JPH01262330A - High-speed turbo prop - Google Patents
High-speed turbo propInfo
- Publication number
- JPH01262330A JPH01262330A JP9245888A JP9245888A JPH01262330A JP H01262330 A JPH01262330 A JP H01262330A JP 9245888 A JP9245888 A JP 9245888A JP 9245888 A JP9245888 A JP 9245888A JP H01262330 A JPH01262330 A JP H01262330A
- Authority
- JP
- Japan
- Prior art keywords
- propeller
- cowling
- pivot shaft
- pitch
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、次世代航空機用進退システムの高効率化、安
全性の向上及び低騒音化のために有用な高速ターボプロ
ップに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-speed turboprop useful for increasing the efficiency, improving safety, and reducing noise of a next-generation aircraft advance/retreat system.
(従来技術)
次世代航空機の推進システムとして、高速ターボプロッ
プが、アメリカ合衆国を中心として研究開発されている
。これの特徴は第5図に示すように、後退角を有し、ス
ピナ1にピッチ可変自在に支持されたワイドコードの8
〜10枚程度の翼枚数で作動することにより、巡航マツ
ハ0.75ぐらいで航空機を推進させる技術である。と
ころが、このような高い巡航マツハを維持するためには
、これまでの技術では、プロペラ2先端の相対マツハ数
を音速以上にせざるを得ない。よって超音速流での効率
低下を防ぐため、プロペラ2への有効マツハを音速以下
にする目的で後退角をつけ且つ、抵抗をより少なくする
ため厚み・翼弦長比が2〜3%を有する超薄質の採用が
必須となる。(Prior Art) High-speed turboprops are being researched and developed as a propulsion system for next-generation aircraft, mainly in the United States. As shown in Fig. 5, the feature of this is that the wide cord has a receding angle and is supported by the spinner 1 in a variable pitch manner.
It is a technology that propels an aircraft with a cruise speed of about 0.75 by operating with about 10 wings. However, in order to maintain such a high cruising speed, with conventional technology, the relative speed at the tip of the propeller 2 has to be made higher than the speed of sound. Therefore, in order to prevent a drop in efficiency in supersonic flow, a sweep angle is provided to reduce the effective force to the propeller 2 below the speed of sound, and the thickness to chord length ratio is 2 to 3% to reduce resistance. It is essential to use ultra-thin material.
(本発明が解決しようとする課題)
前述した従来技術の形態は空気力学的、および構造力学
上からみて、高い技術を要求され、プロペラ2が作動中
にフラッタ(きりもみ)などで破損する危険性が高い。(Problems to be Solved by the Present Invention) The form of the prior art described above requires high technology from the viewpoint of aerodynamics and structural mechanics, and there is a risk that the propeller 2 will be damaged due to flutter during operation. Highly sexual.
さらに、プロペラ2の宿命として、離陸から巡航に至る
過程でプロペラ2の取付角すなわちピッチの変更が必要
であり、その変換機構3は、プロペラ2の根本をささえ
るスピナlに収納されている。しかし、スピナIは外径
が極めて小さいので、翼枚数が10を大幅に越えると、
ピッチ変更が不可能になる。即ち、翼枚数がlOを越え
るプロペラ2のピッチ可変機構3はスピナ1内に納める
ことができない。Furthermore, as a fate of the propeller 2, it is necessary to change the mounting angle or pitch of the propeller 2 during the process from takeoff to cruising, and the conversion mechanism 3 is housed in a spinner 1 that supports the base of the propeller 2. However, since the outer diameter of Spinner I is extremely small, if the number of blades greatly exceeds 10,
Pitch changes become impossible. In other words, the variable pitch mechanism 3 of the propeller 2 having more than 10 blades cannot be housed in the spinner 1.
