[go: up one dir, main page]

JPH01265511A - Organometallic compound supported on a carrier for use in vapor phase growth and an organometallic compound supply device for vapor phase growth using the same - Google Patents

Organometallic compound supported on a carrier for use in vapor phase growth and an organometallic compound supply device for vapor phase growth using the same

Info

Publication number
JPH01265511A
JPH01265511A JP9409388A JP9409388A JPH01265511A JP H01265511 A JPH01265511 A JP H01265511A JP 9409388 A JP9409388 A JP 9409388A JP 9409388 A JP9409388 A JP 9409388A JP H01265511 A JPH01265511 A JP H01265511A
Authority
JP
Japan
Prior art keywords
carrier
organometallic compound
vapor phase
phase growth
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9409388A
Other languages
Japanese (ja)
Other versions
JP2651530B2 (en
Inventor
Kenichi Sarara
讃良 憲一
Tadaaki Yako
八子 忠明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP63094093A priority Critical patent/JP2651530B2/en
Publication of JPH01265511A publication Critical patent/JPH01265511A/en
Application granted granted Critical
Publication of JP2651530B2 publication Critical patent/JP2651530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To make it possible to feed vapor growth organic metal compound, having a predetermined reproducibility, to a vapor growth device by a method wherein an organic metal compound which is a solid at ordinary temperature and sued for vapor growth is applied to the carrier which is inert to the solid organic metal compound. CONSTITUTION:An organic compound is coated on a carrier which is inert against a solid organic metal compound, to be used for a vapor growth operation, at the normal temperature. as an organic metal compound, trimethylindium, demethylchloroindium, and cyclopentadienylindium are used. Pertaining to a carrier, one which has a wide specific surface area is desirable, and the carrier having the microscopic recesses and projections of about 100-2000mum or having a number of pores on the carrier itself is better than the carrier having smooth surface. Rasching ring helipac and the like are sued as the carrier. As a result, the supply of the vapor phase organic metal compound, having a constant reproducibility, into a vapor phase growing device can be made possible.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は気相成長に用いる担体担持有機金属化合物及び
これを用いた気相成長用有機金属化合物供給装置に関す
る。 更に詳細には常温で固体の有機金属化合物(以下
、気化用固体原料と称する場合がある。)を該有機金属
化合物に対しては不活性な担体に被覆してなる気相成長
に用いる担体担持有機金属化合物及びこれを用いた気相
成長用有機金属化合物供給装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a carrier-supported organometallic compound used for vapor phase growth and an organometallic compound supply apparatus for vapor phase growth using the same. More specifically, an organic metal compound that is solid at room temperature (hereinafter sometimes referred to as a solid raw material for vaporization) is coated on a carrier that is inert to the organic metal compound and is used for vapor phase growth. The present invention relates to an organometallic compound and an organometallic compound supply device for vapor phase growth using the same.

〈従来の技術〉 近年有機金属化合物は、電子工業用において、例えば化
合物半導体の原料として使用されている。
<Prior Art> In recent years, organometallic compounds have been used in the electronic industry, for example, as raw materials for compound semiconductors.

該有機金属化合物を電子工業において使用する場合には
、通常水素ガス等のキャリアガスを有機金属化合物と接
触するように吹き流し、有機金属化合物の飽和蒸気とし
て気相成長装置に導き使用される。
When the organometallic compound is used in the electronics industry, a carrier gas such as hydrogen gas is usually blown into contact with the organometallic compound, and the saturated vapor of the organometallic compound is introduced into a vapor phase growth apparatus for use.

この場合有機金属化合物がその使用温度において液体で
ある場合には、第2図に示すようなキャリアガスを該有
機金属化合物中にバブリングできるような細管を備えた
容器に、該液状有機金属を充填するとともに、細管より
キャリアガスを吹込みバブリングすれば、直ちにその時
の温度に見合った該有機金属化合物の飽和蒸気を得るこ
とができる。
In this case, if the organometallic compound is a liquid at its operating temperature, the liquid organometallic compound is filled into a container equipped with a capillary tube that allows a carrier gas to be bubbled through the organometallic compound as shown in FIG. At the same time, by blowing and bubbling a carrier gas through a thin tube, saturated vapor of the organometallic compound corresponding to the temperature at that time can be immediately obtained.

