JPH01262081A - Joining method of zirconium-based materials and dissimilar materials - Google Patents
Joining method of zirconium-based materials and dissimilar materialsInfo
- Publication number
- JPH01262081A JPH01262081A JP9019288A JP9019288A JPH01262081A JP H01262081 A JPH01262081 A JP H01262081A JP 9019288 A JP9019288 A JP 9019288A JP 9019288 A JP9019288 A JP 9019288A JP H01262081 A JPH01262081 A JP H01262081A
- Authority
- JP
- Japan
- Prior art keywords
- dissimilar
- materials
- zirconium
- bonding
- transformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Pressure Welding/Diffusion-Bonding (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、ジルコニウム系材料と異種材料との直接接合
を図った接合方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bonding method for directly bonding a zirconium-based material and a different material.
[従来の技術]
使用済みの核燃料再処理設備のごとく高濃度硝酸水溶液
を取り扱う設備では、ステンレス鋼、5US304L、
5US310のごときオーステナイト系ステンレス鋼が
用いられるとともに、チタン、ジルコニウムのごとき材
料も使用される。[Prior art] Equipment that handles highly concentrated nitric acid aqueous solutions, such as spent nuclear fuel reprocessing equipment, is made of stainless steel, 5US304L,
Austenitic stainless steels such as 5US310 are used, as well as materials such as titanium and zirconium.
ところが、Zr系材料(純ジルコニウムおよびジルカロ
イのようなZr合金を総称してZr系材料と記述する。However, Zr-based materials (pure zirconium and Zr alloys such as Zircaloy are collectively referred to as Zr-based materials).
)は、普通鋼、さらには上記のごときステンレス鋼、あ
るいはインコネル(インコ社の商品名)などのNi基合
金といった汎用材料との溶接かきわめて困難である。こ
れは、ZrがFe、Ni、Crとの間で金属間化合物を
形成しやすく、しかもこれらの金属間化合物は脆弱で、
接合強度を著しく低下させるからである。したがって、
鉄系材料あるいはNi基合金とZr系材料との間にTI
G溶接等の旧来からの溶接は使用することができない。) is extremely difficult to weld with general-purpose materials such as ordinary steel, stainless steel as mentioned above, or Ni-based alloys such as Inconel (trade name of Inco Corporation). This is because Zr easily forms intermetallic compounds with Fe, Ni, and Cr, and these intermetallic compounds are fragile.
This is because the bonding strength is significantly reduced. therefore,
TI between iron-based material or Ni-based alloy and Zr-based material
Traditional welding such as G welding cannot be used.
そこで、従来においては、例えば特開昭62−2202
92号公報に示すように、Zr系材料と異種材料との直
接接合を避け、中間にタンタルのごときインサート材を
介入して接合する方法がとられている。Therefore, in the past, for example, Japanese Patent Application Laid-Open No. 62-2202
As shown in Japanese Patent No. 92, a method has been adopted in which direct bonding of a Zr-based material and a dissimilar material is avoided, and an insert material such as tantalum is interposed between the two.
しかしながら、インサート材を介在させた場合は、接合
部がそれだけ増加するばかりでなくインサート材の品質
や厚さを厳重に管理する必要が当然に生じる。そのため
、接合部の増加により接合強度の信頼度か低下すること
は否めない。また、インサート利とZr系材料並びに異
種材料との接合強度は少なくともこれらの被接合部材の
うち強度の小さい方の母料強度と同等以上であることか
望ましいわけであるが、このような接合強度を高信頼度
で確保する技術は簡単ではない。However, when an insert material is used, not only the number of joints increases, but also the quality and thickness of the insert material must be strictly controlled. Therefore, it is undeniable that the reliability of the joint strength decreases as the number of joints increases. In addition, it is desirable that the bonding strength between the insert and the Zr-based material and the dissimilar materials be at least equal to or greater than the base metal strength of the smaller strength of these members to be joined. The technology to ensure high reliability is not easy.
一方、最近の接合技術において、超塑性を利用する技術
が、例えば「超塑性状態下の拡散接合」と題する文献(
加熱 寛ら著、社団法人 溶接学会 界面接合研究委員
会、昭和62年9月29日)等で知られている。しかし
、同文献ではZr系材料についてはなんら報告されてい
ない。On the other hand, in recent joining technology, there is a technology that utilizes superplasticity, for example, in the literature entitled "Diffusion joining under superplastic state" (
It is known from Hiroshi Netsu et al., Interfacial Bonding Research Committee, Japan Welding Society, September 29, 1986). However, this document does not report anything about Zr-based materials.