さらに、高速ターボプロップ機の巡航マツハを0.75
またはそれ以上にするために、翼枚数を限界近くの10
枚に増やしかつ、翼弦長を大きくワイドコードにして、
翼の空力荷重を最大に持ってきてもなお、プロペラ先端
の相対速度が音速を越え、後退角付き超Fj4翼に廿ざ
るをえない。In addition, the high-speed turboprop cruiser Matsuha is 0.75
In order to increase the number of blades to 10, which is close to the limit,
By increasing the number of blades and increasing the chord length to a wider chord,
Even with the maximum aerodynamic load on the wings, the relative speed at the tip of the propeller still exceeds the speed of sound, forcing the use of ultra-Fj4 wings with swept angles.
それ故に、本発明は前述した従来技術の不具合を解消さ
せることを解決すべき課題とする。Therefore, it is an object of the present invention to solve the above-mentioned problems of the prior art.
(課題を解決するための手段)
、本発明は、前述した課題を解決するために、ターボプ
ロップのスピナに固定された第1のピボット軸に対し回
転自在に支持された15−25枚のプロペラ、該プロペ
ラのチップ部に固定された第2のピボット軸を回転自在
に支持し且つ該チップまわりに配された環状のカウリン
グ、およびプロペラのピッチ可変回転中心に配された第
2のピボットに連結され且つカウリング内に配される部
品を有するピッチ可変機構を有し、該ピッチ可変機構に
よりプロペラのピッチ角を調整自在とした高速ターボプ
ロップを提供する。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention provides a propeller with 15 to 25 blades rotatably supported on a first pivot shaft fixed to a spinner of a turboprop. , rotatably supports a second pivot shaft fixed to the tip of the propeller, and is connected to an annular cowling disposed around the tip and a second pivot disposed at the variable pitch rotation center of the propeller. To provide a high-speed turboprop which has a variable pitch mechanism having a part arranged in a cowling and which allows the pitch angle of a propeller to be freely adjusted by the variable pitch mechanism.
(作 用)
プロペラ根本側のスピナに収納されていたピッチ可変機
構を外径の大きいプロペラ先端側に移すことにより、翼
枚数がlOを大幅に越えても空間的にはピッチ可変が可
能になる。例えば、直径3.6m、翼枚数20ならば翼
間距離015m以上が確保できる。そこで、従来の周速
240m/s程度の高速回転から1/2の120m/s
に周速を落とせば、遠心力により材料にかかる応力は(
1/2)”に減少すなわち2割5分になる。可変機構部
を新たに設けることにより遠心力が増加するが、翼の付
は根部にかかる遠心力を以前と同一にする条件を与える
と、簡単な力のバランス計算により、mt =(r、
/rz)(s/m、)m、 ((ω1/ωt)” −
(m3/s+)(rz/r+))
1)となる。ここで、III+ atは従
来の翼及び可変機構部の質量、rl+ r、はそれらの
重心までの半径位置、ω1.ω2は回転角速度でω2は
可変機構部の取り付いた場合とする。また、l、は新た
な翼の質量であり、r、は重心位置とする。(Function) By moving the variable pitch mechanism housed in the spinner at the base of the propeller to the tip of the propeller, which has a larger outer diameter, it becomes possible to vary the pitch spatially even if the number of blades greatly exceeds 1O. . For example, if the diameter is 3.6 m and the number of blades is 20, a distance between the blades of 015 m or more can be ensured. Therefore, from the conventional high-speed rotation of about 240 m/s to 120 m/s, which is half the circumferential speed of the conventional
If the circumferential speed is reduced to , the stress applied to the material due to centrifugal force will be (
1/2)", or 25%.The centrifugal force increases by adding a new variable mechanism, but if the wing attachment provides conditions to keep the centrifugal force applied to the root the same as before. , by simple force balance calculation, mt = (r,
/rz)(s/m,)m, ((ω1/ωt)” −
(m3/s+) (rz/r+))
1). Here, III+at is the mass of the conventional wing and variable mechanism part, rl+r is the radial position to their center of gravity, and ω1. ω2 is the rotational angular velocity, and ω2 is the case where the variable mechanism is attached. Also, l is the mass of the new wing, and r is the center of gravity position.