しかし常温(室温)で固体であるような有機金属化合物
の場合には、液体と異なりキャリアガスを吹込んでも積
層する固体有機金属化合物中にキャリアガスが通過する
流路が形成されたり、或いは気化により小粒径となった
固体有機金属化合物が容器底部に堆積し、結果として固
体有機金属化合物とキャリアガスの充分な接触が得られ
ず、気相成長装置へ安定した濃度の有機金属化合物の供
給ができないとの致命的欠点を有する。
However, in the case of organometallic compounds that are solid at normal temperature (room temperature), unlike liquids, even when carrier gas is blown into the solid organometallic compound, a flow path is formed through which the carrier gas passes, or vaporization occurs. As a result, the solid organometallic compound with a small particle size is deposited at the bottom of the container, and as a result, sufficient contact between the solid organometallic compound and the carrier gas cannot be obtained, making it difficult to supply a stable concentration of the organometallic compound to the vapor phase growth apparatus. It has the fatal drawback of not being able to.

〈発明が解決しようとする課題〉 かかる事情下に鑑み本発明者等は常温で固体状有機金属
化合物を用いかつ一定の再現性ある有機金属化合物の蒸
発量が得られる方法を見出すことを目的として鋭意検討
した結果、該常温で固体状有機金属化合物に対しては不
活性な担体に予め固体状有機金属化合物を被覆し、これ
を気相成長用気化用固体原料として用いる場合には、上
記目的がすべて解決しえることを見出し、本発明を完成
するに至った。
<Problems to be Solved by the Invention> In view of the above circumstances, the present inventors aimed to find a method that uses a solid organometallic compound at room temperature and can obtain a certain reproducible amount of evaporation of the organometallic compound. As a result of extensive study, we found that if a solid organometallic compound is coated on a carrier that is inert to the solid organometallic compound at room temperature in advance and used as a solid raw material for vaporization for vapor phase growth, it is possible to achieve the above objectives. They have discovered that all of these problems can be solved, and have completed the present invention.

く課題を解決するための手段〉 即ち本発明は (1)気相成長に用いる常温で固体の有機金属化合物に
対して不活性な担体に該有機金属化合物を被覆してなる
ことを特徴とする気相成長に用いる担体担持有機金属化
合物、および (2)常温で固体の有機金属化合物を収納し、該気化用
固体有機金属化合物を昇華せしめる容器よりなる気相成
長用有機金属化合物供給装置において該容器上部にキャ
リヤーガス導入口、底部にキャリヤーガス導出口を配設
し、かつ該容器内に気化用有機金属化合物に対して不活
性な担体に該有機金属化合物を被覆した担体担持有機金
属化合物を充填してなることを特徴とする気相成長用有
機金属化合物供給装置 を提供するにある。
Means for Solving the Problems> That is, the present invention is characterized in that (1) a carrier that is inert to an organometallic compound that is solid at room temperature used for vapor phase growth is coated with the organometallic compound; In an organometallic compound supply device for vapor phase growth, which comprises a carrier-supported organometallic compound used for vapor phase growth, and (2) a container that stores the organometallic compound that is solid at room temperature and sublimates the solid organometallic compound for vaporization. A carrier gas inlet is provided at the top of the container, and a carrier gas outlet is provided at the bottom of the container, and a carrier-supported organometallic compound in which the organometallic compound is coated on a carrier inert to the organometallic compound for vaporization is placed in the container. An object of the present invention is to provide an organometallic compound supply device for vapor phase growth, which is characterized in that it is filled with organic metal compounds.

以下、本発明を更に詳述する。The present invention will be explained in more detail below.

本発明に於いて使用する気化用固体原料としては室温で
固体であって、気相成長用原料となりえる有機金属化合
物であればよく、より具体的にはトリメチルインジウム
、ジメチルクロルインジウム、シクロペンタジェニルイ
ンジウム、トリメチルインジウム・トリメチルアルシン
アダクト、トリメチルインジウム・トリメチルホスフィ
ンアダクト等のインジウム化合物、エチル沃化亜鉛、エ
チルシクロペンタジェニル亜鉛、シクロペンタジェニル
亜鉛等の亜鉛化合物、メチルジクロルアルミニウム等の
アルミニウム化合物、メチルジジクロルガリウム、ジメ
チルクロルガリウム、ジメチルブロモガリウム等のガリ
ウム化合物、ビスシクロペンタジェニルマグネシウム等
が挙げられる。
The solid raw material for vaporization used in the present invention may be any organometallic compound that is solid at room temperature and can be used as a raw material for vapor phase growth. Indium compounds such as ruindium, trimethylindium/trimethylarsine adduct, trimethylindium/trimethylphosphine adduct, zinc compounds such as ethylzinc iodide, ethylcyclopentagenylzinc, cyclopentagenylzinc, and aluminum such as methyldichloraluminum compounds, gallium compounds such as methyldidichlorogallium, dimethylchlorogallium, and dimethylbromogallium, biscyclopentagenylmagnesium, and the like.

またこれら気化用固体原料を担持せしめる気化用固体原
料に対して不活性な担体としてはアルミナ、シリカ、ム
ライト、グラッシーカーボン、グラファイト、チタン酸
カリ、石英、窒化珪素、窒化硼素、炭化珪素等のセラミ
ックス類、ステンレス、アルミニウム、ニッケル、タン
グステン等の金属類、弗素樹脂、硝子等が使用される。
In addition, examples of carriers that are inert to the solid raw materials for vaporization that support these solid raw materials for vaporization include ceramics such as alumina, silica, mullite, glassy carbon, graphite, potassium titanate, quartz, silicon nitride, boron nitride, and silicon carbide. metals such as stainless steel, aluminum, nickel, and tungsten, fluororesin, glass, etc. are used.

担体の形状は特に限定されるものではなく、不定形状、
球状、繊維状、網状、コイル状、円管状等各種形状のも
のが使用される。
The shape of the carrier is not particularly limited, and may be irregular shape,
Various shapes such as spherical, fibrous, net, coil, and cylindrical shapes are used.

担体は比表面積が大きい方が好ましく、担体表面が平滑
なものより100〜2000μm程度の微細な凹凸を有
するもの、あるいは担体自身に多数の気孔(空隙)を有
するものが好ましい。このような担体としてはアルミナ
ボール、ラシヒリング、ヘリバック、デイクソンパツキ
ン、ステンレス焼結エレメント、クラスウール等が挙げ
られる。
It is preferable for the carrier to have a large specific surface area, and it is preferable that the carrier surface has fine irregularities of about 100 to 2000 μm or that the carrier itself has a large number of pores (voids) rather than a smooth carrier. Examples of such carriers include alumina balls, Raschig rings, Helivac, Dickson packing, stainless steel sintered elements, and Kraswool.

担体に固体原料を担持させる方法は、従来−般に実施さ
れている方法を採用することができる。
As a method for supporting the solid raw material on the carrier, a conventionally practiced method can be employed.

例えば回転容器中に担体と原料固体とを予め重量比に従
って投入し、次いでこれを加熱して原料固体を融解せし
め、その後回転攪拌しつつ徐冷するとか、原料固体を加
熱溶融した中に担体を投入し、次いで過剰の溶融原料を
抜き取った後冷却する等何れの方法を採用してもよい。
For example, the carrier and the raw material solid are placed in advance in a rotating container according to the weight ratio, and then heated to melt the raw material solid, and then slowly cooled while rotating and stirring, or the carrier is placed in the heated and melted raw material solid. Any method may be used, such as charging the raw material, then removing excess molten raw material, and then cooling.

担持を行うに際しては、予め担体に含まれる酸素や湿分
、その他の揮発性不純物を除去しておく事が肝要である
。もし、担体表面に酸素や湿分等が存在すると、原料固
体が変質したり汚染されたりするため、気相成長用原料
として使用した際に、得られる膜の品質を損なうばかり
でなく、本発明の目的とする原料の安定供給が出来なく
なる。この様な不都合を避けるために担体は予め、その
材料の許容される範囲の温度で加熱しつつ真空脱気を行
い、然る後に堡素やアルゴン等の不活性ガスで空隙部を
置換しておく事が推奨される。
When carrying out loading, it is important to remove oxygen, moisture, and other volatile impurities contained in the carrier in advance. If oxygen, moisture, etc. are present on the surface of the carrier, the raw material solid will be altered or contaminated, which will not only impair the quality of the obtained film when used as a raw material for vapor phase growth, but also It becomes impossible to stably supply raw materials for the purpose of To avoid such inconveniences, the carrier is heated in advance to a temperature within the allowable range of the material and vacuum degassed, and then the voids are replaced with an inert gas such as boron or argon. It is recommended that you leave it there.