[発明か解決しようとする課題]
そこで、本発明者らは、上述したような従来技術の問題
点を解消しZr系材料と異種材料との直接接合を果たす
ために、Zr系材料について超塑性状態下の拡散接合を
柾々試みた結果、接合時に加えられるべき加圧力によっ
て接合強度か大きく影響することを知見したものである
。しかも、所定の加圧力の範囲では接合界面に存在すべ
き悪性の金属間化合物かきわめて薄い層として抑制され
ていることが確認されている。[Problem to be solved by the invention] Therefore, in order to solve the problems of the prior art as described above and achieve direct bonding between a Zr-based material and a dissimilar material, the present inventors developed a superplastic method for a Zr-based material. As a result of repeated attempts at diffusion bonding under these conditions, we discovered that the bonding strength is greatly affected by the pressure applied during bonding. Furthermore, it has been confirmed that within a predetermined pressure range, malignant intermetallic compounds that should exist at the bonding interface are suppressed to an extremely thin layer.
本発明は、かかる知見をもとに、信頼度の窩い、しかも
簡便な、Zr系材料と異f’i月料との直接接合に係る
接合方法を提供することを目的とするものである。Based on this knowledge, the present invention aims to provide a method for directly joining a Zr-based material and a different f'i material, which is reliable and simple. .
[課題を解決するための手段]
本発明に係るZr系材料と異種材料との接合方法は、Z
r系材料と異種材料を突合せた後、0゜1〜0 、8
kg / mm 2の条件下で加圧し、その状態で突合
せ部を例えば直接通電により抵抗加熱し、所要回数のヒ
ートサイクルを勾えることによりZr系材料に変態超塑
性を起させて両者を接合するものである。[Means for Solving the Problems] The method for joining a Zr-based material and a dissimilar material according to the present invention includes
After matching the r-based material and different materials, 0°1~0,8
Pressure is applied under the condition of kg / mm 2, and in that state, the abutting portion is resistance heated, for example, by direct energization, and the required number of heat cycles is performed to cause transformation superplasticity in the Zr-based material and join the two. It is something.
なお、本発明においては特に、前記突合せ部の形状につ
いて、Zr系材料を雌形テーパ部に、異種材料を雌形テ
ーパ部にそれぞれ形成して楔形の突合せ部とすることか
適当である。In the present invention, it is particularly suitable for the shape of the abutting part to form a wedge-shaped abutting part by forming a Zr-based material on the female tapered part and a different material on the female tapered part.
[作 用]
本発明においては、接合時の加圧ならびにヒートサイク
ルによって生じるZr系材料の変態超塑性現象を利用し
て、Zr系材料の接合表面の活性化を図るとともに、相
手材料との密着化を促進させ、結果として両者の接合性
を向上させる。また、加圧力が大きいと金属間化合物層
が厚く、ある程度小さい範囲であればその層が薄くなる
理由については詳らかでないが、両者間で原子の移動を
含む反応か促進されるためであろうと考えられる。[Function] In the present invention, the transformation superplasticity phenomenon of Zr-based materials caused by pressurization and heat cycles during bonding is used to activate the bonding surface of Zr-based materials and to improve the adhesion with the mating material. This results in improved bonding between the two. Also, the reason why the intermetallic compound layer becomes thicker when the pressure is large, and becomes thinner when the pressure is small is not clear, but it is thought that it may be because a reaction involving the movement of atoms is promoted between the two. It will be done.
また、上記のように特に接合部界面が楔形となっている
ときは、接合面積が増大し、しかも線膨張係数か小さい
方のZr系材料を雌形テーパ部に、大きい方の異種材料
を雌形テーパ部に形成しているため、接合後に焼きばめ
効果が期待でき、継手として十分な接合強さを有する。In addition, especially when the joint interface is wedge-shaped as mentioned above, the joint area increases, and the Zr material with the smaller coefficient of linear expansion is used as the female tapered part, and the larger dissimilar material is used as the female tapered part. Since it is formed in a tapered part, a shrink fit effect can be expected after joining, and it has sufficient joining strength as a joint.
