JPH01271031A - Continuous casting method for multilayer slabs - Google Patents
Continuous casting method for multilayer slabsInfo
- Publication number
- JPH01271031A JPH01271031A JP10054988A JP10054988A JPH01271031A JP H01271031 A JPH01271031 A JP H01271031A JP 10054988 A JP10054988 A JP 10054988A JP 10054988 A JP10054988 A JP 10054988A JP H01271031 A JPH01271031 A JP H01271031A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- mold
- static magnetic
- metals
- molten metals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、内層と外層との間に明確な境界が設けられた
複層鋳片を溶融状態から連続的に製造する方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for continuously producing multilayer slabs from the molten state, in which a clear boundary is provided between the inner layer and the outer layer.
連続鋳造によって複合鋼材を製造する方法として、長さ
のことなる2本の浸漬ノズルを鋳型内にある溶融金属の
プールに挿入し、それぞれのノズルの吐出孔位置を鋳造
方向の異なる位置に設け、異種の溶融金属を注入する方
法が、特公昭44−27361号公報で提案されている
。しかし、単に2本の浸漬ノズルで鋳型内の鋳造方向の
異なる位置で異種金属を注入するようにしただけでは、
異種金属の鋳型内における吐出位置又は吐出流のパター
ンをいかに調整しようとも、注入の進行、すなわち鋳造
の進゛行と共に異種の溶融金属間での混合が生じる。そ
のため、鋳片の表層から内部にかけて、厚み方向に関し
て濃度が変化する境界層が形成される。或いは、表層と
内部との境界が極めて不鮮明な鋳片となる。As a method for manufacturing composite steel materials by continuous casting, two immersion nozzles of different lengths are inserted into a pool of molten metal in a mold, and the discharge holes of each nozzle are set at different positions in the casting direction. A method of injecting different types of molten metals is proposed in Japanese Patent Publication No. 44-27361. However, simply injecting dissimilar metals at different positions in the mold in the casting direction using two immersion nozzles will not work.
No matter how the discharge position or discharge flow pattern of the dissimilar metals within the mold is adjusted, mixing between the dissimilar molten metals occurs as the pouring progresses, ie, as the casting progresses. Therefore, a boundary layer is formed in which the concentration changes in the thickness direction from the surface layer to the inside of the slab. Alternatively, the boundary between the surface layer and the interior becomes extremely unclear.
そこで、特公昭49−44859号公報では、鋳型に注
入された異種の溶融金属間に耐火物製の隔壁を設けて、
連続鋳造する方法が提案されている。しかし、異種溶融
金属の混合を抑えるためには、充分な大きさの耐火物隔
壁を鋳造空間に挿入することが必要になる。そのため、
鋳造上に新たな問題が生じる。たとえば、耐火物障壁が
大きくなるに伴って、それが凝固中のシェルに接触する
危険性が高くなる。この接触があると、シェルに捕捉さ
れて耐火物が破損したり、シェルが破れてブレークアウ
トを発生することにもなりかねない。また、高温の溶融
金属に浸漬された耐火物隔壁は、物理的強度の点でも問
題があり、鋳造中に溶損或いは破損して本来の目的が達
成できないばかりか、ストランド中に巻き込まれた耐火
物は、鋳造作業及び製品品質に悪影響を与える。Therefore, in Japanese Patent Publication No. 49-44859, a partition wall made of refractory is provided between different types of molten metal poured into a mold,
A continuous casting method has been proposed. However, in order to suppress mixing of dissimilar molten metals, it is necessary to insert a sufficiently large refractory partition into the casting space. Therefore,
New casting problems arise. For example, the larger the refractory barrier, the greater the risk of it contacting the solidifying shell. This contact can cause the shell to become trapped and damage the refractory, or even cause the shell to rupture and cause a breakout. In addition, refractory bulkheads immersed in high-temperature molten metal have problems in terms of physical strength, and not only can they melt or break during casting, making it impossible to achieve their original purpose, but the refractory walls that have been immersed in the strands may materials have a negative impact on casting operations and product quality.
本発明者等は、この耐火物@壁が持つ欠点を解消するた
め、鋳型内に注入された異種の溶融金属を仕切る手段と
して静磁場を利用した方法を開発し、これを特願昭61
−252898号として出願した。In order to eliminate the drawbacks of this refractory@wall, the present inventors developed a method that utilizes a static magnetic field as a means to partition dissimilar molten metals poured into a mold, and applied for this method in a patent application filed in 1983.
The application was filed as No.-252898.
この方法においては、鋳造方向に対して直角な方向に鋳
片全幅にわたって磁力線が延在するような静磁場を形成
させ、この静磁場を境界としてその上下に異種の溶融金
属を供給している。この静磁場により電磁ブレーキが働
き、静磁場帯での溶融金、寓の流れが制動される。その
結果、上下層が接する位置での上下層の混合を最低限に
抑えることができる。In this method, a static magnetic field is formed in which lines of magnetic force extend across the entire width of the slab in a direction perpendicular to the casting direction, and different types of molten metal are supplied above and below this static magnetic field as a boundary. This static magnetic field acts as an electromagnetic brake, and the flow of molten gold in the static magnetic field is braked. As a result, mixing of the upper and lower layers at the position where the upper and lower layers contact can be suppressed to a minimum.
この特願昭61−252898号で提案した方法による
とき、鋳型内のプールに耐火物@壁を配置させる必要が
ないため、シェルの破壊、破損した耐火物による欠陥の
発生等の問題がなくなる。しかし、その後の研究によっ
て、静磁場が溶融金属の制動に充分W用しない場合があ
ることが知見された。According to the method proposed in Japanese Patent Application No. 61-252898, there is no need to place refractories @walls in the pool within the mold, so problems such as shell destruction and defects caused by damaged refractories are eliminated. However, subsequent research has revealed that the static magnetic field may not be sufficient to damp the molten metal.
そこで、本発明は、静磁場の印加形態を改良することに
よって、溶融金属に対する制動効果を改良し、異種−金
属間の混合を無くし、境界を一層明確にした複層鋳片を
製造することを目的とする。Therefore, the present invention aims to improve the damping effect on molten metal by improving the application form of the static magnetic field, eliminate mixing between different types of metals, and produce a multilayer slab with clearer boundaries. purpose.
本発明の連続鋳造方法は、その目的を達成するために、
鋳型に供給された溶融金属の湯面レベルよりも下方の位
置で、前記鋳型の周囲を捲回したソレノイドコイルに直
流電流を供給することによって、鋳片全幅にわたって鋳
造方向に対して平行な磁力線が延在する静磁場を印加し
、この静磁場帯を境として上下に異なる金属を供給する
ことを特徴とする。In order to achieve the purpose of the continuous casting method of the present invention,
By supplying a direct current to a solenoid coil wound around the mold at a position below the level of the molten metal supplied to the mold, lines of magnetic force parallel to the casting direction are created across the entire width of the slab. It is characterized by applying an extending static magnetic field and supplying different metals above and below this static magnetic field band.
異種の溶融金属がストランドプール内の各位置に所定の
比率で供給されると共に、静磁場の印加により鋳型内に
ある溶融金属の流動が抑制され、異種金4嘱間の混合が
抑えられる。このとき、静磁場帯の上下にある異種の溶
融金属間の界面は、第4図に示す波動状態にあるものと
推察される。すなわち、鋳型で区切られた鋳造空間に注
入された溶融金属1,2は鋳型壁を介した抜熱によって
冷却・凝固し、それぞれ凝固シェル3,4となる。Different types of molten metals are supplied to each position in the strand pool at a predetermined ratio, and the application of a static magnetic field suppresses the flow of the molten metals in the mold, thereby suppressing mixing of the four different types of metals. At this time, it is presumed that the interface between different kinds of molten metals above and below the static magnetic field is in a wave state as shown in FIG. 4. That is, molten metals 1 and 2 injected into a casting space separated by a mold are cooled and solidified by heat removal through the mold wall, and become solidified shells 3 and 4, respectively.
このとき、磁石5で静磁場が印加されているので、溶融
金、属1,2の流れを抑制する制動力が発生する。At this time, since a static magnetic field is applied by the magnet 5, a braking force is generated to suppress the flow of the molten metal and metals 1 and 2.
ところが、先願の特願昭61−252898号では、鋳
造方向に対して直角な方向の磁力線をもつ静磁場を印加
している。このため、第4図に示すような溶融金属1と
溶融金11g2との間に生じる波動に対しては効果的で
ない。この点、本発明において印加される磁場は、鋳造
方向と平行な磁力線をもったものとしている。その結果
、第4図の矢印で示すような波動を継続する動きが抑え
られ、溶融金属1.2間の混合が抑制される。However, in the earlier Japanese Patent Application No. 61-252898, a static magnetic field having lines of magnetic force perpendicular to the casting direction is applied. Therefore, it is not effective against the waves generated between the molten metal 1 and the molten gold 11g2 as shown in FIG. In this regard, the magnetic field applied in the present invention has lines of magnetic force parallel to the casting direction. As a result, the continuous wave movement as shown by the arrow in FIG. 4 is suppressed, and the mixing between the molten metals 1 and 2 is suppressed.
第1図は、鋳造方向と平行な磁力線をもつ静磁場を発生
させる機構を示す概略図であり、第2図は静磁場の発生
状況を示す図である。FIG. 1 is a schematic diagram showing a mechanism for generating a static magnetic field having lines of magnetic force parallel to the casting direction, and FIG. 2 is a diagram showing how the static magnetic field is generated.
鋳型6内のプールに、それぞれ長さの異なる浸漬ノズル
゛7,8を挿入する。そして、内層となる凝固シェル3
を形成する溶融金属1及び外層となる凝固シェル4を形
成する溶融金属2を、それぞれ浸漬ノズル7.8から注
入する。注入された溶融金属1.2は、第1図の矢印で
示すようにストランドプール内を流動する。その結果、
第4図に示したように、溶融金属1,2の間に波動が生
じる。Immersed nozzles 7 and 8, each having a different length, are inserted into the pool within the mold 6. Then, the solidified shell 3 which becomes the inner layer
The molten metal 1 forming the outer layer and the molten metal 2 forming the outer solidified shell 4 are each injected through a submerged nozzle 7.8. The injected molten metal 1.2 flows in the strand pool as indicated by the arrows in FIG. the result,
As shown in FIG. 4, waves are generated between the molten metals 1 and 2.
そこで、鋳型6の周囲にソレノイド状にコイル9を捲回
し、このソレノイドコイル9に直流電流を供給する。こ
れにより、第2図に示すように鋳造方向と平行な磁力線
10をもつ静磁場が形成される。この磁力線10は、第
4図の矢印で示した上下方向の流動成分に対して効果的
に作用し、溶融金属1.2間にある界面の波動が抑制さ
れる。その結果、溶融金属1.2間の混合が抑制され、
凝固シェル3.4間に明確な界面をもつ複層鋳片が製造
される。Therefore, a coil 9 is wound around the mold 6 in the shape of a solenoid, and a direct current is supplied to the solenoid coil 9. As a result, a static magnetic field having lines of magnetic force 10 parallel to the casting direction is formed as shown in FIG. These lines of magnetic force 10 effectively act on the vertical flow components shown by the arrows in FIG. 4, suppressing the wave motion at the interface between the molten metals 1 and 2. As a result, mixing between the molten metals 1 and 2 is suppressed,
A multilayer slab with well-defined interfaces between the solidified shells 3.4 is produced.
なお、第2図では上向きの磁力線10をもつ静磁場を印
加している。しかし、下向きの磁力線10をもつ静磁場
を印加しても、同様な効果が得られることは勿論である
。In addition, in FIG. 2, a static magnetic field with upward magnetic lines of force 10 is applied. However, it goes without saying that the same effect can be obtained even if a static magnetic field having downward magnetic lines of force 10 is applied.
浸漬ノズル7から普通鋼組成(Cr 0%)をもつ溶
融金属1(融点1496℃)を注入し、浸漬ノズル8か
らS U 3304組成(Cr 18%)をもつ溶融金
属2(融点1450℃)を注入した。そして、鋳型6の
下部で鋳型6を取り巻くような形態のソレノイドコイル
9を設置し、磁場帯を設けた。この磁場帯の鋳造方向の
中心は、メニスカスより600胴だけ下方の位置に設定
した。また、ソレノイドコイル9には、磁場帯中の磁束
密度が3000ガウスとなるように、直流電流を供給し
た。Molten metal 1 (melting point 1496°C) having a common steel composition (Cr 0%) is injected from the immersion nozzle 7, and molten metal 2 (melting point 1450°C) having an S U 3304 composition (Cr 18%) is injected from the immersion nozzle 8. Injected. Then, a solenoid coil 9 was installed at the bottom of the mold 6 so as to surround the mold 6, and a magnetic field zone was provided. The center of this magnetic field band in the casting direction was set at a position 600 mm below the meniscus. Further, a direct current was supplied to the solenoid coil 9 so that the magnetic flux density in the magnetic field band was 3000 Gauss.
このようにして、外層の目標厚みが15叩で目標板厚が
200mmの複層鋳片を連続鋳造した。第3図は、得ら
れた複層周辺における外層から内層にかけてのCr含有
量の変化を示す。また、第3図には、先願である特願昭
61−252898号で提案した静磁場を印加した場合
のCr含有量の変化を比較例として示している。第3図
から明らかなように、鋳造方向゛と平行な磁力線をもつ
静磁場を印加することによって、普通鋼とステンレス鋼
との間の混合が抑えられ、明確な境界をもって外層及び
内層が形成されていることが判る。In this way, a multilayer slab with a target outer layer thickness of 15 mm and a target board thickness of 200 mm was continuously cast. FIG. 3 shows the change in Cr content from the outer layer to the inner layer around the obtained multilayer. Further, FIG. 3 shows, as a comparative example, the change in Cr content when applying the static magnetic field proposed in Japanese Patent Application No. 61-252898, which is an earlier application. As is clear from Figure 3, by applying a static magnetic field with lines of magnetic force parallel to the casting direction, mixing between ordinary steel and stainless steel is suppressed, and an outer layer and an inner layer are formed with clear boundaries. It can be seen that
したがって、外層と内層との境界部において濃度遷移相
が発生することがなく、外層と内層とが明確に分離した
クラツド材が得られた。Therefore, no concentration transition phase was generated at the boundary between the outer layer and the inner layer, and a clad material in which the outer layer and the inner layer were clearly separated was obtained.
以上に説明したように、本発明においては、鋳造方向に
対して平行な磁力線をもつ静磁場によって異種の溶融金
属間の混合を抑制している。この静磁場は、異種溶融金
属の界面に生じる波動を抑える効果があり、明確に区別
された外層及び内層をもった複層鋳片が得られる。As explained above, in the present invention, mixing between different types of molten metals is suppressed by a static magnetic field having lines of magnetic force parallel to the casting direction. This static magnetic field has the effect of suppressing waves generated at the interface of dissimilar molten metals, and a multilayer slab with clearly differentiated outer and inner layers can be obtained.
第1図は本発明に従った設備を示す概略図であり、第2
図は静磁場の発生状況を示し、第3図は本発明の効果を
具体的に表したグラフである。また、第4図は、静磁場
により鋳型内の溶融金属に制動力を与えることを説明す
るための図である。
1.2=溶融金属 3,4:凝固シェル5:磁
石 6:鋳型
7.8:浸漬ノズル 9:ソレノイドコイル特許
出願人 新日本製鐵 株式會社(ほか1名)
代 理 人 小 堀 益(ほか2名)第1図
第3図
表面からの距離(m)
第2図
第4図FIG. 1 is a schematic diagram showing an installation according to the invention, and FIG.
The figure shows the generation situation of a static magnetic field, and FIG. 3 is a graph specifically expressing the effects of the present invention. Moreover, FIG. 4 is a diagram for explaining that a braking force is applied to the molten metal in the mold by a static magnetic field. 1.2 = Molten metal 3, 4: Solidified shell 5: Magnet 6: Mold 7.8: Immersion nozzle 9: Solenoid coil Patent applicant Nippon Steel Corporation (and 1 other person) Agent Masu Kobori (and others) 2 people) Figure 1 Figure 3 Distance from the surface (m) Figure 2 Figure 4
Claims (1)
の位置で、前記鋳型の周囲を捲回したソレノイドコイル
に直流電流を供給することによって、鋳片全幅にわたっ
て鋳造方向に対して平行な磁力線が延在する静磁場を印
加し、この静磁場帯を境として上下に異なる金属を供給
することを特徴とする複層鋳片の連続鋳造方法。1. By supplying a direct current to a solenoid coil wound around the mold at a position below the level of the molten metal supplied to the mold, the casting direction is parallel to the casting direction over the entire width of the slab. A continuous casting method for multilayer slabs, characterized by applying a static magnetic field in which lines of magnetic force extend, and supplying different metals above and below the static magnetic field zone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10054988A JPH01271031A (en) | 1988-04-22 | 1988-04-22 | Continuous casting method for multilayer slabs |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10054988A JPH01271031A (en) | 1988-04-22 | 1988-04-22 | Continuous casting method for multilayer slabs |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01271031A true JPH01271031A (en) | 1989-10-30 |
JPH0464769B2 JPH0464769B2 (en) | 1992-10-16 |
Family
ID=14277026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10054988A Granted JPH01271031A (en) | 1988-04-22 | 1988-04-22 | Continuous casting method for multilayer slabs |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01271031A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018271A1 (en) * | 1991-04-12 | 1992-10-29 | Nippon Steel Corporation | Method of continuous casting of multi-layer slab |
US5246060A (en) * | 1991-11-13 | 1993-09-21 | Aluminum Company Of America | Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot |
CN108348989A (en) * | 2015-10-30 | 2018-07-31 | 新日铁住金株式会社 | The continuous casting apparatus and continuous casing of complex ingot blank |
-
1988
- 1988-04-22 JP JP10054988A patent/JPH01271031A/en active Granted
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992018271A1 (en) * | 1991-04-12 | 1992-10-29 | Nippon Steel Corporation | Method of continuous casting of multi-layer slab |
US5269366A (en) * | 1991-04-12 | 1993-12-14 | Nippon Steel Corporation | Continuous casting method of multi-layered slab |
US5246060A (en) * | 1991-11-13 | 1993-09-21 | Aluminum Company Of America | Process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot |
CN108348989A (en) * | 2015-10-30 | 2018-07-31 | 新日铁住金株式会社 | The continuous casting apparatus and continuous casing of complex ingot blank |
US10987730B2 (en) | 2015-10-30 | 2021-04-27 | Nippon Steel Corporation | Continuous casting apparatus and continuous casting method for multilayered slab |
Also Published As
Publication number | Publication date |
---|---|
JPH0464769B2 (en) | 1992-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2279909C (en) | Method for casting molten metal, apparatus for the same and cast slab | |
US4828015A (en) | Continuous casting process for composite metal material | |
JPH0320295B2 (en) | ||
JP3692253B2 (en) | Continuous casting method of steel | |
JPH01271031A (en) | Continuous casting method for multilayer slabs | |
JP3593328B2 (en) | Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor | |
JPH0366447A (en) | Casting method for multilayer slabs | |
JPH11514585A (en) | Metal casting method and apparatus | |
JPH04309436A (en) | Continuous casting method for multilayer slabs | |
JP2609676B2 (en) | Continuous casting method and apparatus for multilayer slab | |
JPH0339780B2 (en) | ||
JPH09182941A (en) | Electromagnetic stirring method for molten steel in continuous casting mold | |
JPH06320232A (en) | Method for continuously casting complex metal material | |
JPH0669601B2 (en) | Horizontal continuous casting machine for multi-layer cast | |
JPH01271042A (en) | Method for continuously casting double-layer cast slab | |
KR100244660B1 (en) | Molten steel flow control device in mold during continuous casting | |
JPH0464782B2 (en) | ||
JPH0255643A (en) | Nozzle for continuous casting of metal ribbon | |
JPH0464768B2 (en) | ||
JPH07115125B2 (en) | Continuous casting method for multi-layer slab | |
JPH05277661A (en) | Continuous casting method of clad steel plate by twin rolls | |
JPH05277660A (en) | Method for continuously casting clad steel sheet by twin rolls | |
JPH06304704A (en) | Continuous casting method for multi-layer slab | |
JPH01271041A (en) | Dummy bar for continuously casting double-layer cast slab | |
JPH06297095A (en) | Method for continuously casting duplex layer cast slab |