担体上に担持する固体原料は通常、担体100重量部に
対して10〜100重量部、好ましくは20〜50重量
部の範囲とするのがよい。
The amount of the solid raw material supported on the carrier is usually 10 to 100 parts by weight, preferably 20 to 50 parts by weight, based on 100 parts by weight of the carrier.

10重量部以下では、容器容積に示める原料固体の量が
少ないため、容器を必要以上に大きくしなければならず
、経済的ではない。
If it is less than 10 parts by weight, the amount of raw material solid shown in the container volume is small, so the container must be made larger than necessary, which is not economical.

また担体100重量部に対して原料固体を100重量部
以上担持させた場合には、担持させなかった場合と比べ
て、充填容積当りの固体原料表面積が期待する程には大
きくならないためか本発明の目的とする効果が充分得ら
れなくなる。
In addition, when 100 parts by weight or more of the raw material solid is supported on 100 parts by weight of the carrier, the surface area of the solid raw material per packed volume does not become as large as expected compared to the case where the solid material is not supported. The desired effect cannot be obtained sufficiently.

このようにして得られた担体担持有機金属化合物は気相
成長用原料として使用される。
The carrier-supported organometallic compound thus obtained is used as a raw material for vapor phase growth.

第1図は上記方法により得られた担体担持有機金属化合
物を適用した気相成長に用いる原料供給装置の一実施態
様を示すものであり、図中1は湾曲状の底部を有する容
器、2はキャリヤーガス導入口、3はキャリヤーガス導
出口、4は担体担持有機金属化合物を示す。
FIG. 1 shows an embodiment of a raw material supply device used for vapor phase growth to which an organometallic compound supported on a carrier obtained by the above method is applied, and in the figure, 1 is a container having a curved bottom, and 2 is a container with a curved bottom. A carrier gas inlet, 3 a carrier gas outlet, and 4 an organometallic compound supported on a carrier.

キャリヤーガス導出口3は容器中央底部に開口部を有し
もう一方の端部は図示しない気相成長装置に接続されて
いる。また担体担持有機金属化合物はやはり図示してい
ない供給口より容器1内に所望量供給し積層せしめる。
The carrier gas outlet 3 has an opening at the center bottom of the container, and the other end is connected to a vapor phase growth apparatus (not shown). Further, a desired amount of the organometallic compound supported on a carrier is supplied into the container 1 from a supply port (not shown) and layered.

 しかる後、水素ガス等のキャリヤーガスを2のキャリ
ヤーガス導入口より所定量で供給し担体担持有機金属化
合物の間隙をぬいながら容器の上部より下部にキャリヤ
ーガスを移行せしめることにより、該温度での気相成長
用有機金属化合物を飽和濃度で含むキャリヤーガスをキ
ャリヤーガス導出口3を経て図示しない気相成長装置に
供給する。
Thereafter, a predetermined amount of carrier gas such as hydrogen gas is supplied from the carrier gas inlet 2, and the carrier gas is transferred from the upper part of the container to the lower part of the container while passing through the gap between the organometallic compounds supported on the carrier. A carrier gas containing an organometallic compound for vapor phase growth at a saturation concentration is supplied to a vapor phase growth apparatus (not shown) through a carrier gas outlet 3.

上記装置において容器1の底部を湾曲状のものの使用例
にて記載したが、安定に使用しえる固体状有機金属化合
物の量を無視するならば底部が真直ぐな容器の使用は勿
論可能であるし、また、キャリヤーガス導出口3を少な
くとも底部で複数に分散し飽和濃度のガスを比較的安定
に収集することも可能であるが、装置の簡便さおよび飽
和濃度のガスを安定にしかも高効率で使用しえる点より
湾曲状底部を有する容器の使用が推奨される。
In the above apparatus, an example of using a container 1 with a curved bottom is described, but if the amount of solid organometallic compound that can be stably used is ignored, it is of course possible to use a container with a straight bottom. It is also possible to disperse the carrier gas outlet ports 3 into a plurality of locations at least at the bottom to relatively stably collect the gas at the saturated concentration, but it is possible to relatively stably collect the gas at the saturated concentration, but it is possible to use a simple device, stabilize the gas at the saturated concentration, and achieve high efficiency. The use of containers with curved bottoms is recommended for ease of use.

また、担体担持有機金属化合物の容器への供給量は、通
常キャリヤーガス導入口より下部を目処とするが、キャ
リヤーガス導入口を分散し担体担持有機金属化合物積層
上部に均一にキャリヤーガスの導入が可能な構造となす
場合にはこの限りではない。
In addition, the amount of the carrier-supported organometallic compound to be supplied to the container is normally aimed at the area below the carrier gas inlet, but by dispersing the carrier gas inlet, the carrier gas can be uniformly introduced to the upper part of the carrier-supported organometallic compound stack. This does not apply if the structure is possible.

〈発明の効果〉 以上詳述した本発明によれば、単に気相成長に用いる常
温で固体の有機金属化合物を担体に担持せしめこれを気
相成長に用いる気化用有機金属化合物供給装置に適用す
るという極めて簡単な方法を採用するのみで、気相成長
装置への一定の再現性ある気相成長用有機金属化合物の
供給を可能とし、その結果安定に使用できる固体状有機
金属化合物の得量を増加せしめたもので、その産業上の
利用価値は頗る大なるものである。
<Effects of the Invention> According to the present invention detailed above, an organometallic compound that is solid at room temperature used for vapor phase growth is simply supported on a carrier, and this is applied to an organometallic compound supply device for vaporization used for vapor phase growth. By simply adopting this extremely simple method, it is possible to supply organometallic compounds for vapor phase growth with a certain reproducibility to the vapor phase growth apparatus, and as a result, the amount of solid organometallic compounds that can be stably used can be increased. The industrial value of this product is extremely large.

以下、実施例により本発明を更に詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 実施例1 不二見研磨材製の4mtnφアルミナ球100gを三方
コック付二ロフラスコに仕込み、約150℃に加熱しつ
つ真空処理を2時間行った。
<Examples> Example 1 100 g of 4mtnφ alumina balls manufactured by Fujimi Abrasives were placed in a two-ring flask with a three-way cock, and vacuum treatment was performed for 2 hours while heating to about 150°C.

次いでこれを室温まで冷却し、窒素ガス雰囲気中でトリ
メチルインジウム60gを仕込んだ。
Next, this was cooled to room temperature, and 60 g of trimethylindium was charged in a nitrogen gas atmosphere.

該フラスコをロータリーエバポレーターに取りつけ、油
浴を用いて90〜95℃に加熱し、トリメチルインジウ
ムを融解させた。トリメチルインジウムの液相がほぼ無
くなった時点で油浴を取り外しフラスコを冷却した。
The flask was attached to a rotary evaporator and heated to 90-95°C using an oil bath to melt the trimethylindium. When the liquid phase of trimethylindium almost disappeared, the oil bath was removed and the flask was cooled.

アルミナ球部分を窒素雰囲気下で別の容器に取り出して
秤量した断金重量は140gであった。
The alumina bulb portion was taken out into a separate container under a nitrogen atmosphere and weighed, and the weight of the broken metal was 140 g.

また同様の方法で、アルミナ球の代わりにデイクソンパ
ツキン100gを用いたところ、処理後のデイクソンパ
ツキン全重量は128gであった。
In the same manner, 100 g of Dickson packing was used instead of the alumina balls, and the total weight of Dickson packing after treatment was 128 g.

実施例2 第1図に示すような、ガス導入口が容器上部に位置し、
ガス導出口が容器底部に開口しており、それぞれの口に
バルブを備えた直径38ミリメートルの容器に実施例1
で得られたアルミナ球担持トリメチルインジウム70g
を仕込んだ。
Example 2 As shown in FIG. 1, the gas inlet is located at the top of the container,
Example 1 was placed in a 38 mm diameter container with a gas outlet opening at the bottom of the container and a valve at each port.
70g of trimethylindium supported on alumina spheres obtained in
I prepared it.

次いで該容器を20℃の恒温槽に浸け、出口側をトリメ
チルインジウム捕集用の深冷トラップに接続した。その
後容器のガス導入側から水素ガスを毎分400cc流し
、4時間毎に中断してトラップに捕集されたトリメチル
インジウムの重量を測定した。
Next, the container was immersed in a constant temperature bath at 20° C., and the outlet side was connected to a cryogenic trap for collecting trimethylindium. Thereafter, hydrogen gas was flowed at 400 cc per minute from the gas introduction side of the container, and the flow was interrupted every 4 hours to measure the weight of trimethylindium collected in the trap.

その結果、アルミナ球に担持されているトリメチルイン
ジウムの重量が4.3gになるまではトラップに捕集さ
れた1回当りのトリメチルインジウムは1.03〜1.
08gの範囲で推移した。
As a result, until the weight of trimethylindium supported on the alumina spheres reached 4.3 g, the amount of trimethylindium collected per trap was 1.03 to 1.3 g.
It remained in the range of 0.08g.

また同様にして実施例1で得られたディクンンパッキン
担持トリメチルインジウム90gを直径60ミリメート
ルの容器に充填して測定したところ、担持されているト
リメチルインジウムの量が9.3gになるまでは、1回
当りのトリメチルインジウムは1.09〜1.12 g
の範囲で推移した。
Similarly, 90 g of trimethylindium supported on the dikun packing obtained in Example 1 was filled into a container with a diameter of 60 mm and measured. Trimethylindium per serving is 1.09-1.12 g
It remained within the range of .

比較例1 実施例2で用いた直径38ミリメートルの容器に加熱真
空処理した4φアルミナ球50gとトリメチルインジウ
ムの結晶粉末20.0 gを充填して全体を上下に振り
、それぞれを混ぜ合わせた。
Comparative Example 1 A container with a diameter of 38 mm as used in Example 2 was filled with 50 g of 4φ alumina spheres that had been heated and vacuum treated and 20.0 g of trimethylindium crystal powder, and the whole was shaken up and down to mix them.

次いでこれを実施例2と同様の方法で気化させ、捕集し
たトリメチルインジウムの重量を測定した所、1〜3回
目は実施例2と同様の捕集量が得られたが、3回目測定
後の容器内のトリメチルインジウムの重量が16.82
 gであるにもかかわらず、4回目からは捕集量が低下
し始め、4回目の捕集量は0.98 gであった。
This was then vaporized in the same manner as in Example 2, and the weight of the collected trimethylindium was measured.The same amount of collected trimethylindium was obtained in the first to third measurements as in Example 2, but after the third measurement, The weight of trimethylindium in the container is 16.82
Even though the amount was 0.98 g, the amount collected started to decrease from the fourth time, and the amount collected at the fourth time was 0.98 g.

比較例2 トリメチルインジウムの結晶粉末20.0 gを直径3
8圓の容器に充填し、実施例2と同様の方法で気化させ
、捕集したトリメチルインジウムの重量を測定したとこ
ろ1回目1.01g、2回目0.97g、3回目0.9
2g、4回目0.87gであった◎
Comparative Example 2 20.0 g of trimethylindium crystal powder with a diameter of 3
The weight of the collected trimethylindium, which was filled into an 8-diameter container and vaporized in the same manner as in Example 2, was measured: 1.01 g for the first time, 0.97 g for the second time, and 0.9 g for the third time.
2g, the fourth time was 0.87g◎

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明で得た担体担持有機金属化合物を充填し
た気相成長用有機金属化合物供給装置、第2図は常温で
液体の有機金属化合物を充填した気相成長用有機金属化
合物供給装置を示し、図中1は容器、2はキャリヤーガ
ス導入口、3はキャリヤーガス導出口、4は担体担持有
機金属化合物を示す。 第1図 第2図
Fig. 1 shows an organometallic compound supply device for vapor phase growth filled with the organometallic compound supported on a carrier obtained in the present invention, and Fig. 2 shows an organometallic compound supply device for vapor phase growth filled with an organometallic compound that is liquid at room temperature. In the figure, 1 is a container, 2 is a carrier gas inlet, 3 is a carrier gas outlet, and 4 is an organometallic compound supported on a carrier. Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)気相成長に用いる常温で固体の有機金属化合物に
対して不活性な担体に該有機金属化合物を被覆してなる
ことを特徴とする気相成長に用いる担体担持有機金属化
合物。
(1) A carrier-supported organometallic compound for use in vapor phase growth, characterized in that the organometallic compound is coated on a carrier that is inert to the organometallic compound that is solid at room temperature.
(2)常温で固体の有機金属化合物を収納し、該気化用
固体有機金属化合物を昇華せしめる容器よりなる気相成
長用有機金属化合物供給装置において、該容器上部にキ
ャリヤーガス導入口、底部にキャリヤーガス導出口を配
設し、かつ該容器内に気化用有機金属化合物に対して不
活性な担体に該有機金属化合物を被覆した担体担持有機
金属化合物を充填してなることを特徴とする気相成長用
有機金属化合物供給装置。
(2) In an organometallic compound supply device for vapor phase growth consisting of a container that stores an organometallic compound that is solid at room temperature and sublimates the solid organometallic compound for vaporization, the container has a carrier gas inlet at the top and a carrier gas inlet at the bottom. A gas phase characterized by having a gas outlet and filling the container with a carrier-supported organometallic compound in which the organometallic compound is coated on a carrier inert to the organometallic compound for vaporization. Organometallic compound supply device for growth.
JP63094093A 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth Expired - Lifetime JP2651530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094093A JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094093A JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Publications (2)

Publication Number Publication Date
JPH01265511A true JPH01265511A (en) 1989-10-23
JP2651530B2 JP2651530B2 (en) 1997-09-10

Family

ID=14100837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094093A Expired - Lifetime JP2651530B2 (en) 1988-04-15 1988-04-15 Organometallic compound supply equipment for vapor phase growth

Country Status (1)

Country Link
JP (1) JP2651530B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
WO2004011694A3 (en) * 2002-07-29 2004-08-19 Applied Materials Inc Method and apparatus for generating gas to a processing chamber
JP2005033146A (en) * 2003-07-11 2005-02-03 Tosoh Finechem Corp Method of packing solid organometallic compound and packing container
JP2005535112A (en) * 2002-07-30 2005-11-17 エーエスエム アメリカ インコーポレイテッド Sublimation system using carrier gas
JP2007053186A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Organometallic compound supply container
JP2008111147A (en) * 2006-10-30 2008-05-15 Sumitomo Chemical Co Ltd Method for supplying solid organometallic compound
JP2008538158A (en) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド System for delivering reagents from solid materials
WO2009123117A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organometallic-compound feeder
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
US8137462B2 (en) 2006-10-10 2012-03-20 Asm America, Inc. Precursor delivery system
JP2013127121A (en) * 2006-03-15 2013-06-27 Ube Industries Ltd Carrier-supported organometallic compound for vapor-phase growth, method of producing the same, and carrier-supported organometallic compound filling device filled with the compound
US9991095B2 (en) 2008-02-11 2018-06-05 Entegris, Inc. Ion source cleaning in semiconductor processing systems
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system
US11634812B2 (en) 2018-08-16 2023-04-25 Asm Ip Holding B.V. Solid source sublimator
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7722720B2 (en) 2004-12-08 2010-05-25 Rohm And Haas Electronic Materials Llc Delivery device
JP5431649B2 (en) * 2006-03-15 2014-03-05 宇部興産株式会社 Carrier-supported organometallic compound filling device for vapor phase growth, method for producing carrier-supported organometallic compound for vapor phase growth, and method for supplying carrier-supported organometallic compound for vapor phase growth
JP5209899B2 (en) 2006-05-22 2013-06-12 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Delivery device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455820A (en) * 1987-08-27 1989-03-02 Ube Industries Charging method for organic metallic compound in gas cylinder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6455820A (en) * 1987-08-27 1989-03-02 Ube Industries Charging method for organic metallic compound in gas cylinder

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269389A (en) * 1988-08-31 1990-03-08 Toyo Stauffer Chem Co Formation of saturated vapor of solid organometallic compound in vapor growth method
JP2004134741A (en) * 2002-06-17 2004-04-30 Asm Internatl Nv Control system for sublimation of reactant
US7851019B2 (en) 2002-06-17 2010-12-14 Asm International N.V. Method for controlling the sublimation of reactants
JP4486794B2 (en) * 2002-06-17 2010-06-23 エーエスエム インターナショナル エヌ.ヴェー. Method for generating vapor from solid precursor, substrate processing system and mixture
US7601225B2 (en) 2002-06-17 2009-10-13 Asm International N.V. System for controlling the sublimation of reactants
WO2004011694A3 (en) * 2002-07-29 2004-08-19 Applied Materials Inc Method and apparatus for generating gas to a processing chamber
US7294208B2 (en) 2002-07-29 2007-11-13 Applied Materials, Inc. Apparatus for providing gas to a processing chamber
JP2005535112A (en) * 2002-07-30 2005-11-17 エーエスエム アメリカ インコーポレイテッド Sublimation system using carrier gas
JP2005033146A (en) * 2003-07-11 2005-02-03 Tosoh Finechem Corp Method of packing solid organometallic compound and packing container
JP2008538158A (en) * 2005-03-16 2008-10-09 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド System for delivering reagents from solid materials
JP4922286B2 (en) * 2005-03-16 2012-04-25 アドバンスド テクノロジー マテリアルズ,インコーポレイテッド Ion implantation system, fluorine chemical supply source, and xenon difluoride supply method
JP2012052669A (en) * 2005-03-16 2012-03-15 Advanced Technology Materials Inc System for delivery of reagent from solid source thereof
JP2007053186A (en) * 2005-08-17 2007-03-01 Sumitomo Chemical Co Ltd Organometallic compound supply container
JP4710481B2 (en) * 2005-08-17 2011-06-29 住友化学株式会社 Organometallic compound supply container
JP2013127121A (en) * 2006-03-15 2013-06-27 Ube Industries Ltd Carrier-supported organometallic compound for vapor-phase growth, method of producing the same, and carrier-supported organometallic compound filling device filled with the compound
US9593416B2 (en) 2006-10-10 2017-03-14 Asm America, Inc. Precursor delivery system
US8137462B2 (en) 2006-10-10 2012-03-20 Asm America, Inc. Precursor delivery system
JP2008111147A (en) * 2006-10-30 2008-05-15 Sumitomo Chemical Co Ltd Method for supplying solid organometallic compound
US8021441B2 (en) 2006-10-30 2011-09-20 Sumitomo Chemical Company, Limited Method of vaporizing solid organometallic compound
GB2443531B (en) * 2006-10-30 2010-03-17 Sumitomo Chemical Co Method of vaporizing solid organanometallic compound
US9991095B2 (en) 2008-02-11 2018-06-05 Entegris, Inc. Ion source cleaning in semiconductor processing systems
WO2009123117A1 (en) * 2008-03-31 2009-10-08 住友化学株式会社 Organometallic-compound feeder
US10876205B2 (en) 2016-09-30 2020-12-29 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11377732B2 (en) 2016-09-30 2022-07-05 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11926894B2 (en) 2016-09-30 2024-03-12 Asm Ip Holding B.V. Reactant vaporizer and related systems and methods
US11634812B2 (en) 2018-08-16 2023-04-25 Asm Ip Holding B.V. Solid source sublimator
US11773486B2 (en) 2018-08-16 2023-10-03 Asm Ip Holding B.V. Solid source sublimator
US11624113B2 (en) 2019-09-13 2023-04-11 Asm Ip Holding B.V. Heating zone separation for reactant evaporation system

Also Published As

Publication number Publication date
JP2651530B2 (en) 1997-09-10

Similar Documents

Publication Publication Date Title
JPH01265511A (en) Organometallic compound supported on a carrier for use in vapor phase growth and an organometallic compound supply device for vapor phase growth using the same
KR101339759B1 (en) Delivery Device
JP5394398B2 (en) Solid precursor sublimator
KR101178030B1 (en) Vapor delivery system, vaporizer, vaporizer unit and method for delivering a vaporized source material
EP2418300B1 (en) Delivery device and method of use thereof
GB2224218A (en) Method of producing saturated vapour of solid metal organic compounds in a metal organic chemical vapour deposition method.
EP0714999A1 (en) Method for sublimating a solid material and a device for implementing the method
EP1026290B1 (en) Method and apparatus for producing silicon carbide single crystal
US3729335A (en) Method of depositing inorganic coatings from vapour phase
JP4310880B2 (en) Method and apparatus for producing silicon carbide single crystal
JP5050739B2 (en) Organometallic compound supply container
US5458669A (en) Process for purification of gallium material
JP2004339029A (en) Method and apparatus for producing silicon carbide single crystal
CN1916233B (en) Organic metal compound supplying container
US20080121182A1 (en) Apparatus of supplying organometallic compound
US4986941A (en) Shotting apparatus and process
JP5431649B2 (en) Carrier-supported organometallic compound filling device for vapor phase growth, method for producing carrier-supported organometallic compound for vapor phase growth, and method for supplying carrier-supported organometallic compound for vapor phase growth
JP2005225691A (en) Method and apparatus for producing high-purity SiO solid
JPH06183897A (en) Method for growing silicon carbide single crystal
JP5045062B2 (en) Method for supplying solid organometallic compound
JP6627737B2 (en) Single crystal pulling device
JPS61158890A (en) crystal growth equipment
JP2589985B2 (en) Method for growing compound semiconductor crystal
JP5262083B2 (en) Solid organometallic compound feeder
Anderson et al. Purification manufacturing and testing bi-component iodide pellets for metal halide lamps

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080523

Year of fee payment: 11

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

EXPY Cancellation because of completion of term