[実施例] 以下、本発明を実施例によりさらに具体的に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.
第1図は本発明方法により得られた異材継手の構成図で
あり、同図(a)は棒材の場合を、同図(b)はパイプ
祠の場合を示すものである。また、この実施例では、楔
形接合部界面の例を示している。図において、1はZr
系材料、2は異種材料で、この実施例ではステンレス(
SUS304L)を使用している。3はZr系材料1の
先端部に形成された雌形テーパ部である。4はZr系材
料1の雌形テーパ部3と突き合わされる異種材料2の雌
形テーパ部である。FIG. 1 is a block diagram of a dissimilar material joint obtained by the method of the present invention, in which (a) shows the case of a bar material, and FIG. 1 (b) shows the case of a pipe shaft. Furthermore, this embodiment shows an example of a wedge-shaped joint interface. In the figure, 1 is Zr
2 is a different material, in this example stainless steel (
SUS304L) is used. Reference numeral 3 denotes a female tapered portion formed at the tip of the Zr-based material 1. Reference numeral 4 denotes a female taper portion of the dissimilar material 2 that is butted against the female taper portion 3 of the Zr-based material 1.
上記のように形成されたZr系材料1と異種材料2を種
々の加圧力条件下で楔形に突合せ、その突合せ部を直接
通電により加熱し、Zrの変態温度862°Cを境に上
下適当な温度幅で所要回数ヒートサイクルを与える。The Zr-based material 1 and the dissimilar material 2 formed as described above are butted together in a wedge shape under various pressure conditions, and the abutted portion is directly heated by energization, and then the Zr-based material 1 and the dissimilar material 2 are heated at appropriate upper and lower temperatures after reaching the Zr transformation temperature of 862°C. Give the required number of heat cycles in the temperature range.
第2図はヒートサイクルのパターン例を示すものである
。ピーク温度を1027°C,ボトム温度を677°C
とし、変態温度通過時の加熱・冷却速度は20℃/se
eとした。また、サイクル回数としては3〜20回で、
10回位が最良の結果をもたらすようである。FIG. 2 shows an example of a heat cycle pattern. Peak temperature 1027°C, bottom temperature 677°C
The heating and cooling rate when passing the transformation temperature is 20℃/se.
It was set as e. In addition, the number of cycles is 3 to 20 times,
About 10 times seems to give the best results.
このようなヒートサイクルを与えることにより、Zr系
祠材料は変態超塑性を起すので、この超塑性状態下でZ
r系制料1と異種材料2に荷重Pを加え両者を加圧接合
するのである。最後に機械加工により所定の寸法に仕上
げる。By applying such a heat cycle, the Zr-based grit material undergoes transformation superplasticity, so under this superplastic state, Zr
A load P is applied to the r-based material 1 and the dissimilar material 2 to join them together under pressure. Finally, it is machined to the desired dimensions.
く実験例〉
(1)供試料の組成および引張強さ(第1表および第2
表参照)
(2)実験条件
加圧力 0 、 1−1 、 0 kg /
n++n 2ヒートザイクル 3〜20回
ヒートパターン 第2図参照
雰囲気 ]0−2TOrr以下(3)実験結果
(第3表参照)
なお、第3表には第1図(a)の楔形接合(WJ)の場
合と、第3図のフラット接合(FJ)の場合を比較して
示しである。Experimental example> (1) Composition and tensile strength of sample (Tables 1 and 2)
(See table) (2) Experimental conditions Pressure force 0, 1-1, 0 kg/
n++n 2 heat cycles 3 to 20 times heat pattern See Figure 2 Atmosphere ] 0-2 TOrr or less (3) Experimental results (See Table 3) Table 3 shows the wedge-shaped junction (WJ) in Figure 1 (a) This is a comparison between the case of 1 and the case of the flat junction (FJ) shown in FIG.
第3表 引張強さ(kg/mm2)
たたし、WJ、FJの添字1は純Zr−3US304L
、添字2はZr合金−8US304Lの各組合せを示す
。Table 3 Tensile strength (kg/mm2) Subscript 1 of Tatami, WJ, and FJ is pure Zr-3US304L
, the subscript 2 indicates each combination of Zr alloy-8US304L.
(4)破断位置(第4表参照)
第4表 破断位置
第4図は加圧力と破断強度の関係を示すグラフであり、
第5図は接合部界面の中間層厚さと破断強度の関係を示
すグラフである。第4図および第5図中、A、Bはそれ
ぞれ第6図の顕微鏡組織写真(A)、(B)に対応する
ものである。また、Aは加圧力0 、 5 kg /
mm 2のとき、Bは加圧力1゜Okg / mm 2
のときのものである。(4) Fracture position (see Table 4) Table 4 Fracture position Figure 4 is a graph showing the relationship between pressing force and fracture strength.
FIG. 5 is a graph showing the relationship between the intermediate layer thickness at the joint interface and the breaking strength. In FIGS. 4 and 5, A and B correspond to microscopic structure photographs (A) and (B) in FIG. 6, respectively. In addition, A is a pressurizing force of 0, 5 kg/
When mm2, B is the pressing force of 1゜Okg/mm2
This is from the time of.
第3表、第4表および第4図、第5図から明らかなよう
に、本発明方法による継手は実用上十分な接合強度を示
しており、かつバラツキも少ない。As is clear from Tables 3 and 4 and FIGS. 4 and 5, the joints produced by the method of the present invention exhibit practically sufficient bonding strength and have little variation.
これに対して、フラット接合の場合は接合強度が安定せ
す、かつ母料破断か得られる接合条件の範囲が狭くなる
か、加圧力を0 、 5 kg / lIl+n 2お
よびその近傍に設定すれば十分に使用に耐えられる接合
強度を得ることかできる。On the other hand, in the case of flat bonding, the range of bonding conditions that can stabilize the bonding strength and cause the base metal to break is narrowed, or if the pressurizing force is set to 0, 5 kg/lIl+n2 or its vicinity. It is possible to obtain a bond strength sufficient to withstand use.
本発明では、楔形接合の場合、加圧力か0,1〜0 、
8 kg / mm 2のとき望ましい強度を示して
いる。これを第5図の顕微鏡組織写真で観察してみると
、上記の範囲内では金属間化合物層か20μm以下の厚
さであるが、加圧力1 、 0 kg / mm 2の
ときは90μmにも厚くなり接合強度の低下をもたらす
。また、楔形接合の場合、線膨脹係数か小さい方のZr
系$4料1に対して線膨脹係数が大きい方のSUS祠料
材料焼きばめ作用を行い、フラット接合に比べて接合強
度の増加に寄与していることか認められる。In the present invention, in the case of wedge-shaped joining, the pressing force is 0.1 to 0,
The desired strength is shown at 8 kg/mm2. If we observe this in the microscopic structure photograph in Figure 5, the thickness of the intermetallic compound layer is less than 20 μm within the above range, but it becomes as thick as 90 μm when the pressing force is 1.0 kg/mm2. It becomes thicker, resulting in a decrease in bonding strength. In addition, in the case of a wedge-shaped joint, the linear expansion coefficient or the smaller of Zr
It can be seen that the SUS abrasive material with the larger coefficient of linear expansion was shrink-fitted to the system $4 material 1, contributing to an increase in bonding strength compared to flat bonding.
[発明の効果]
以上のように本発明によれば、Zr系利料と異種材料と
の直接接合か可能になり、従来のようにインサート祠を
必要としない。接合強度は実用上全く問題はなく、かつ
安定している。したかって、本発明は、Zr系刊料の異
種材料との接合方法としてきわめて便利で信頼度の高い
ものである。[Effects of the Invention] As described above, according to the present invention, it is possible to directly join a Zr-based material and a different material, and an insert hole is not required as in the conventional method. The bonding strength has no practical problems and is stable. Therefore, the present invention is extremely convenient and highly reliable as a method for joining Zr-based materials with dissimilar materials.
第1図(a)、(b)は本発明方法により得られた累月
継手の構成図、第2図はヒートサイクルのパターン例を
示す図、第3図は比較に用いたフラット接合の継手の構
成図、第4図は加圧力と破断強度の関係を示すグラフ、
第5図は接合部界面の中間層厚さと破断強度の関係を示
すグラフ、第6図は本発明の接合界面の顕微鏡組織写真
である。
1・・Zr系材料
2・・異種材料
3・雌形テーパ部
4・雌形テーパ部
代理人 弁理士 佐々木 宗 冶
三 〇
区
In
寸
沫
忌□世椿制牧
桶
Y□罠箭賠悠
手続補正書(方式)
昭和6誰11月 1日Figures 1 (a) and (b) are block diagrams of a cumulative joint obtained by the method of the present invention, Figure 2 is a diagram showing an example of a heat cycle pattern, and Figure 3 is a flat joint joint used for comparison. Figure 4 is a graph showing the relationship between pressing force and breaking strength.
FIG. 5 is a graph showing the relationship between the thickness of the intermediate layer at the joint interface and the breaking strength, and FIG. 6 is a photograph of the microscopic structure of the joint interface of the present invention. 1.Zr-based material 2..Different material 3.Female taper part 4.Female taper part Agent Patent attorney Souzo Sasaki Amendment (method) November 1, 1937
Claims (1)
0.1〜0.8kg/mm^2の条件下で加圧するとと
もに、前記ジルコニウム系材料が変態超塑性を示すヒー
トサイクルを付与して両者を接合することを特徴とする
ジルコニウム系材料と異種材料の接合方法。A zirconium-based material and a dissimilar material are butted together, the abutted portion is pressurized under conditions of 0.1 to 0.8 kg/mm^2, and a heat cycle is applied to the zirconium-based material in which the zirconium-based material exhibits transformation superplasticity. A method for joining zirconium-based materials and dissimilar materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9019288A JPH01262081A (en) | 1988-04-14 | 1988-04-14 | Joining method of zirconium-based materials and dissimilar materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9019288A JPH01262081A (en) | 1988-04-14 | 1988-04-14 | Joining method of zirconium-based materials and dissimilar materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12484888A Division JPH01266980A (en) | 1988-05-24 | 1988-05-24 | Joints between zirconium-based materials and dissimilar materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01262081A true JPH01262081A (en) | 1989-10-18 |
Family
ID=13991617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9019288A Pending JPH01262081A (en) | 1988-04-14 | 1988-04-14 | Joining method of zirconium-based materials and dissimilar materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01262081A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1962353A2 (en) * | 1997-11-19 | 2008-08-27 | Kabushiki Kaisha Toshiba | Joined structure of dissimilar metallic materials |
-
1988
- 1988-04-14 JP JP9019288A patent/JPH01262081A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1962353A2 (en) * | 1997-11-19 | 2008-08-27 | Kabushiki Kaisha Toshiba | Joined structure of dissimilar metallic materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0508414B1 (en) | Joined parts of Ni-Ti alloys with different metals and joining method therefor | |
EP0070177B1 (en) | Diffusion bonding | |
US3060557A (en) | Metal cladding process and products resulting therefrom | |
US2985955A (en) | Metal clad article | |
JPH08141754A (en) | Titanium clad steel plate manufacturing method and titanium clad steel plate | |
JPH01262081A (en) | Joining method of zirconium-based materials and dissimilar materials | |
JPH0811302B2 (en) | Dissimilar metal joining method | |
JPH0255681A (en) | How to join Ti-5Ta material and stainless steel material | |
JPH0255682A (en) | Dissimilar material joints | |
JP3812973B2 (en) | Airtight joint | |
JPH05185250A (en) | Joining material for different kinds of metal | |
JPH01266980A (en) | Joints between zirconium-based materials and dissimilar materials | |
JPH029779A (en) | Production of ceramic-metal composite body | |
JPS61165278A (en) | Stainless steel/copper clad joint welding method | |
JP3626593B2 (en) | Liquid phase diffusion bonding method in oxidizing atmosphere | |
JPS6152996A (en) | Method of joining stainless steel to ti base or zr base metal | |
JPH0355232B2 (en) | ||
JPH0255683A (en) | dissimilar material joints | |
JPH02104482A (en) | Highly corrosion resistant stainless steel-titanium joint pipe fitting and its manufacturing method | |
JPH0446685A (en) | Method for joining stainless steel with ti base or zr base metal | |
JPH0255684A (en) | Dissimilar material joints | |
JPH0377787A (en) | Method for joining zirconium material and stainless steel material | |
JPH02182387A (en) | Joining method for Zr-based or Ti-based materials | |
JPS62220292A (en) | Zirconium dissimilar material joint structure | |
JPS62144883A (en) | Joining method for tube of dissimilar material |