8枚から20枚に増やす時、翼弦長の増加2割を考慮し
て一、!3g、とする。角速度は新たな翼では半分とな
るので、(ω1/ωZ)”=4とおける。When increasing from 8 blades to 20 blades, take into consideration the 20% increase in chord length! 3g. Since the angular velocity will be halved with the new wing, we can set (ω1/ωZ)”=4.
r、/rt = 0.75 、r*/r、= 1.08
と見積もるので弐(1)から
mt ” 1.7 m+ (21となる。r,/rt = 0.75, r*/r, = 1.08
Therefore, from 2(1), mt ” 1.7 m+ (21).
可変機構部をもとの翼質量の1.7倍程度に抑えておけ
ば、強度的には耐えられる。次に、翼枚数を20、周速
を120m八、外径3.2mとし、巡航マツハ0.75
で2500kw (38shp/ f L”)の軸出力
を有する高速ターボプロップの空気力学及び熱力学的計
算を試みた。出力及び巡航マツハを同一に保って、翼枚
数を8にして従来のターボプロップに近づけると、現在
の空気力学及び熱力学上の常識から見て、周速を240
m八程度へ高めないと設計が成りたたないことも同時に
確認できた。これらの電算機による計算結果を第4図に
対比して示す。If the variable mechanism part is kept to about 1.7 times the original blade mass, it can withstand the strength. Next, the number of blades is 20, the circumferential speed is 120m8, the outer diameter is 3.2m, and the cruising Matsuha is 0.75m.
I tried to calculate the aerodynamics and thermodynamics of a high-speed turboprop with a shaft power of 2500kw (38shp/f L").The power and cruise speed were kept the same, and the number of blades was changed to 8 to make it a conventional turboprop. If you bring it closer, the peripheral speed will be 240, considering current aerodynamic and thermodynamic common sense.
At the same time, it was confirmed that the design would not work unless the height was increased to around m8. The results of these computer calculations are shown in FIG. 4 in comparison.
本発明による空力的、熱力的設計の特徴は、ソリデイテ
ィ (=翼弦長/翼間距離)を大きくかつ、プロペラ高
さ方向にほぼ同一にし、よって契負荷を均等にしたこと
、及び、先端マツハを1以下にできたことにある。The features of the aerodynamic and thermodynamic design according to the present invention are that the solidity (=blade chord length/interblade distance) is large and almost the same in the propeller height direction, thereby making the contractile load even. The reason is that we were able to reduce the number to 1 or less.
一つの犬の負圧・正圧倒の圧力差の最大値は、周方向の
運動方程式に簡単な演算を施し、二、三の仮定のちとに
ΔP = (9/ 2 ) V、” (1−exp (
−4−5in(φ/2)/σ(1+5in2r)) )
(3)となる。ΔPは圧力差、
■、、は翼前方の軸流速度、φは翼のそり角、σはソリ
デイティで(翼弦長)/(翼間距離)で与えられる。ρ
は空気密度、γはピッチ角とする。翼が作動することに
よりΔPが生じるのであるから、周速度Uを圧力に換算
した量で式(3)を除した値を仮に、空力荷重係数ηと
名づける。The maximum value of the pressure difference between negative pressure and positive pressure for one dog can be determined by performing simple calculations on the equation of motion in the circumferential direction, and after making a few assumptions, ΔP = (9/2) V, " (1- exp (
-4-5in(φ/2)/σ(1+5in2r))
(3) becomes. ΔP is the pressure difference,
■, , is the axial velocity in front of the blade, φ is the deflection angle of the blade, and σ is the solidity, which is given by (blade chord length)/(distance between blades). ρ
is the air density and γ is the pitch angle. Since ΔP occurs when the blade operates, the value obtained by dividing equation (3) by the amount obtained by converting the circumferential velocity U into pressure is tentatively named the aerodynamic load coefficient η.
η=ΔP/(ρU”/2) (41そこ
で、従来の高速ターボプロップのプロペラ翼を式(4)
で計算してみるとη=0.5(先端)からη=4(1本
)に設計されていた。η=ΔP/(ρU”/2) (41Therefore, the propeller blade of a conventional high-speed turboprop is expressed by formula (4)
When calculated, the design was from η = 0.5 (tip) to η = 4 (1 piece).
