (19),
From (22), the first provisional estimated intake pipe pressure [)M"'(
k+i) can be calculated as shown in the following equation (23).

“1=5”M口’(k+i)  = PM(k)+  j・△PM(k)  ・・・ (23
)従って、上述した第1暫定推定吸気管圧力算出部P3
の係数に1は値1、係数に2は値iとなる。
“1=5”M mouth’(k+i) = PM(k)+j・△PM(k) ・・・ (23
) Therefore, the above-mentioned first provisional estimated intake pipe pressure calculation section P3
A coefficient of 1 has a value of 1, and a coefficient of 2 has a value of i.

ここで、シリンダ吸入空気量Ga(k)は、吸気管圧力
PM(k)と回転速度Ne(k)との関数であるため、
補正を行ない、第2暫定推定吸気管圧力pM(2)(k
+i)は、次式(24)のように表記できる。
Here, since the cylinder intake air amount Ga(k) is a function of the intake pipe pressure PM(k) and the rotational speed Ne(k),
After correction, the second provisional estimated intake pipe pressure pM(2)(k
+i) can be expressed as in the following equation (24).

pMC2’(k+i) = PM(k)+i  φ△PM(k) −B (i) ・G a (k) +B (i) ・てa(k+i) =  pM”(k+1) −B (i)・G a (k) +B (i) ・Ga(k+i)  +++  (24
)従って、上述した第2暫定推定吸気管圧力算出部P5
の係数に3は値1、係数に4は−B (i)、係数に5
は値B(i)となる。
pMC2'(k+i) = PM(k)+i φ△PM(k) −B (i) ・G a (k) +B (i) ・tea(k+i) = pM”(k+1) −B (i)・Ga (k) +B (i) ・Ga (k+i) +++ (24
) Therefore, the above-mentioned second provisional estimated intake pipe pressure calculation section P5
3 is the value 1 for the coefficient, 4 is the value -B (i), and 5 is the coefficient
becomes the value B(i).

なお、シリンダ吸入空気量でa(k+i)は、第1暫定
推定吸気管圧力pM(1)(k+i)および回転速度N
e (k)から算出できる。
Note that the cylinder intake air amount a(k+i) is the first provisional estimated intake pipe pressure pM(1)(k+i) and the rotation speed N.
It can be calculated from e (k).

上記式(24)で算出された第2暫定推定吸気管圧力p
M”(k+i)を、吸気管圧力との偏差にフィードバッ
クゲインを掛けて得られる補正量により補正すると、次
式(25)に示すように推定吸気管圧力pM(k+i)
が得られる。
Second provisional estimated intake pipe pressure p calculated by the above formula (24)
When M''(k+i) is corrected by the correction amount obtained by multiplying the deviation from the intake pipe pressure by the feedback gain, the estimated intake pipe pressure pM(k+i) is calculated as shown in the following equation (25).
is obtained.

P M (k + i ) = pM””’(k+i) + Cf−E r r(k) 
 ・・・(25)但し、偏差E r r (k)は次式
(26)のように記述できる。
P M (k + i) = pM""' (k + i) + Cf-E r r (k)
(25) However, the deviation E r r (k) can be written as in the following equation (26).

E r  r(k)  =  PM(k)  −PM(
k)   ・   (2B)なお、上述した推定吸気管
圧力算出部P6の係数に6は値1、係数に7はフィード
バックゲインCfになる。
E r r(k) = PM(k) − PM(
k) (2B) Note that the coefficient 6 of the estimated intake pipe pressure calculation unit P6 described above is the value 1, and the coefficient 7 is the feedback gain Cf.

次に、上記係数に7の値であるフィードバックゲインC
fの算出について、第4図に基づいて説明する。同図に
示すように、上記式(20)、  (21)で記述され
る制御対象の状態変数P M(k)の推定値PM(k)
を算出する状態観測器(Observer)を、制御対
象と同一のモデルを用いて構成すると、次式(27)の
ように記述できる。
Next, the feedback gain C, which is a value of 7, is added to the above coefficient.
The calculation of f will be explained based on FIG. 4. As shown in the figure, the estimated value PM(k) of the state variable P M(k) of the controlled object described by the above equations (20) and (21)
If a state observer (observer) that calculates .function.

PM(k+1) = φ・pM(k) 十r’−G a(k)+ E−mt(
k)−(27) 同図に示すように、制御対象の出力P M (k)とオ
ブザーバの推定出力pM(1<)との偏差にフィードバ
ックゲインCfを掛けた補正量によりフィードバック補
正するよう構成すると、次式(28)を得る。
PM(k+1) = φ・pM(k) 10r'-Ga(k)+E-mt(
k)-(27) As shown in the figure, the configuration is such that feedback correction is performed using a correction amount obtained by multiplying the deviation between the output P M (k) of the controlled object and the estimated output pM (1<) of the observer by a feedback gain Cf. Then, the following equation (28) is obtained.

PM(k+1) = Φ −pM(k)  +  r’  争 G a(k)
−Cf中 (P M(k)−C−PM(k))= (φ
−Cf◆C) ◆pM(k) +  r’ ◆Ga(k)+  Cf −PM(k)・
・・(2B) 従って、閉ループ行列[φ−Cf −C]が安定な行列
で固有値が全て左半平面にあるように、フィードバック
ゲインCfを定めれば良い。ここでは、係数Φは値1、
係数Cも値1である。このため、本第1実施例ではフィ
ードバックゲインCfの値を、−1くCf(1の範囲の
値に設定する。
PM(k+1) = Φ −pM(k) + r' conflict G a(k)
- in Cf (PM(k)-C-PM(k)) = (φ
-Cf◆C) ◆pM(k) + r' ◆Ga(k)+Cf -PM(k)・
(2B) Therefore, the feedback gain Cf may be determined so that the closed-loop matrix [φ-Cf-C] is a stable matrix and all the eigenvalues are on the left half plane. Here, the coefficient Φ has a value of 1,
The coefficient C also has a value of 1. Therefore, in the first embodiment, the value of the feedback gain Cf is set to a value in the range of -1 minus Cf(1).

以上、エンジン2の吸気系の動的物理モデルの構築、推
定吸気管圧力の算出手順およびフィードバックゲインC
fの算出について説明した。これらのパラメータは、予
め算出しておき、ECU3内部ではその結果のみを使用
して燃料噴射量を算出する。
The above describes the construction of the dynamic physical model of the intake system of engine 2, the calculation procedure for the estimated intake pipe pressure, and the feedback gain C.
The calculation of f has been explained. These parameters are calculated in advance, and only the results are used inside the ECU 3 to calculate the fuel injection amount.

次に、上記ECU3の実行する燃料噴射量算出処理を第
5図の、燃料噴射制御処理を第7図の、各フローチャー
トに基づいて説明する。
Next, the fuel injection amount calculation process executed by the ECU 3 will be explained based on the flowcharts shown in FIG. 5, and the fuel injection control process executed by the ECU 3 will be explained based on the respective flowcharts shown in FIG.

まず、燃料噴射量算出処理を第5図に示すフローチャー
トに基づいて説明する。本燃料噴射量算出処理は、EC
U3の起動後、所定クランク角度毎(例えば、4気筒エ
ンジンでは180[’CA])に実行される。なお、以
下の説明では、現在の処理で扱われている量を添字(k
)で示す。まず、ステップ100では、既述した各セン
サの検出信号に基づいて、吸気管圧力PM(k)、回転
速度Ne(k)を読み込む処理が行われる。続くステッ
プ110では、吸気管圧力変化量△P M(k)を次式
(29)のように算出する処理が行われる。   □Δ
PM(k)= PM(k)−PM(k−1)  ・・・
 (29)本ステップ110の処理が、第3図に示す吸
気管圧力変化量算出部P1として機能する。
First, the fuel injection amount calculation process will be explained based on the flowchart shown in FIG. This fuel injection amount calculation process is performed by EC
After starting U3, it is executed at every predetermined crank angle (for example, 180 ['CA] in a 4-cylinder engine). In addition, in the following explanation, the amount handled in the current process is expressed as the subscript (k
). First, in step 100, a process is performed to read the intake pipe pressure PM(k) and rotational speed Ne(k) based on the detection signals of each sensor described above. In the subsequent step 110, a process is performed to calculate the intake pipe pressure change amount ΔPM(k) as shown in the following equation (29). □Δ
PM(k)=PM(k)-PM(k-1)...
(29) The process in step 110 functions as the intake pipe pressure change amount calculation unit P1 shown in FIG.

次に、ステップ120に進み、時点kにおけるシリンダ
吸入空気量Ga(k)を、予めROM3bに記憶されて
いる、第6図に示すマツプに従って、吸気管圧力PM(
k)および回転速度Ne(k)に応じて算出する処理が
おこなわれる。本ステップ120の処理が、第3図に示
す時点にのシリンダ吸入空気量算出部P2として機能す
る。
Next, the process proceeds to step 120, where the cylinder intake air amount Ga(k) at time k is calculated according to the map shown in FIG.
k) and the rotational speed Ne(k). The process of step 120 functions as the cylinder intake air amount calculation unit P2 at the time shown in FIG.

続くステップ130では、時点に+iにおける第1暫定
推定吸気管圧力PM”’(k+i)を、次式(30)に
示すように算出する処理が行われる。なお、本ステップ
130の処理が、第3図の第1暫定推定吸気管圧力算出
部P3として機能する。
In the following step 130, a process is performed to calculate the first provisional estimated intake pipe pressure PM"'(k+i) at time +i as shown in the following equation (30). Note that the process in step 130 is It functions as the first provisional estimated intake pipe pressure calculation unit P3 in FIG.

pM”(k+i) = PM(k)+  1φ△PM(k)  ・・・ (30
)次に、ステップ140に進み、時点に+iにおけるシ
リンダ吸入空気量Qa(k+i)を、予めROM3bに
記憶されている、第6図に示すマツプに従って、第1暫
定推定吸気管圧力pM(1)(k+i)および回転速度
Ne(k)に応じて算出する処理がおこなわれる。本ス
テップ140の処理が、第3図に示す時点に+iのシリ
ンダ吸入空気量算出部P4として機能する。
pM”(k+i) = PM(k)+1φ△PM(k) ・・・ (30
) Next, the process proceeds to step 140, where the cylinder intake air amount Qa(k+i) at time +i is calculated as the first provisional estimated intake pipe pressure pM(1) according to the map shown in FIG. 6, which is stored in the ROM 3b in advance. (k+i) and rotational speed Ne(k). The process of step 140 functions as +i cylinder intake air amount calculating section P4 at the time shown in FIG.

続くステップ150では、第2暫定推定吸気管圧力pM
(2)(k+i)を、次式(31)のように算出する処
理が行われる。本ステップ150の処理が、第3図の第
2暫定推定吸気管圧力算出部P5として機能する。
In the following step 150, the second provisional estimated intake pipe pressure pM
(2) A process is performed to calculate (k+i) as shown in the following equation (31). The process in step 150 functions as the second provisional estimated intake pipe pressure calculation unit P5 in FIG.

PMC2)(k+i) = pM”’(k+1) −B (i)・G a (k) +B (i) ・Ga(k+i)  ・・・(31)次
にステップ160に進み、偏差E r r (k)にフ
ィードバックゲインCfを掛けて、補正量を次式(32
)のように算出する処理が行われる。
PMC2)(k+i) = pM"'(k+1) -B (i)・Ga(k) +B(i)・Ga(k+i)...(31) Next, proceed to step 160 and calculate the deviation E r r ( k) by the feedback gain Cf to calculate the correction amount using the following equation (32
) is calculated as follows.

CfφErr(k)= Cf ・(PM(k) −PM(k+i)・z−”r・
・・  (32) 続くステップ170では、時点に+iにおける推定吸気
管圧力PM(k+i)を、次式(33)のように算出す
る処理が行われる。上記ステップ160、本ステップ1
70が、第3図の推定吸気管圧力算出部P6として機能
する。
CfφErr(k) = Cf ・(PM(k) −PM(k+i)・z−”r・
(32) In the following step 170, the estimated intake pipe pressure PM(k+i) at time +i is calculated as shown in the following equation (33). Above step 160, this step 1
70 functions as the estimated intake pipe pressure calculation section P6 in FIG.

PM(k+i) = pM””(k+i) + Cf−E r r(k)  
・・・(33)次にステップ180に進み、上記ステッ
プ170で算出した推定吸気管圧力PM(k+i)を、
RAM3cに記憶する処理が行われる。続くステップ1
90では、サンプリング、演算の回数を示す添字kに値
1を加算した後、再び上記ステップ100に戻る。以後
、本燃料噴射量算出処理は所定クランク角度毎に、上記
ステップ100〜190を繰り返して実行する。
PM(k+i) = pM""(k+i) + Cf-E r r(k)
(33) Next, proceed to step 180, and calculate the estimated intake pipe pressure PM(k+i) calculated in step 170 above.
A process of storing the data in the RAM 3c is performed. Next step 1
At step 90, the value 1 is added to the subscript k indicating the number of sampling and calculations, and then the process returns to step 100. Thereafter, this fuel injection amount calculation process repeats steps 100 to 190 at every predetermined crank angle.

次に、燃料噴射制御処理を第7図に示すフローチャート
に基づいて説明する。本燃料噴射制御処理は、ECU3
の起動後、所定クランク角度毎(例えば、360 [’
 CAI ’)に実行される。まず、ステップ200で
は、回転速度Ne(k)、上述のように算出してRAM
3cに記憶されているエンジン2の推定吸気管圧力PM
(k+i)、図示しない処理で算出されて記憶されてい
る空燃比フィードバック補正係数FAFを含む各データ
を読み込む処理が行われる。続くステップ210では、
予めROM3bに記憶されている、第8図に示すような
マツプに従い、推定吸気管圧力PM(k+i)および回
転速度Ne(k)に応じて基本燃料噴射時間TP(k+
i)を算出する処理が行われる。次にステ・ンブ220
に進み、暖機増量係数、加速増量係数、バッテリ補正係
数等、各種の補正係数KA、KBを、エンジン2の運転
状態に応じて、予めROM3bに記憶されている図示し
ないマツプに従った補間計算により算出する処理が行わ
れる。次に、ステップ230に進み、実燃料噴射時間T
AU(k+i)を次式(34)のように算出する処理が
行われる。
Next, the fuel injection control process will be explained based on the flowchart shown in FIG. This fuel injection control process is performed by the ECU3
After starting, every predetermined crank angle (for example, 360['
CAI'). First, in step 200, the rotational speed Ne(k) is calculated as described above and stored in the RAM.
Estimated intake pipe pressure PM of engine 2 stored in 3c
(k+i), a process is performed to read each data including the air-fuel ratio feedback correction coefficient FAF calculated and stored in a process not shown. In the following step 210,
According to the map shown in FIG. 8, which is stored in the ROM 3b in advance, the basic fuel injection time TP (k+
A process of calculating i) is performed. Next, Ste-Nbu 220
Then, various correction coefficients KA and KB, such as a warm-up increase coefficient, an acceleration increase coefficient, and a battery correction coefficient, are calculated by interpolation according to a map (not shown) stored in advance in the ROM 3b, depending on the operating state of the engine 2. The calculation process is performed by. Next, the process proceeds to step 230, where the actual fuel injection time T
A process of calculating AU(k+i) as shown in the following equation (34) is performed.

TAU(k+1)= TP(k+i) ◆ FAF  −KA+KB    
 ・・・   (34)続くステップ240では、上記
ステップ230で算出された実燃料噴射時間TAU(k
+i)に亘って燃料噴射弁11を開弁する制御信号を燃
料噴射弁11に出力した後、−旦、本燃料噴剖制御処理
を終了する。以後、本燃料噴射制御処理は所定クランク
角度毎に、上記ステップ200〜240を繰り返して実
行する。本燃料噴剖制御処理のステップ200〜ステツ
プ230が、第3図の燃料噴射量算出部P7として機能
する。
TAU (k+1) = TP (k+i) ◆ FAF -KA+KB
(34) In the following step 240, the actual fuel injection time TAU (k
After the control signal for opening the fuel injection valve 11 is output to the fuel injection valve 11 over +i), the present fuel injection control process ends at -i. Thereafter, this fuel injection control process repeats steps 200 to 240 at every predetermined crank angle. Steps 200 to 230 of this fuel injection control process function as the fuel injection amount calculation section P7 in FIG.

なお本第1実施例において、エンジン2が内燃機関M1
に、吸気管圧力センサ24と回転角センサ28とが運転
状態検出手段M2に、燃料噴射弁11が燃料供給手段M
3に、各々該当する。また、ECU3および該ECU3
の実行する処理のうちステップ(100〜150)が暫
定推定手段M4として、ステップ(170)が推定手段
M5として、ステ・ンブ(160)が補正手段M6とし
て、ステップ(200−230)が制御手段M7として
、各々機能する。
Note that in the first embodiment, the engine 2 is an internal combustion engine M1.
, the intake pipe pressure sensor 24 and the rotation angle sensor 28 serve as the operating state detection means M2, and the fuel injection valve 11 serves as the fuel supply means M2.
3 applies to each of them. In addition, the ECU3 and the ECU3
Among the processes executed, steps (100-150) are used as provisional estimation means M4, step (170) is used as estimation means M5, step (160) is used as correction means M6, and steps (200-230) are used as control means. Each functions as M7.

以上説明したように本実施例によれば、推定吸気管圧力
PM(k+i)算出の動特性が飛躍的に向上する。
As explained above, according to this embodiment, the dynamic characteristics of calculating the estimated intake pipe pressure PM(k+i) are dramatically improved.

従って、急発進、急加減速等の過渡状態で吸気管圧力P
M(k)変動が顕著な非線形特性を示す運転状態に移行
したときでも、空燃比を最適に保持可能な燃料噴射量T
AU(k+i)を算出できるので、燃料噴射量制御の制
御精度を常時高水準に維持できる。
Therefore, in transient conditions such as sudden start, sudden acceleration/deceleration, etc., the intake pipe pressure P
Fuel injection amount T that can optimally maintain the air-fuel ratio even when shifting to an operating state in which M(k) fluctuations exhibit significant nonlinear characteristics.
Since AU(k+i) can be calculated, the control accuracy of fuel injection amount control can be maintained at a high level at all times.

また、過渡運転状態における空燃比制御精度の向上に伴
い、排気中の有害成分排出量の低減、燃料消費効率の向
上およびドライバビリティの改善を実現できる。
Furthermore, with the improvement of air-fuel ratio control accuracy in transient operating conditions, it is possible to reduce the amount of harmful components emitted in the exhaust, improve fuel consumption efficiency, and improve drivability.

さらに、」i地通常走行時等の定常運転状態では、吸気
管圧力変化量△P M(k)がほぼ零近傍の値になると
共に、その変動周期も長くなる。このため、吸気管圧力
P M(k)と推定吸気管圧力p M (k + i 
)から算出した時点1以前の推定吸気管圧力pM(k)
との偏差E r r (k)は減少し、フィードバック
ゲインCfにより算出される補正量に応じた補正により
、推定吸気管圧力PM(k+i)は高い安定性を保つの
で、走行状態に適合した燃料噴射量制御を実現できる。
Furthermore, in a steady state of operation such as when the engine is running normally on a ground, the amount of change in intake pipe pressure ΔPM(k) becomes a value close to zero, and its fluctuation period also becomes long. Therefore, the intake pipe pressure P M (k) and the estimated intake pipe pressure p M (k + i
) Estimated intake pipe pressure pM(k) before time 1 calculated from
The deviation E r r (k) from the above decreases, and the estimated intake pipe pressure PM (k+i) maintains high stability due to correction according to the correction amount calculated by the feedback gain Cf, so that the fuel suitable for the driving condition is maintained. Injection amount control can be achieved.

また、エンジン2の吸入空気量Qの質量保存則に則って
動的物理モデルを構築すると共に、フィードバックゲイ
ンCfを決定し、吸気管圧力PM(k)から推定吸気管
圧力pM(k+i)を算出する。このため、1つの動的
物理モデルでエンジン2の吸入空気の非線形性の強い挙
動を正確に記述でき、その挙動を記述する状態方程式、
出力方程式の係数φ、「、Cおよび補正量を算出するフ
ィードバックゲインCfを1種類だけ設定すれば良い。
In addition, a dynamic physical model is constructed according to the mass conservation law for the intake air amount Q of the engine 2, and the feedback gain Cf is determined, and the estimated intake pipe pressure pM(k+i) is calculated from the intake pipe pressure PM(k). do. Therefore, one dynamic physical model can accurately describe the strongly nonlinear behavior of the intake air of the engine 2, and the equation of state that describes the behavior can be
It is sufficient to set only one type of coefficients φ, , C of the output equation and feedback gain Cf for calculating the correction amount.

従って、ECU3のメモリ容量削減、演算速度迅速化等
の装置構成の簡略化を実現できると共に、推定吸気管圧
力PM(k+i)算出精度も高まる。
Therefore, it is possible to simplify the device configuration, such as reducing the memory capacity of the ECU 3 and speeding up calculation speed, and also improves the accuracy of calculating the estimated intake pipe pressure PM(k+i).

さらに、吸気管圧力センサ24や燃料噴射弁11は既存
の装置と同様の構成で済み、スロットルポジションセン
サ等、アナログ高精度信号出力性能を要求される専用の
センサを設けなくて良いので、装置の汎用性が拡大する
Furthermore, the intake pipe pressure sensor 24 and fuel injection valve 11 can have the same configuration as existing devices, and there is no need to provide dedicated sensors such as throttle position sensors that require analog high-precision signal output performance. Versatility expands.

次に、本発明の第2実施例を図面に基づいて詳細に説明
する。本第2実施例と上述した第1実施例との相違点は
、推定吸気管圧力PM(k+1)算出に使用する第2暫
定推定吸気管圧力PM ’21 (k+1)の算出手順
が異なることである。その他の構成は同様であるため、
同一部分は同一符号にて衷記し、説明を省略する。
Next, a second embodiment of the present invention will be described in detail based on the drawings. The difference between this second embodiment and the first embodiment described above is that the procedure for calculating the second provisional estimated intake pipe pressure PM '21 (k+1) used to calculate the estimated intake pipe pressure PM (k+1) is different. be. Since the other configurations are the same,
Identical parts will be denoted by the same reference numerals and explanations will be omitted.

本第2実施例の制御系を第9図に基づいて説明する。同
図に示すように、本第2実施例の特徴をなす第2暫定推
定吸気管圧力算出部PIOは、吸入時点に相当する時点
に+iの第1暫定推定吸気管圧力P M ” ’ (k
+ i)、検出時点にの回転速度Ne(k)、検出時点
にのシリンダ吸入空気量Ga(k)から、第2暫定推定
吸気管圧力PM”(k+i)を算出するものである。
The control system of the second embodiment will be explained based on FIG. 9. As shown in the figure, the second provisional estimated intake pipe pressure calculation unit PIO, which is a feature of the second embodiment, calculates the first provisional estimated intake pipe pressure P M '' (k
+i), the second provisional estimated intake pipe pressure PM'' (k+i) is calculated from the rotational speed Ne(k) at the time of detection, and the cylinder intake air amount Ga(k) at the time of detection.

ここで、シリンダ吸入空気量Ga(k)は、回転速度N
e(k)が一定のときは、次式(35)のように算出で
きる。
Here, the cylinder intake air amount Ga(k) is the rotational speed N
When e(k) is constant, it can be calculated as shown in the following equation (35).

Ga(k) = a ・pM(2)(k)+ β−(3
5)但し、係数α、βは回転速度Ne(k)に応じて定
まる。
Ga(k) = a ・pM(2)(k)+β−(3
5) However, the coefficients α and β are determined according to the rotational speed Ne(k).

一方、第2暫定推定吸気管圧力PM”(k+i)は、既
述した通り次式(36)のように表記できる。
On the other hand, the second provisional estimated intake pipe pressure PM'' (k+i) can be expressed as the following equation (36) as described above.

p M + 23(k+i) = PM(k)+i◆ΔPM(k) −B (i)・G a (k) +B(i) φてa(k+i) ・・・ (36) 従って、上記式(35)、  (36)により、第2暫
定推定吸気管圧力PM(2)(k+i)は、次式(37
)のように算出できる。
p M + 23(k+i) = PM(k)+i◆ΔPM(k) −B (i)・Ga (k) +B(i) φtea(k+i) (36) Therefore, the above formula ( 35) and (36), the second provisional estimated intake pipe pressure PM(2)(k+i) is calculated by the following equation (37)
) can be calculated as follows.

1)M””(k+i) = PM(k)+i・△PM(k) −B (i)・G a (k) +B (i) ・(α・PM(2)(k+i)+ β)= (pM”(
k+1) −B (i) ・Ga(k)+B (i) ・β)/ 
(1+B (i)  ◆α)  ・・・ (37)次に
、本第2実施例で実行される燃料噴射量算出処理を第1
0図に示すフローチャートに基づいて説明する。本燃料
噴射量算出処理は、ECU3の起動後、所定クランク角
度毎(例えは、4気薗エンジンでは180 [’ CA
] )に実行される。
1) M””(k+i) = PM(k)+i・△PM(k) −B (i)・G a (k) +B (i) ・(α・PM(2)(k+i)+β)= (pM”(
k+1) −B (i) ・Ga(k)+B (i) ・β)/
(1+B (i) ◆α) ... (37) Next, the fuel injection amount calculation process executed in the second embodiment is
This will be explained based on the flowchart shown in FIG. This fuel injection amount calculation process is performed at every predetermined crank angle (for example, 180 [' CA
] ) is executed.

まず、吸気管圧力PM(k)、回転速度Ne(k)を読
み込み(ステップ300)、吸気管圧力変化量ΔPM(
k)を算出しくステップ310)(第9図の吸気管圧力
変化量算出部PI)、時点kにおけるシリンダ吸入空気
量Ga(k)を、予めROM3bに記憶されている、第
6図に示すマツプに従って、吸気管圧力PM(k)およ
び回転速度Ne(k)に応じて算出しくステ・ンブ32
0)(第9図に示す時点にのシリンダ吸入空気量算出部
P2)、時点に+iにおける第1暫定推定吸気管圧力P
M”’(k+i)を算出する(ステップ330)(第9
図の第1暫定推定吸気管圧力算出部P3)。次にステッ
プ345に進み、上述した定数α、βを、予めROM3
bに記憶されている、第6図に示すマツプに従って、回
転速度Ne(k)に応じて算出する処理が行われる。続
くステップ355では、第2暫定推定吸気管圧力PM”
”(k+i)を、次式(3日)のように算出する処理が
行われる。本ステップ355の処理が、第9図の第2暫
定推定吸気管圧力算出部PIOとして機能する。
First, the intake pipe pressure PM(k) and rotational speed Ne(k) are read (step 300), and the intake pipe pressure change amount ΔPM(
In step 310) (intake pipe pressure change calculation unit PI in FIG. 9), the cylinder intake air amount Ga(k) at time k is calculated using the map shown in FIG. 6, which is stored in the ROM 3b in advance. Accordingly, the engine valve 32 should be calculated according to the intake pipe pressure PM (k) and the rotational speed Ne (k).
0) (cylinder intake air amount calculation unit P2 at the time shown in FIG. 9), the first provisional estimated intake pipe pressure P at +i at the time
Calculate M"'(k+i) (step 330) (9th
First provisional estimated intake pipe pressure calculation section P3) in the figure. Next, the process proceeds to step 345, where the above-mentioned constants α and β are stored in advance in the ROM3.
In accordance with the map shown in FIG. 6, which is stored in .b, calculation processing is performed according to the rotational speed Ne(k). In the following step 355, the second provisional estimated intake pipe pressure PM"
"(k+i)" is calculated as shown in the following equation (3 days).The process in step 355 functions as the second provisional estimated intake pipe pressure calculation unit PIO in FIG.

pM””(k+i) = (pM”’(k+1) −B (i) ・Ga(k)+B (i) ・β)/(
1+B(i)  ・α)  ・・・ (38)次に、偏
差Err(k)にフィードバックゲインCfを掛けて補
正量を算出しくステップ360)、時点に+iにおける
推定吸気管圧力P M (k + i )を、算出しく
ステップ370)(第9図の推定吸気管圧力算出部P6
)、推定吸気管圧力’P M (k + i )をRA
M3cに記憶しくステップ380)、サンプリングミ演
算の回数を示す添字kに値1を加算しくステップ390
)、再び上記ステップ300に戻る。以後、本燃料噴射
量算出処理は所定クランク角度毎に、上記ステップ30
0〜390を繰り返して実行する。
pM””(k+i) = (pM”’(k+1) −B (i) ・Ga(k)+B (i) ・β)/(
1+B(i) ・α) ... (38) Next, calculate the correction amount by multiplying the deviation Err(k) by the feedback gain Cf (step 360), and calculate the estimated intake pipe pressure P M (k + Step 370) (estimated intake pipe pressure calculation section P6 in FIG. 9)
), the estimated intake pipe pressure 'P M (k + i) is RA
Store it in M3c (step 380), and add the value 1 to the subscript k indicating the number of sampling operations (step 390).
), the process returns to step 300 above. Thereafter, this fuel injection amount calculation process is performed at each predetermined crank angle in step 30.
Repeat steps 0 to 390.

なお、本第2実施例において、エンジン2が内燃機関M
1に、吸気管圧力センサ24と回転角センサ28とが運
転状態検出手段M2に、燃料噴射弁11が燃料供給手段
M3に、各々該当する。また、ECU3および該ECU
3の実行する処理のうちステップ(300〜355)が
暫定推定手段M4として、ステップ(370)が推定手
段M5として、ステップ(360)が補正手段M6とし
て、ステップ(200〜230)が制御手段M7として
、各々機能する。
Note that in the second embodiment, the engine 2 is an internal combustion engine M.
1, the intake pipe pressure sensor 24 and the rotation angle sensor 28 correspond to the operating state detection means M2, and the fuel injection valve 11 corresponds to the fuel supply means M3. In addition, ECU3 and the ECU
3, steps (300 to 355) serve as provisional estimating means M4, step (370) serves as estimating means M5, step (360) serves as correcting means M6, and steps (200 to 230) serve as control means M7. Each functions as a.

以上説明したように、本第2実施例によれは、エンジン
2の回転速度N e (k)に基づいて定まる定数α、
βを使用して、第1暫定推定吸気管圧力百M”(k+i
)およびシリンダ吸入空気量Ga(k)から第2暫定推
定吸気管圧力PM”(k+1)を算出するので、推定吸
気管圧力PM(k+i)の推定精度をより一層高めるこ
とができる。
As explained above, according to the second embodiment, the constant α determined based on the rotational speed N e (k) of the engine 2,
Using β, the first provisional estimated intake pipe pressure 100M” (k+i
) and the cylinder intake air amount Ga(k), the second provisional estimated intake pipe pressure PM'' (k+1) is calculated, so the estimation accuracy of the estimated intake pipe pressure PM(k+i) can be further improved.

以上本発明のいくつか実施例について説明したが、本発
明はこのような実施例に同等限定されるものではなく、
本発明の要旨を逸脱しない範囲内において種々なる態様
で実施し得ることは勿論である。
Although several embodiments of the present invention have been described above, the present invention is not limited to these embodiments.
It goes without saying that the invention can be implemented in various ways without departing from the spirit of the invention.

発明の効果 以上詳記したように本発明の内燃機関の燃料噴射量制御
装置は、内燃機関の回転速度および推定吸気管圧力に基
づいて供給燃料量を決定するに際し、内燃機関の吸入空
気量に関する質量保存則に従って構築した動的物理モデ
ルに基づき、検出時点に検出した吸気管圧力から算出し
た吸入時点の暫定推定吸気管圧力を、吸入時点の推定吸
気管圧力から求めた検出時点の吸気管圧力と検出時点に
検出した吸気管圧力との偏差および上記動的物理モデル
に基づいて定まるフィードバックゲインから算出した補
正量でフィードバック補正して推定吸気管圧力を算出す
るよう構成されてい北。このため、推定吸気管圧力算出
の動特性向上を可能にし、過渡運転状態等、吸気管圧力
変動が顕著な非線形特性を示す運転状態でも最適量の燃
料供給できるので、空燃比制御の制御精度が飛躍的に向
上するという優れた効果を奏する。
Effects of the Invention As described in detail above, the fuel injection amount control device for an internal combustion engine of the present invention determines the amount of fuel to be supplied based on the rotational speed of the internal combustion engine and the estimated intake pipe pressure. Based on a dynamic physical model constructed according to the law of conservation of mass, the provisional estimated intake pipe pressure at the time of intake is calculated from the intake pipe pressure detected at the time of detection, and the intake pipe pressure at the time of detection is calculated from the estimated intake pipe pressure at the time of intake. and the intake pipe pressure detected at the time of detection and a correction amount calculated from the feedback gain determined based on the dynamic physical model described above to calculate the estimated intake pipe pressure by performing feedback correction. For this reason, it is possible to improve the dynamic characteristics of calculating the estimated intake pipe pressure, and the optimum amount of fuel can be supplied even in operating conditions where intake pipe pressure fluctuations exhibit significant nonlinear characteristics, such as transient operating conditions, thereby improving the control accuracy of air-fuel ratio control. It has an excellent effect of dramatically improving performance.

上記効果に伴い、過渡運転状態における、排気特性、燃
料消費効率および運転性能も高まる。
Along with the above effects, the exhaust characteristics, fuel consumption efficiency, and driving performance during transient operating conditions are also improved.

また、定常運転状態では、吸気管圧力変動が微小、かつ
、緩慢になる。このため、検出時点の吸気管圧力と推定
吸気管圧力から算出した吸入時点の吸気管圧力との偏差
は減少し、フィードバック補正により算出される推定吸
気管圧力は高い安定性を示すので、高精度な燃料噴射量
制御を実現できる。
Further, in a steady state of operation, the intake pipe pressure fluctuations are minute and slow. Therefore, the deviation between the intake pipe pressure at the time of detection and the intake pipe pressure at the time of intake calculated from the estimated intake pipe pressure is reduced, and the estimated intake pipe pressure calculated by feedback correction shows high stability, resulting in high accuracy. It is possible to realize fuel injection amount control.

さらに、内燃機関の吸入空気量の質量保存則に則って動
的物理モデルを構築すると共に、フィードバックゲイン
を決定し、これらに基づいて、検出時点の吸気管圧力か
ら、吸入時点の推定吸気管圧力を算出する。このため、
1つのモデルで内燃機関の吸入空気の挙動を記述でき、
その挙動を記述する各種パラメータおよび補正量を算出
するフィードバックゲインを1種類だけ設定するだけで
済む。従って、記憶容量、演算能力等の装置構成の簡略
化と、推定吸気管圧力算出精度および速度の向上とを両
立できる。
Furthermore, we constructed a dynamic physical model based on the law of conservation of mass for the amount of intake air in an internal combustion engine, determined the feedback gain, and based on these, estimated intake pipe pressure at the time of intake from the intake pipe pressure at the time of detection. Calculate. For this reason,
One model can describe the behavior of the intake air of an internal combustion engine,
It is sufficient to set only one type of various parameters describing the behavior and feedback gain for calculating the correction amount. Therefore, it is possible to both simplify the device configuration such as storage capacity and computing power, and improve the accuracy and speed of calculating the estimated intake pipe pressure.

また、運転状態検出手段や燃料供給手段は既存の装置と
同様の構成で済み、専用の検出手段を設ける必要もない
ので、装置の汎用性が拡大する。
Further, the operating state detection means and fuel supply means can be configured in the same way as the existing device, and there is no need to provide a dedicated detection means, so the versatility of the device is expanded.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の内容を概念的に例示した基本的構成図
、第2図は本発明一実施例のシステム構成図、第3図は
同じくその制御系の構成を示す制御系統図、第4図は同
じくそのオフザーバの構成を示すブロック線図、第5図
は同じくその制御を示すフローチャート、第6図は同じ
くそのマツプを示すグラフ、第7図は同じくその制御を
示すフローチャート、第8図は同じくそのマツプを示す
グラフ、第9図はその他の実施例の制御系を示す制御系
統図、第10図は同じくその他の実施例の制i卸を示す
フローチャートである。 Ml ・・・ 内燃機関 M2 ・・・ 運転状態検出手段 M3 ・・・ 燃料供給手段 M4 ・・・ 暫定推定手段 M5 ・・・ 推定手段 M6 ・・・ 補正手段 Ml ・・・ 制御手段 1 ・・・ エンジンの燃料噴射遺制iH装置2 ・・
・ エンジン 3 ・・・ 電子制御装置(ECU) 3a ・・・ CPU 11 ・・・ 燃料噴射弁 24 ・・・ 吸気管圧力センサ 2日 ・・・ 回転角センサ
FIG. 1 is a basic configuration diagram conceptually illustrating the contents of the present invention, FIG. 2 is a system configuration diagram of an embodiment of the present invention, FIG. 3 is a control system diagram showing the configuration of the control system, and FIG. FIG. 4 is a block diagram showing the configuration of the observer, FIG. 5 is a flow chart showing its control, FIG. 6 is a graph showing its map, FIG. 7 is a flow chart showing its control, and FIG. 9 is a control system diagram showing the control system of another embodiment, and FIG. 10 is a flowchart showing the control of another embodiment. Ml... Internal combustion engine M2... Operating state detection means M3... Fuel supply means M4... Temporary estimating means M5... Estimating means M6... Correction means Ml... Control means 1... Engine fuel injection control iH device 2...
・ Engine 3 ... Electronic control unit (ECU) 3a ... CPU 11 ... Fuel injection valve 24 ... Intake pipe pressure sensor 2 ... Rotation angle sensor

Claims (1)

【特許請求の範囲】 1 内燃機関の、少なくとも吸気管圧力および回転速度
を含む運転状態を検出する運転状態検出手段と、 外部から指令された量の燃料を上記内燃機関に供給する
燃料供給手段と、 を具備し、上記運転状態検出手段の検出結果に応じて定
まる量の燃料を上記燃料供給手段から供給する内燃機関
の燃料噴射量制御装置において、さらに、上記内燃機関
の吸入空気量に関する質量保存則に従って構築した動的
物理モデルに基づき、上記運転状態検出手段により検出
時点に検出された吸気管圧力および回転速度から、該検
出時点に検出された吸気管圧力に応じて定まる量の燃料
が上記内燃機関の吸気行程にある気筒に吸入される吸入
時点における該内燃機関の予測吸気管圧力に相当する暫
定推定吸気管圧力を算出する暫定推定手段と、 該暫定推定手段の算出した暫定推定吸気管圧力を、外部
から指示される補正量に基づいてフィードバック補正し
、上記内燃機関の吸入時点における吸気管圧力に相当す
る推定吸気管圧力を算出する推定手段と、 該推定手段の算出した推定吸気管圧力から求めた検出時
点における上記内燃機関の吸気管圧力と、上記運転状態
検出手段により検出時点に検出された吸気管圧力との偏
差および前記動的物理モデルに基づいて定まるフィード
バックゲインから上記補正量を算出して上記推定手段に
指示する補正手段と、 上記運転状態検出手段の検出した回転速度および上記推
定手段の算出した推定吸気管圧力に基づいて決定した量
の燃料供給を上記燃料供給手段に指令する制御手段と、 を備えたことを特徴とする内燃機関の燃料噴射量制御装
置。
[Scope of Claims] 1. Operating state detection means for detecting the operating state of an internal combustion engine, including at least intake pipe pressure and rotational speed; and fuel supply means for supplying an externally commanded amount of fuel to the internal combustion engine. , A fuel injection amount control device for an internal combustion engine that supplies an amount of fuel determined according to a detection result of the operating state detection means from the fuel supply means, further comprising: mass conservation regarding the intake air amount of the internal combustion engine. Based on the dynamic physical model constructed according to the above-mentioned rules, the amount of fuel determined according to the intake pipe pressure detected at the detection time is determined from the intake pipe pressure and rotational speed detected by the operating state detection means at the detection time. Temporary estimation means for calculating a provisional estimated intake pipe pressure corresponding to the predicted intake pipe pressure of the internal combustion engine at the time of intake into a cylinder in the intake stroke of the internal combustion engine; and provisional estimated intake pipe pressure calculated by the provisional estimation means. an estimating means for feedback-correcting the pressure based on a correction amount instructed from the outside and calculating an estimated intake pipe pressure corresponding to the intake pipe pressure at the time of intake of the internal combustion engine; and an estimated intake pipe pressure calculated by the estimating means. The correction amount is calculated from the feedback gain determined based on the deviation between the intake pipe pressure of the internal combustion engine at the time of detection determined from the pressure and the intake pipe pressure detected at the time of detection by the operating state detection means and the dynamic physical model. correction means for calculating and instructing the estimating means; and supplying fuel in an amount determined based on the rotational speed detected by the operating state detecting means and the estimated intake pipe pressure calculated by the estimating means to the fuel supply means. A fuel injection amount control device for an internal combustion engine, comprising: a control means for issuing a command;
JP10086488A 1988-04-22 1988-04-22 Fuel injection amount control device for internal combustion engine Expired - Fee Related JP2615811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10086488A JP2615811B2 (en) 1988-04-22 1988-04-22 Fuel injection amount control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10086488A JP2615811B2 (en) 1988-04-22 1988-04-22 Fuel injection amount control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01271642A true JPH01271642A (en) 1989-10-30
JP2615811B2 JP2615811B2 (en) 1997-06-04

Family

ID=14285178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10086488A Expired - Fee Related JP2615811B2 (en) 1988-04-22 1988-04-22 Fuel injection amount control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2615811B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502352A (en) * 1988-12-14 1992-04-23 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to determine the amount of fuel
EP0736680A1 (en) * 1995-04-06 1996-10-09 Siemens Automotive S.A. Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine
JP2010163949A (en) * 2009-01-15 2010-07-29 Toyota Motor Corp Intake air amount estimating device for internal combustion engine
US10240546B2 (en) 2014-05-22 2019-03-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
CN114278423A (en) * 2021-06-28 2022-04-05 天津大学 A Predictive Expansion State Observer-Based Predictive Control Algorithm for Coolant Temperature

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502352A (en) * 1988-12-14 1992-04-23 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング How to determine the amount of fuel
EP0736680A1 (en) * 1995-04-06 1996-10-09 Siemens Automotive S.A. Method of self-correction of physical parameters in a dynamic system such as an internal combustion engine
FR2732724A1 (en) * 1995-04-06 1996-10-11 Siemens Automotive Sa METHOD OF SELF-CORRECTING PHYSICAL PARAMETERS OF A DYNAMIC SYSTEM, SUCH AS AN INTERNAL COMBUSTION ENGINE
JP2010163949A (en) * 2009-01-15 2010-07-29 Toyota Motor Corp Intake air amount estimating device for internal combustion engine
US10240546B2 (en) 2014-05-22 2019-03-26 Continental Automotive Gmbh Method and device for operating an internal combustion engine
CN114278423A (en) * 2021-06-28 2022-04-05 天津大学 A Predictive Expansion State Observer-Based Predictive Control Algorithm for Coolant Temperature
CN114278423B (en) * 2021-06-28 2023-10-13 天津大学 A predictive control method for coolant temperature based on predictive expansion state observer

Also Published As

Publication number Publication date
JP2615811B2 (en) 1997-06-04

Similar Documents

Publication Publication Date Title
JP4237214B2 (en) Internal combustion engine control device
US7831371B2 (en) Control apparatus for an internal combustion engine
US6990402B2 (en) Control system and method, and control unit
US7441544B2 (en) Control device for internal combustion engine
JP2551038B2 (en) Air-fuel ratio control device for internal combustion engine
EP0582085A2 (en) Fuel metering control system and cylinder air flow estimation method in internalcombustion engine
US20060235603A1 (en) Cylinder inflow exhaust gas amount calculation system of internal combustion engine and intake passage inflow exhaust gas amount calculation system of internal combustion engine
JP3998136B2 (en) Air-fuel ratio control device for internal combustion engine
CN101069006B (en) Air-fuel ratio control equipment for internal combustion engines
JP3610839B2 (en) Air-fuel ratio control device for internal combustion engine
JP2002349325A (en) Air-fuel ratio control device for internal combustion engine
JP2009203867A (en) Device for controlling fuel injection quantity of internal combustion engine
JP5482718B2 (en) Engine compatible equipment
JPH01271642A (en) Device for controlling fuel injection quantity of internal combustion engine
US6223121B1 (en) Air-to-fuel ratio control device
US20050021215A1 (en) Method for determining an estimated value of a mass flow in the intake channel of an internal combustion engine
EP1422584A1 (en) Control apparatus for plant
JP2002309990A (en) Control device for internal combustion engine
JP2001164971A (en) Air-fuel ratio control device for internal combustion engine
JP3240780B2 (en) Fuel supply control device for internal combustion engine
JP3144264B2 (en) Air-fuel ratio control device
JPS63195355A (en) Internal combustion engine idle speed control method
JP2576184B2 (en) Fuel injection amount control device for internal combustion engine
JP2946832B2 (en) Idle speed control device for internal combustion engine
JP2745797B2 (en) Idling speed controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees