[go: up one dir, main page]

JPH01265574A - Photoelectric conversion element - Google Patents

Photoelectric conversion element

Info

Publication number
JPH01265574A
JPH01265574A JP63094136A JP9413688A JPH01265574A JP H01265574 A JPH01265574 A JP H01265574A JP 63094136 A JP63094136 A JP 63094136A JP 9413688 A JP9413688 A JP 9413688A JP H01265574 A JPH01265574 A JP H01265574A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
transparent
wavelength
transparent electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094136A
Other languages
Japanese (ja)
Inventor
Masabumi Kunii
正文 国井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63094136A priority Critical patent/JPH01265574A/en
Publication of JPH01265574A publication Critical patent/JPH01265574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光電変換素子に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a photoelectric conversion element.

[従来の技術] 非晶質シリコン(以下、a−8iと記す)は、プラズマ
CVD法により低コストで大面積の成膜が可能であるた
め、従来から太陽電池、光センサなどの素子に応用され
てきた。例えば「テレビジョン学会技術報告JVO1,
10,No、22ED983  に示すように、光電変
換素子と、これを駆動する走査回路とを同一の石英基板
上に集積化した密着型イメージセンサが開発・実用化さ
れている。この密着型イメージセンサに用いるa−8i
フオトダイオードには、高速の光応答特性と、低暗電流
特性が要求される。−またカラーセンサに応用する場合
には、可視光の全波長域にわたって高い光感度特性が要
求される。前記要求特性を満足させるため、例えば特開
11ffi59−059112に示すような、下部電極
に透明電極のITO(Indium−Tin−Oxid
e)を用い、この上に非晶質シリコンを積層し、  上
部電極のA1合金を成膜したフォトダイオードなどがあ
る。
[Prior Art] Amorphous silicon (hereinafter referred to as a-8i) can be formed into a large-area film at low cost by plasma CVD, so it has traditionally been applied to elements such as solar cells and optical sensors. It has been. For example, “Television Society Technical Report JVO1,
As shown in No. 10, No. 22ED983, a contact image sensor in which a photoelectric conversion element and a scanning circuit for driving the same are integrated on the same quartz substrate has been developed and put into practical use. a-8i used for this contact type image sensor
Photodiodes are required to have fast light response characteristics and low dark current characteristics. - Also, when applied to color sensors, high photosensitivity characteristics are required over the entire wavelength range of visible light. In order to satisfy the above-mentioned required characteristics, the lower electrode is made of transparent ITO (Indium-Tin-Oxid
There is a photodiode in which amorphous silicon is laminated on top of the amorphous silicon and an A1 alloy film is formed as the upper electrode.

[発明が解決しようとする課題] 前記透明電極の膜厚は、従来は透明電極のパタニングの
し易さ、シート抵抗の要求値などから決められていた。
[Problems to be Solved by the Invention] The film thickness of the transparent electrode has conventionally been determined based on the ease of patterning the transparent electrode, the required value of sheet resistance, etc.

従って、従来の透明電極の膜厚では透明電極と非晶質シ
リコン、あるいは透明保護膜と透明電極の光干渉効果に
より、  例えば波長400〜450nm付近でのフォ
トダイオードの入射面に対する反射率が高くなるという
ことがあった。反射率が高いということはフォトダイオ
ードに入射する光量が低いということで、この場合は波
長400〜450nmの入射光量が低いということにな
る。
Therefore, with the conventional transparent electrode film thickness, the reflectance of the incident surface of the photodiode at wavelengths around 400 to 450 nm increases, for example, due to the optical interference effect between the transparent electrode and amorphous silicon, or between the transparent protective film and the transparent electrode. That happened. A high reflectance means that the amount of light incident on the photodiode is low, and in this case, the amount of incident light with a wavelength of 400 to 450 nm is low.

一方、  a−3iフオトダイオードの可視光(400
〜700nm)域の分光感度特性は、波長450nm以
下で、他の波長域に比較して感度が低いという特性を持
つ。このため従来の透明電極の膜厚では、波長400〜
450nm付近で著しくフォトダイオードの感度が落ち
る場合があった。
On the other hand, the visible light of the a-3i photodiode (400
The spectral sensitivity characteristic in the wavelength range of 450 nm or less is lower than that in other wavelength ranges. For this reason, with the film thickness of conventional transparent electrodes, wavelengths of 400~
There were cases where the sensitivity of the photodiode decreased significantly near 450 nm.

従来の非晶質シリコンフォトダイオードには以上のよう
な問題点があった。本発明は以上の問題点を解決するも
ので、その目的は分光感度が低い波長域で、光感度の減
少を防ぐ非晶質シリコンフォトダイオードを提供するこ
とにある。
Conventional amorphous silicon photodiodes have the above-mentioned problems. The present invention solves the above-mentioned problems, and its purpose is to provide an amorphous silicon photodiode that prevents a decrease in photosensitivity in a wavelength range with low spectral sensitivity.

[課題を解決するための手段] 本発明の光電変換素子は、光電変換層、透明電極、透明
保護膜を有する光電変換素子に於て、前記光電変換層の
分光感度が最も低くなる領域の波長に対して、前記波長
光の反射率が最も低くなるように、前記透明電極または
前記透明保護膜の膜厚または屈折率が調整されているこ
とを特徴とする。
[Means for Solving the Problems] The photoelectric conversion element of the present invention has a photoelectric conversion element having a photoelectric conversion layer, a transparent electrode, and a transparent protective film, and has a wavelength in a region where the spectral sensitivity of the photoelectric conversion layer is lowest. In contrast, the film thickness or refractive index of the transparent electrode or the transparent protective film is adjusted so that the reflectance of the wavelength light is the lowest.

[実施例] 第1図に本発明の光電変換素子の構造図を示す。[Example] FIG. 1 shows a structural diagram of the photoelectric conversion element of the present invention.

0は絶縁基板、1は電極、2は光電変換層、3は透明電
極、4は透明保護膜をしめす。入射光は第1図の透明保
護膜側から入る。
0 represents an insulating substrate, 1 represents an electrode, 2 represents a photoelectric conversion layer, 3 represents a transparent electrode, and 4 represents a transparent protective film. Incident light enters from the transparent protective film side in FIG.

以下、工程を追いながら説明する。まず絶縁基板O上に
電極1となるAl−8i−Cu合金を約7000人成膜
し、フォトリソグラフィでパタニングする。この絶縁基
板は、300°C以上の耐熱性があるものならなんでも
良いが、本実施例では石英基板を用いた。また、電極材
料はAl−9i−Cu合金に限るわけではなく、  例
えば純A1でも良いし、金属Cr等でも良い。この下部
電極上1上にプラズマCvD法で光電変換層3のa −
8i層を成膜する。シランガスを主成分とする混合ガス
をチェンバー内に導入し、グロー放電分解することによ
り約1μmのa−8i層を成膜する。
The process will be explained below. First, approximately 7,000 Al-8i-Cu alloys, which will become electrodes 1, are formed on an insulating substrate O and patterned by photolithography. This insulating substrate may be of any material as long as it has heat resistance of 300° C. or more, but in this example a quartz substrate was used. Further, the electrode material is not limited to Al-9i-Cu alloy, but may be pure Al, metal Cr, etc., for example. A photoelectric conversion layer 3 is formed on this lower electrode 1 by plasma CVD method.
8i layer is deposited. A mixed gas containing silane gas as a main component is introduced into the chamber and decomposed by glow discharge to form an a-8i layer with a thickness of about 1 μm.

以上の工程では基板温度は240°Cに保たれている。In the above steps, the substrate temperature is maintained at 240°C.

 次にこのa−8i層上に透明電極3となるITOを成
膜する。ITOの屈折率が2.0で、最上層に塗布する
透明ポリイミドの屈折率が1.7の場合、波長400〜
450nmで反射率が最小になるITOの膜厚は160
0人である。
Next, ITO, which will become the transparent electrode 3, is formed on this a-8i layer. If the refractive index of ITO is 2.0 and the refractive index of transparent polyimide coated on the top layer is 1.7, the wavelength is 400~
The ITO film thickness at which the reflectance is minimum at 450 nm is 160 nm.
There are 0 people.

ITOを1600人スパッタで成膜し、フォトリソグラ
フィでパタニングする。ITOパタニング佳、CF 4
プラズマエツチングにより、a−8i層をフォトリソグ
ラフィでパタニングする。あるいはa−8i層はITO
パタンをマスクにしてパタニングしてもよい。この上に
、透明保護膜4の透明ポリイミドをスピンコードで塗布
し、完成となる。透明ポリイミドにはPI−2566、
Sニー300 (両者とも商品名)等が好ましく、両者
とも屈折率は1.7程度である。透明ポリイミドの膜厚
は、  光の干渉効果を減少させるため、約5μm程度
が望ましい。透明ポリイミドの透過率が高いので、5μ
m程度の膜厚では、光の減衰は問題にならない。
A film of ITO is formed by sputtering with 1,600 people, and patterned by photolithography. Excellent ITO patterning, CF 4
The a-8i layer is photolithographically patterned by plasma etching. Or the a-8i layer is ITO
Patterning may be performed using the pattern as a mask. On top of this, transparent polyimide as the transparent protective film 4 is applied using a spin cord to complete the process. PI-2566 for transparent polyimide,
Snee 300 (both are trade names) and the like are preferred, and both have a refractive index of about 1.7. The thickness of the transparent polyimide film is preferably about 5 μm in order to reduce the interference effect of light. Because transparent polyimide has high transmittance, 5μ
With a film thickness of about 1.0 m, light attenuation is not a problem.

第2図に本発明の光電変換素子の他の実施例を示す。本
実施例では透明薄膜5を挿入することにより、波長40
0〜450nmでの感度を更に高めたものである。図番
0から4までは第1図と同じで5は透明薄膜である。本
実施例でも入射光は透明保護膜4側から入る。作製工程
は透明電極成膜までは第1図と同様で、第1図の透明電
極3の上に透明薄膜を成膜する。透明薄膜は250″C
程度の耐熱性があるものならなんでも良いが、本実施例
では5iOa膜を用いた。透明電極3の屈折率が2. 
0でSiO2の屈折率が1.46、透明保護膜4の屈折
率が1.7の場合、波長400〜450nmで反射率を
最小にするためにはSiO2の膜厚は2000人、IT
Oの膜厚は1700人とする。この後、透明保護膜4を
第1図と同様の方法で成膜し完成となる。
FIG. 2 shows another embodiment of the photoelectric conversion element of the present invention. In this embodiment, by inserting the transparent thin film 5, the wavelength 40
The sensitivity in the range of 0 to 450 nm is further increased. Figure numbers 0 to 4 are the same as in Figure 1, and 5 is a transparent thin film. Also in this embodiment, incident light enters from the transparent protective film 4 side. The manufacturing process is the same as that shown in FIG. 1 up to the formation of the transparent electrode, and a transparent thin film is formed on the transparent electrode 3 shown in FIG. Transparent thin film is 250″C
Although any material with a certain degree of heat resistance may be used, a 5iOa film was used in this example. The refractive index of the transparent electrode 3 is 2.
0, the refractive index of SiO2 is 1.46, and the refractive index of the transparent protective film 4 is 1.7. In order to minimize the reflectance at a wavelength of 400 to 450 nm, the film thickness of SiO2 is 2000 nm, IT
The film thickness of O is assumed to be 1,700 people. Thereafter, a transparent protective film 4 is formed in the same manner as shown in FIG. 1 to complete the process.

第3図に本発明の光電変換素子の3番目の実施例を示す
。本実施例では入射光は透明絶縁基板6側から入る。図
番1から3までは第1図と同じで、7は保護膜である。
FIG. 3 shows a third embodiment of the photoelectric conversion element of the present invention. In this embodiment, incident light enters from the transparent insulating substrate 6 side. Figure numbers 1 to 3 are the same as in FIG. 1, and 7 is a protective film.

作製工程を説明する。まず透明絶縁基板6上に透明電極
を成膜する。透明絶縁基板は300°C以上の耐熱性が
あるものならなんでも良いが、本実施例では石英基板を
用いた。また透明電極にはITOを用いた。石英基板の
屈折率が1.46で、ITOの屈折率が2. 0である
場合、波長400〜450nmでの反射率を最小にする
ためには、ITOの膜厚は1800人とする。ITOを
成膜後、フォトリソグラフィによりパタニングする。I
TO上に光電変換層2のa−3i層を第1図の場合と同
様に約1μm成膜し、この上部に電極1を積層する。電
極1には例えばAl−8i−Cu合金を用いるが、純A
1でも、Crでもよい。Al−6i−Cu合金の場合、
約7000人スパッタで成膜し、フォトリソグラフィで
パタニングする。電極lをパタニング後、a−3i層を
フォトリソグラフィ、あるいは電極1をマスクにしてC
F aプラズマエツチングによりパタニングする。次に
この上に保護膜7を形成し、完成となる。第3図では、
入射光が透明絶縁基板6側からはいるので、保護膜7は
透明である必要はない。例えば、フォトニース、PI−
400(両者とも商品名)等の着色しているポリイミド
を用いても良いし、第1図と同様の透明ポリイミドを用
いてももちろんよい。
The manufacturing process will be explained. First, a transparent electrode is formed on the transparent insulating substrate 6. Although any transparent insulating substrate may be used as long as it has a heat resistance of 300° C. or higher, a quartz substrate was used in this example. Moreover, ITO was used for the transparent electrode. The refractive index of the quartz substrate is 1.46, and the refractive index of ITO is 2.46. 0, in order to minimize the reflectance at a wavelength of 400 to 450 nm, the ITO film thickness is set to 1800 nm. After forming the ITO film, it is patterned by photolithography. I
The a-3i layer of the photoelectric conversion layer 2 is formed on the TO to a thickness of about 1 μm as in the case of FIG. 1, and the electrode 1 is laminated on top of the a-3i layer. For example, an Al-8i-Cu alloy is used for the electrode 1, but pure A
1 or Cr. In the case of Al-6i-Cu alloy,
Approximately 7,000 people deposited the film using sputtering and patterned it using photolithography. After patterning electrode 1, photolithography is performed on the a-3i layer, or C using electrode 1 as a mask.
Patterning is performed by Fa plasma etching. Next, a protective film 7 is formed on this to complete the process. In Figure 3,
Since the incident light enters from the transparent insulating substrate 6 side, the protective film 7 does not need to be transparent. For example, Photonice, PI-
A colored polyimide such as 400 (both trade names) may be used, or a transparent polyimide similar to that shown in FIG. 1 may of course be used.

以上全ての実施例に於て、透明電極3、透明保護膜4、
透明薄膜5、透明絶縁基板6に前記実施例と異なる屈折
率の物質を用いる場合は、  波長400〜450nm
で反射率が最小になるように各透明薄膜の膜厚を設定し
直せば良い 第4.5図に光電変換素子の分光感度特性を示す。第4
図中で破線401と一点鎖線402は比較例であって、
破線401は第1図の構造に於てITOの膜厚を200
0人とし、透明保護膜4がない光電変換素子(比較例1
)の分光感度特性である。−点鎖線402は第1図の構
造に於てITOの膜厚を2000人とした光電変換素子
(比較例2)の分光感度である。第4図で実、*403
は第1図の光電変換素子の分光感度、点線404は第2
図の光電変換素子の分光感度特性をそれぞれ示す。第5
図中で破線501は比較例であって、第3図の構造にお
いてITOの膜厚を2000人とした場合の光電変換素
子(比較例3)の分光感度特性である。実1s502は
第3図の光電変換素子の分光感度特性である。
In all of the above embodiments, the transparent electrode 3, the transparent protective film 4,
When a material with a refractive index different from that of the above embodiment is used for the transparent thin film 5 and the transparent insulating substrate 6, the wavelength is 400 to 450 nm.
Figure 4.5 shows the spectral sensitivity characteristics of the photoelectric conversion element. Fourth
In the figure, a broken line 401 and a dashed-dotted line 402 are comparative examples,
A broken line 401 indicates the ITO film thickness of 200 mm in the structure shown in FIG.
Photoelectric conversion element with 0 people and no transparent protective film 4 (Comparative Example 1
) is the spectral sensitivity characteristic of - The dotted chain line 402 is the spectral sensitivity of a photoelectric conversion element (Comparative Example 2) in which the ITO film thickness was 2000 μm in the structure shown in FIG. Actual in Figure 4, *403
is the spectral sensitivity of the photoelectric conversion element in Fig. 1, and the dotted line 404 is the second
The spectral sensitivity characteristics of the photoelectric conversion elements shown in the figure are shown respectively. Fifth
In the figure, a broken line 501 is a comparative example, and is the spectral sensitivity characteristic of a photoelectric conversion element (comparative example 3) when the ITO film thickness is 2000 in the structure shown in FIG. Actual 1s502 is the spectral sensitivity characteristic of the photoelectric conversion element shown in FIG.

第4.5図から明らかなように、本発明の光電変換素子
は波長400〜450nmにおいて、比較例の光電変換
素子よりも分光感度で7〜60%上回っている。応用上
は光源の強度分布が 波長400〜450nmで弱いこ
とが多いので、この波長域の感度が上がることによる実
用上の効果は非常に大きい。波長500〜550nmで
は逆に比較例の光電変換素子が本発明の光電変換素子の
分光感度を上回るが、波長500〜550nmでは光電
変換素子の絶対感度自体が大きいことと、応用上は光源
の強度分布が波長500〜550nmで強いことが多い
ことから、実用上は全く問題とならない。
As is clear from FIG. 4.5, the photoelectric conversion element of the present invention has a spectral sensitivity that is 7 to 60% higher than the photoelectric conversion element of the comparative example at a wavelength of 400 to 450 nm. In practical applications, the intensity distribution of a light source is often weak in the wavelength range of 400 to 450 nm, so increasing the sensitivity in this wavelength range has a very large practical effect. On the contrary, at wavelengths of 500 to 550 nm, the photoelectric conversion element of the comparative example exceeds the spectral sensitivity of the photoelectric conversion element of the present invention, but at wavelengths of 500 to 550 nm, the absolute sensitivity of the photoelectric conversion element itself is large, and in terms of application, the intensity of the light source is Since the distribution is often strong in the wavelength range of 500 to 550 nm, there is no problem at all in practice.

[発明の効果] 以上のように本発明の光電変換素子によれば、分光感度
が低い波長域の光感度の低下を抑えることができ、全可
視光域にわたってきわめて良好な分光感度特性を実現で
きる。従ってカラーセンサへの応用が可能になるなど、
その効果には絶大なものがある。
[Effects of the Invention] As described above, according to the photoelectric conversion element of the present invention, it is possible to suppress a decrease in photosensitivity in a wavelength range where spectral sensitivity is low, and to achieve extremely good spectral sensitivity characteristics over the entire visible light range. . Therefore, it can be applied to color sensors, etc.
Its effects are enormous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2.3図は本発明の光電変換素子の構造図。 第4.5図は光電変換素子の分光感度特性を示す図 0は絶縁基板 1は電極 2は光電変換層 3は透明電極 4は透明保護膜 5は透明薄膜 6は透明絶縁基板 7は保護膜 401は比較例1の分光感度特性 402は比較例2の分光感度特性 403は第1図の光電変換素子の分光感度特性404は
第2図の光電変換素子の分光感度特性501は比較例3
の分光感度特性 502は第3図の光電変換素子の分光感度特性以上 ↓ 第1図 入射光 ↓ 第2図 第3図 波  長  (nrn) 第4図
Figures 1.2.3 are structural diagrams of the photoelectric conversion element of the present invention. Figure 4.5 shows the spectral sensitivity characteristics of a photoelectric conversion element. 401 is the spectral sensitivity characteristic of Comparative Example 1 402 is the spectral sensitivity characteristic of Comparative Example 2 403 is the spectral sensitivity characteristic of the photoelectric conversion element in FIG. 1 404 is the spectral sensitivity characteristic of the photoelectric conversion element in FIG.
The spectral sensitivity characteristic 502 of is greater than or equal to the spectral sensitivity characteristic of the photoelectric conversion element shown in Fig. 3 ↓ Fig. 1 Incident light ↓ Fig. 2 Fig. 3 Wavelength (nrn) Fig. 4

Claims (4)

【特許請求の範囲】[Claims] (1)光電変換層、透明電極、透明保護膜を有する光電
変換素子において、 前記光電変換層の分光感度が最も低くなる領域の波長に
対して、前記波長光の反射率が最も低くなるように、前
記透明電極または前記透明保護膜の膜厚または屈折率が
調整されていることを特徴とする光電変換素子。
(1) In a photoelectric conversion element having a photoelectric conversion layer, a transparent electrode, and a transparent protective film, the reflectance of light at the wavelength is the lowest for a wavelength in a region where the spectral sensitivity of the photoelectric conversion layer is lowest. . A photoelectric conversion element, wherein the thickness or refractive index of the transparent electrode or the transparent protective film is adjusted.
(2)第1項記載の透明電極上に透明薄膜が形成され、
第1項記載の波長光の反射率が最も低くなるように、前
記透明薄膜の膜厚または屈折率が調整されていることを
特徴とする第1項記載の光電変換素子。
(2) A transparent thin film is formed on the transparent electrode according to item 1,
2. The photoelectric conversion element according to item 1, wherein the thickness or refractive index of the transparent thin film is adjusted so that the reflectance of light at the wavelength described in item 1 is the lowest.
(3)透明絶縁基板、透明電極、光電変換層を有する光
電変換素子において、 第1項記載の波長光の反射率が最も低くなるように、前
記透明電極の膜厚または屈折率が調整されていることを
特徴とする光電変換素子。
(3) In a photoelectric conversion element having a transparent insulating substrate, a transparent electrode, and a photoelectric conversion layer, the film thickness or refractive index of the transparent electrode is adjusted so that the reflectance of the wavelength light described in item 1 is the lowest. A photoelectric conversion element characterized by:
(4)前記光電変換層が非晶質シリコンであることを特
徴とする第1項記載の光電変換素 子。
(4) The photoelectric conversion element according to item 1, wherein the photoelectric conversion layer is made of amorphous silicon.
JP63094136A 1988-04-15 1988-04-15 Photoelectric conversion element Pending JPH01265574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094136A JPH01265574A (en) 1988-04-15 1988-04-15 Photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094136A JPH01265574A (en) 1988-04-15 1988-04-15 Photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH01265574A true JPH01265574A (en) 1989-10-23

Family

ID=14101981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094136A Pending JPH01265574A (en) 1988-04-15 1988-04-15 Photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH01265574A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143373A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Manufacture of photoelectric conversion element
JPS6097680A (en) * 1983-11-01 1985-05-31 Fuji Xerox Co Ltd Manufacture of photoelectric conversion element
JPS62226672A (en) * 1986-03-24 1987-10-05 マイテル・コ−ポレ−シヨン Photosensitive diode element and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59143373A (en) * 1983-02-03 1984-08-16 Fuji Xerox Co Ltd Manufacture of photoelectric conversion element
JPS6097680A (en) * 1983-11-01 1985-05-31 Fuji Xerox Co Ltd Manufacture of photoelectric conversion element
JPS62226672A (en) * 1986-03-24 1987-10-05 マイテル・コ−ポレ−シヨン Photosensitive diode element and its manufacturing method

Similar Documents

Publication Publication Date Title
US5084777A (en) Light addressed liquid crystal light valve incorporating electrically insulating light blocking material of a-SiGe:H
JP3440346B2 (en) Chrome blanks for black matrix and color filters for liquid crystal displays
KR20010041308A (en) Light absorptive antireflector and method for its production
JPH08138446A (en) Glass plate with transparent conductive film and transparent touch panel using it
KR930002932B1 (en) Liquid Crystal Light Valve and Corresponding Bonding Structure
JPS59143362A (en) Passivation membrane
JPH01265574A (en) Photoelectric conversion element
JPH04206571A (en) Solid-state image sensing device
JPH0294575A (en) Photovoltaic device
Torres-Costa et al. All-silicon color-sensitive photodetectors in the visible
JPH06324326A (en) Liquid crystal display device
JPH0737323Y2 (en) Color sensor
JPH01271706A (en) Optical filter and photoelectric sensor using same
JPH04124883A (en) Photoelectric conversion device
JPH08151235A (en) Glass plate having electrically conductive transparent film and transparent touch panel
JPS5689701A (en) Half mirror
KR100300856B1 (en) Color filter for liquid crystal display
JPH08160408A (en) Production of liquid crystal display element
JPH10107312A (en) Anti-reflection coating for semiconductor light receiving device
JPH0715144Y2 (en) Coplanar type optical sensor
JPH0477471B2 (en)
JPH08151234A (en) Glass plate having electrically conductive transparent film and transparent touch panel produced by using the glass
JPS59188965A (en) Original reading element
JPS6212676B2 (en)
JPS60101940A (en) Image sensor