以上の知見のもとに、第4図の対比から、本発明による
設計の特質を述べる。まず、翼先端(R=1.6m)で
は、γ=43° (従来型)から、T=22° (本発
明)になったので、ソリデイティσ=0.2(従来型)
からσ−1,5(本発明)に増やすと式(3)のexp
にかかる項a (1+5in2r)は0.29から1.
57にできる。この著しい増加のため、周速が半分にな
っても空力荷重係数η=0.50をもとのままで維持で
きる。Based on the above knowledge, the characteristics of the design according to the present invention will be described by comparing FIG. 4. First, at the blade tip (R = 1.6 m), T = 22° (invention) from γ = 43° (conventional type), so solidity σ = 0.2 (conventional type).
When increasing from σ to σ-1,5 (in the present invention), exp
The term a (1+5in2r) is between 0.29 and 1.
I can do it in 57. Due to this significant increase, the aerodynamic load coefficient η=0.50 can be maintained as it was even if the circumferential speed was halved.
一方、翼根部においては、σ=1からσ=2にして式(
3)の〔〕の値を0.5(従来型)から0.3(本発明
)に減じてかつ、ηをあまり変化させないようにするた
めに内径側半径を増加させた。図2では半径を従来型よ
り1割3分増やした場合を例示しているが、このように
するとη=8ぐらいで抑えられる。ところが、前面面積
の減少で流量が8%減ることになる。推力を一定に保つ
には軸流速度を速くする必要があり、推進効率として4
%減少することは避けられない。これに伴って、軸馬力
を一定に保つために円周方向速度νTが約2倍になる。On the other hand, at the blade root, σ=1 to σ=2 and the formula (
The value of [] in 3) was reduced from 0.5 (conventional type) to 0.3 (invention), and the inner radius was increased in order to not change η too much. Although FIG. 2 shows an example in which the radius is increased by 10/3 compared to the conventional type, by doing so, η=8 can be suppressed. However, the flow rate will be reduced by 8% due to the reduction in front surface area. In order to keep the thrust constant, it is necessary to increase the axial velocity, and the propulsion efficiency is 4.
% decrease is inevitable. Along with this, the circumferential speed νT approximately doubles in order to keep the shaft horsepower constant.
これは、スワール損失として推力換算0.4%程度増え
たことになる。さらに、ピッチ可変機構収納のためのカ
ウリング損失は、この場合約0.8%と見積もれる。This means that the swirl loss increases by about 0.4% in terms of thrust. Furthermore, the cowling loss for housing the variable pitch mechanism is estimated to be about 0.8% in this case.
結局のところ、本発明の推進方法をもつターボプロップ
機は、現在開発中の従来型に比べて推進効率5%の減少
となるが、それでもなお、ジェット機に比べると20〜
25%の推進効率改善が得られる。As a result, a turboprop aircraft using the propulsion method of the present invention will have a propulsion efficiency of 5% less than the conventional type currently under development, but will still have a propulsion efficiency of 20-20% less than a jet aircraft.
A propulsion efficiency improvement of 25% is obtained.
(実施例)
第1及び2A、B、C図に示すように、本発明の一例は
、スピナlの外周面に15−25枚のプロペラ2を、回
動自在に支持する。スピナ1への各プロペラ2の支持は
、スピナ1に固定された複数個の第1のピボット軸4に
各プロペラ2のピンチ可変回転中心5に沿って設けたプ
ロペラ2の溝を嵌入させることで行なう。各プロペラ2
のチップ部であって且つピンチ可変回転中心5に沿って
第2のピボット軸6を設ける。(Example) As shown in Figures 1 and 2A, B, and C, an example of the present invention rotatably supports 15 to 25 propellers 2 on the outer peripheral surface of a spinner I. Each propeller 2 is supported on the spinner 1 by fitting grooves of the propeller 2 provided along the pinch variable rotation center 5 of each propeller 2 into a plurality of first pivot shafts 4 fixed to the spinner 1. Let's do it. Each propeller 2
A second pivot shaft 6 is provided along the pinch variable rotation center 5 at the tip portion.
スピナlの周囲に環状のカウリング7を配す。An annular cowling 7 is arranged around the spinner l.
カウリング7は、第2のピボット軸6を受ける回転自在
に受ける溝を有し、さらに、その内部に第2のピボット
軸6に枢着されたロッド8を収納する。カウリング7の
後部には、カウリング7に対して周方向に摺動自在に支
持された環状の第1サポータ9を配し、ロッド8の一端
を第1サポータ9に枢支させる。この第1サポータ9を
、カウリング7の後縁に複数個の離間したインロー構造
10にて、カウリング7に対して第1のサポータ9を相
対移動可能に保持する。第1のサポータ9内の適所にラ
ック1)とピニオン13を配し、このピニオン13をカ
ウリング7内のモータ12に結合させる。モータ12を
作動させると、ラックtiとピニオン13によりカウリ
ング7に対してサポータ9を回動させる。このサポータ
9のカウリング7に対する相対的動きは、ロッド8を第
2のピボット軸6を中心に回動させて、プロペラ2のピ
ンチ角を可変とさせる。所望のピッチ角を得るには、モ
ータ12への印加電流をシステムコンピュータ(シスコ
ンとも云う)により調整する。The cowling 7 has a groove for rotatably receiving the second pivot shaft 6, and further accommodates a rod 8 pivotally connected to the second pivot shaft 6 therein. An annular first supporter 9 that is slidably supported in the circumferential direction with respect to the cowling 7 is disposed at the rear of the cowling 7, and one end of the rod 8 is pivotally supported by the first supporter 9. This first supporter 9 is held movably relative to the cowling 7 by a plurality of spaced spigot structures 10 on the rear edge of the cowling 7. A rack 1) and a pinion 13 are arranged at appropriate positions within the first supporter 9, and the pinion 13 is coupled to a motor 12 within the cowling 7. When the motor 12 is operated, the rack ti and pinion 13 rotate the supporter 9 relative to the cowling 7. This relative movement of the supporter 9 with respect to the cowling 7 causes the rod 8 to rotate about the second pivot shaft 6, thereby making the pinch angle of the propeller 2 variable. In order to obtain a desired pitch angle, the current applied to the motor 12 is adjusted by a system computer (also referred to as a system controller).
第2図に示す例では、モータ12をスピナl側に配した
が、電動又は油圧モータを、サポータ9内に配し、ロッ
ド8をモータ又はモータに連結したアームを介して変位
させてもよい。この場合、モータはスピナ1内からの動
力源及びシスコンからの信号に応じて作動をする。In the example shown in FIG. 2, the motor 12 is disposed on the spinner l side, but an electric or hydraulic motor may be disposed within the supporter 9 and the rod 8 may be displaced via the motor or an arm connected to the motor. . In this case, the motor operates in response to a power source from within the spinner 1 and a signal from the system controller.
これとは別に、第3図の如く、サポータ9内にアブト式
レール13を配し、このレール12に各ロッド8の先端
に枢着された台車13を噛合せ、各台車13を適当な手
段でその間隔を常に一定とさせるように連結させる。台
車13の内の1つに小型モータを配し、この小型モータ
にスピナ1内のシスコンより信号を送り、モータを作動
させて、各台車13をレール12に一定量だけ移動させ
、プロペラ2の所望のピッチ角を得る。Separately, as shown in FIG. 3, an abutment type rail 13 is arranged inside the supporter 9, and a bogie 13 pivotally attached to the tip of each rod 8 is engaged with this rail 12, and each bogie 13 is connected by an appropriate means. Connect them so that the interval is always constant. A small motor is arranged on one of the bogies 13, and a signal is sent to this small motor from the system controller in the spinner 1 to operate the motor and move each bogie 13 onto the rail 12 by a certain amount. Obtain the desired pitch angle.
作動中のプロペラ翼のピッチ可変に要するモーメントは
第6図に示すように、ピンチ可変の中心軸回りの空気力
により生じるモーメントの差は後退翼を有しないので、
ピッチ可変の中心軸をや電力は小さくてすむ。すなわち
、本発明によるピッチ可変機構の大きさや重量を小さく
設計することが可能である。As shown in Figure 6, the moment required to change the pitch of the propeller blade during operation is the difference in moment caused by the aerodynamic force around the center axis of the pinch change, since there is no swept blade.
The pitch-variable central axis requires less power. That is, it is possible to design the variable pitch mechanism according to the present invention to be small in size and weight.
(発明による効果)
(1)後退角付き超薄質を採用する必要がなくなり、低
速回転とあいまった翼フラッタによる破損の危険性が少
なくなった。(Effects of the invention) (1) It is no longer necessary to use an ultra-thin material with a swept angle, and the risk of damage due to blade flutter combined with low speed rotation is reduced.
(2) プロペラ翼の全域にわたって亜音速領域にな
ったことにより、翼厚みを増やせ、構造上は安全側に、
空力的には効率及び負荷の向上につながる。このことは
、ジェットエンジンで蓄積されてきた翼列設計データが
利用でき、開発に要する期間を大幅に短縮できる。(2) Since the entire propeller blade is in the subsonic range, the thickness of the blade can be increased and the structure is on the safer side.
Aerodynamically, it leads to improved efficiency and load. This allows the use of blade cascade design data that has been accumulated for jet engines, and can significantly shorten the time required for development.
(3)従来の1/2という低回転数のため、回転による
騒音が減少する。従って、高速ターボプロップ機の開発
において、防音材を施した新たな機体構造を考える必要
がな(、在来機の転用が可能となり、開発コストの著し
い軽減につながる。(3) Since the rotation speed is 1/2 that of the conventional one, noise caused by rotation is reduced. Therefore, in the development of high-speed turboprop aircraft, there is no need to consider a new aircraft structure with soundproofing materials (it is possible to reuse conventional aircraft, leading to a significant reduction in development costs.
(4)後退角が付かないので、ピンチ可変に要するモー
メントを小さくできる。(4) Since there is no sweepback angle, the moment required for pinch adjustment can be reduced.
第1図は本発明の一例の斜視図、第2A、B。
0図はその各部分分解図、第3図は別の例の平面図、第
4図は空力設計値の比較を示すグラフ図、第5図は従来
例の分解図、第6図はプロペラ翼の回転モーメントを示
す平面図である。
図中: 1−・・・−・−スピナ、 2・−−−−−
−プロペラ、4.6・・・−・−・ピボット軸、 7
−・−・カウリング、9−・−−一−−サポータ、
12−・−・−モータ、13・−・・・台車。
第6図FIG. 1 is a perspective view of an example of the present invention, and FIGS. 2A and 2B. Figure 0 is a partial exploded view of each part, Figure 3 is a plan view of another example, Figure 4 is a graph showing a comparison of aerodynamic design values, Figure 5 is an exploded view of the conventional example, and Figure 6 is a propeller blade. FIG. In the diagram: 1-...-- Spinner, 2-------
-Propeller, 4.6...--Pivot axis, 7
−・−・Cowling, 9−・−−1−−Supporter,
12--Motor, 13--Dolly. Figure 6
Claims (3)
ット軸に対し回転自在に支持された15−25枚のプロ
ペラ、該プロペラのチップ部に固定された第2のピボッ
ト軸を回転自在に支持し且つ該チップまわりに配された
環状のカウリング、およびプロペラのピッチ可変回転中
心に配された第2のピボットに連結され且つカウリング
内に配される部品を有するピッチ可変機構を有し、該ピ
ッチ可変機構によりプロペラのピッチ角を調整自在とし
た高速ターボプロップ。(1) 15-25 propellers are rotatably supported on a first pivot shaft fixed to the spinner of the turboprop, and a second pivot shaft fixed on the tip of the propeller is rotatably supported. and an annular cowling disposed around the tip, and a variable pitch mechanism including a part disposed within the cowling and connected to a second pivot disposed at the center of rotation of the pitch variable of the propeller. A high-speed turboprop that uses a variable mechanism to freely adjust the pitch angle of the propeller.
方を周方向に移動させ、全てのプロペラのピッチ可変を
同じとさせた請求項(1)の高速ターボプロップ。(2) The high-speed turboprop according to claim (1), wherein the cowling is divided into front and rear parts in the axial direction, one of which is moved in the circumferential direction, and the pitch variable of all propellers is made the same.
又は油圧モータで行なう請求項(1)の高速ターボプロ
ップ。(3) The high-speed turboprop according to claim (1), wherein the pitch of the propeller is varied by a small electric or hydraulic motor in the cowling.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9245888A JPH01262330A (en) | 1988-04-14 | 1988-04-14 | High-speed turbo prop |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9245888A JPH01262330A (en) | 1988-04-14 | 1988-04-14 | High-speed turbo prop |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01262330A true JPH01262330A (en) | 1989-10-19 |
JPH056001B2 JPH056001B2 (en) | 1993-01-25 |
Family
ID=14054932
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9245888A Granted JPH01262330A (en) | 1988-04-14 | 1988-04-14 | High-speed turbo prop |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262330A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257058A (en) * | 2015-06-22 | 2016-12-28 | 通用电气公司 | The culvert type thrust with asynchronous fan blade variable pitch produces system |
-
1988
- 1988-04-14 JP JP9245888A patent/JPH01262330A/en active Granted
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106257058A (en) * | 2015-06-22 | 2016-12-28 | 通用电气公司 | The culvert type thrust with asynchronous fan blade variable pitch produces system |
JP2017036724A (en) * | 2015-06-22 | 2017-02-16 | ゼネラル・エレクトリック・カンパニイ | Ducted thrust producing system with asynchronous fan blade pitching |
US9835037B2 (en) | 2015-06-22 | 2017-12-05 | General Electric Company | Ducted thrust producing system with asynchronous fan blade pitching |
CN106257058B (en) * | 2015-06-22 | 2019-03-19 | 通用电气公司 | Culvert type thrust generation system with asynchronous fan blade variable pitch |
Also Published As
Publication number | Publication date |
---|---|
JPH056001B2 (en) | 1993-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10570926B2 (en) | Variable-geometry ducted fan | |
US4171183A (en) | Multi-bladed, high speed prop-fan | |
US4789115A (en) | VTOL aircraft | |
CN107672802B (en) | Slotted duct type rotor wing aircraft with rolling flow | |
US2940689A (en) | Turbine-driven fans | |
CN108082466A (en) | A kind of tilting duct connection wing layout vertically taking off and landing flyer | |
CN109131837B (en) | Convertible propeller | |
US20120288374A1 (en) | Air propeller arrangement and aircraft | |
US11608743B1 (en) | Low-noise blade for an open rotor | |
JP2019034719A (en) | Low-noise airfoil for open rotor | |
CN109515704B (en) | Ducted plume rotorcraft based on cycloidal propeller technology | |
US2464726A (en) | Rotary wing aircraft | |
WO2018072757A1 (en) | Self-spinning control system and flight vehicle | |
CN100478559C (en) | High supersound air-intake air turbogenerator | |
US3121544A (en) | Safety and high lift system and apparatus for aircraft | |
CN201712785U (en) | Cycloidal propeller | |
US3422625A (en) | Jet engine with an axial flow supersonic compressor | |
US2678785A (en) | Rotating blade speed brake | |
CN209581870U (en) | Duct plume rotor craft based on cycloid propeller technology | |
US1556012A (en) | Propeller | |
CN105523181B (en) | Variable-diameter rotor wing and aircraft thereof | |
JPH01262330A (en) | High-speed turbo prop | |
WO2018072756A1 (en) | Aviation power system, aircraft, and method for achieving level flight, vertical takeoff/landing, pitch and roll for aircraft | |
US2595504A (en) | Means for producing thrust | |
CN112124579A (en) | A real-time variable speed rotor for high-speed forward flight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |