[go: up one dir, main page]

JPH01261822A - Charged particle beam lithography device - Google Patents

Charged particle beam lithography device

Info

Publication number
JPH01261822A
JPH01261822A JP9090588A JP9090588A JPH01261822A JP H01261822 A JPH01261822 A JP H01261822A JP 9090588 A JP9090588 A JP 9090588A JP 9090588 A JP9090588 A JP 9090588A JP H01261822 A JPH01261822 A JP H01261822A
Authority
JP
Japan
Prior art keywords
deflection output
sub
spot
output device
output unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9090588A
Other languages
Japanese (ja)
Inventor
Toshihiro Asari
浅利 敏弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP9090588A priority Critical patent/JPH01261822A/en
Publication of JPH01261822A publication Critical patent/JPH01261822A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To obtain uniform beam irradiation amount without increasing the number of bits of a D/A converter by a method wherein the position of beam irradiated on a material is specified by a main deflection output unit and a spot beam is scanned by a sub-deflection output unit in two dimensional (x) and (y) directions with respect to each irradiation position as the center. CONSTITUTION:Pattern data to be exposed is transferred from a CPU 1 to a deflector control unit 2. This pattern data is given to an (x) main deflection output unit 3 and a (y) main deflection output unit 5 from the deflector control unit 2. As a result, conventional spot coordinate points are set on the respective beam irradiation points based on the outputs of the (x) and (y) main deflection output units. On the other hand, control signals are output from a subscan control unit 8 to an (x) sub-deflection output unit 4 and a (y) sub-deflection output unit 6, respectively according to timing for irradiating the one conventional spot, synchronized with pulses generated by a reference pulse generator 7. By partition exposing conventional exposure scanning steps in one-shot units, irradiation amount of ions is made uniform.

Description

【発明の詳細な説明】 【産業上の利用分野1 本発明は荷電粒子ビーム描画装置に関し、更に詳しくは
均一なビーム照射量を得ることができるようにした荷電
粒子ビーム描画装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a charged particle beam lithography apparatus, and more particularly to a charged particle beam lithography apparatus capable of obtaining a uniform beam irradiation amount.

[従来の技術] [1粒子ビーム装置、例えば集束イオンビーム装置では
、ダイレクトに材料にイオンを注入(打込む)する場合
、イオンビームを偏向器で制御することにより、材料の
所定箇所にイオンを打込んでいる。この場合、チャンネ
ル効果(入射したイオンが材料の奥深く入り込む環条)
を抑制するために、材料に対してイオンビームの入射角
を光軸に対して約7°傾けて照射することが行われる。
[Prior Art] [In a single particle beam device, such as a focused ion beam device, when ions are directly implanted into a material, the ion beam is controlled by a deflector to direct the ions to a predetermined location on the material. I'm typing. In this case, the channel effect (an annulus where the incident ions penetrate deep into the material)
In order to suppress this, the material is irradiated with the ion beam at an angle of incidence of about 7 degrees with respect to the optical axis.

材料にイオンを打込む場合、材料面の単位面積当りのイ
オンの打込み量が重要な問題となる。このイオンの打込
み闇は、イオンビームのスポットビーム径と、偏向器に
よって照射ビーム位置を制御する時のビームのステップ
量と、照射時間によって決定される。第5図は、イオン
ビームの打込み糟とステップ(イオン打込み時間)の関
係を示す図である。図中(イ)はステップdで打込んだ
場合を示し、縦軸方向は1スポツトの打込み量を示して
いる。(ロ)はステップd/2で打込んだ場合を、(ハ
)はステップd/4で打込んだ場合をそれぞれ示してい
る。
When implanting ions into a material, the amount of ions implanted per unit area of the material surface is an important issue. The ion implantation darkness is determined by the spot beam diameter of the ion beam, the step amount of the beam when controlling the irradiation beam position with a deflector, and the irradiation time. FIG. 5 is a diagram showing the relationship between the ion beam implantation time and the step (ion implantation time). In the figure, (a) shows the case of implantation in step d, and the vertical axis direction indicates the implantation amount for one spot. (B) shows the case where the drive is performed at step d/2, and (C) shows the case where the drive is performed at step d/4.

図より明らかなように、1ポイントのスポットビームの
イオン打込み量の分布に対して、ビーム位置をそれぞれ
図に示すように変化させると、トータルでのイオン打込
み吊は図に示すように変化する。つまり、(イ)に示す
ようにステップ間隔が大きいと打込みに場所的にムラが
生じる。これに対して、(ロ)、(ハ)とステップ間隔
を短くしていくと、トータルのイオン打込み量は図に示
すように場所的に均一化される。即ち、同じビーム径で
あれば、位置変化間(ステップ量)を小さくした方が打
込み効果が均一になることがわかった。
As is clear from the figure, when the beam position is changed as shown in the figure with respect to the distribution of the ion implantation amount of the spot beam at one point, the total ion implantation amount changes as shown in the figure. In other words, as shown in (a), if the step interval is large, the implantation will be uneven in places. On the other hand, when the step interval is shortened as in (b) and (c), the total ion implantation amount becomes uniform locally as shown in the figure. In other words, it has been found that if the beam diameter is the same, the implantation effect becomes more uniform when the distance between positional changes (step amount) is made smaller.

[発明が解決しようとする課題] ところが、従来の技術では該位置変化間を小さくしよう
とすれば偏向器を制御しているD/A変@器の制御ビッ
ト数を大きくしなければならないが、ビット数の大きな
り/A変換器は極めて高価で且つハード的な変換速度が
極めて遅いという問題があるので位置変化間を小さくす
るのには限界がある。
[Problems to be Solved by the Invention] However, in the conventional technology, in order to reduce the position change interval, the number of control bits of the D/A transformer controlling the deflector must be increased. Since the A/A converter with a large number of bits is extremely expensive and has an extremely slow hardware conversion speed, there is a limit to how small the interval between position changes can be made.

本発明はこのような課題に鑑みてなされたちのであって
、その目的はD/A変換器のビット数を大きくすること
なく均一など一11照射量を得ることができる荷電粒子
ビーム描画装置を実現することにある。
The present invention was made in view of these problems, and its purpose is to realize a charged particle beam lithography device that can obtain a uniform irradiation amount without increasing the number of bits of the D/A converter. It's about doing.

[課題を解決するための手段] 前記した課題を解決する本発明は、材料上にスポット状
ビームを照射して所定のパターンを得るvJ電粉粒子ビ
ーム描画装置おいて、X、y各方向にそれぞれ偏向器を
駆動するための主偏向用出力器と副偏向用出力器を設け
、主偏向用出力器で材料状のビーム照射位置を設定し、
副偏向用出力器で前記各照射位置を中心としてx、y2
次元方向にスポットビームをスキャンするように構成し
たことを特徴としている。
[Means for Solving the Problems] The present invention, which solves the above-mentioned problems, uses a vJ electric powder particle beam drawing apparatus that irradiates a spot beam onto a material to obtain a predetermined pattern. A main deflection output device and a sub-deflection output device are provided to drive each deflector, and the main deflection output device sets the beam irradiation position on the material.
x, y2 centered on each irradiation position with the sub-deflection output device
It is characterized by being configured to scan the spot beam in the dimensional direction.

し作用〕 同一の照射時間を多分割し該分割に応じて細かく絞った
ビームスポットでステップ数を増やすことにより、均一
なビーム照射間を1qる。つまり、従来第6図(イ)の
ようにスキャンしていたものを、同図(ロ)に示すよう
に多分割した細いスポットビームで照射するものである
Effect] By dividing the same irradiation time into multiple parts and increasing the number of steps with a finely focused beam spot according to the division, the uniform beam irradiation interval is increased by 1q. In other words, what was conventionally scanned as shown in FIG. 6(A) is now irradiated with a thin spot beam divided into multiple parts as shown in FIG. 6(B).

[実施例] 以下、図面を参照して本発明の実施例を詳細に説明する
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す要部構成ブロック図で
ある。図において、1はCP[J、2は該CPU1から
の描画データを受けて偏向器を駆動するための駆動信号
をX、y各方向毎に出力する偏向器i!IIJ III
ユニット、3は該偏向器制御ユニット2からX方向の偏
向信号を受けるX主偏向用出力器、4はX方向のXf’
Hi向用出力器用出力器向器制御ユニット2からy方向
の偏向信号を受けるy主偏向用出力器、6はy方向のy
副偏向用出力器である。主偏向用出力器3,5としては
、例えばD/A変換器が用いられる。
FIG. 1 is a block diagram showing an embodiment of the present invention. In the figure, 1 is CP[J, and 2 is a deflector i! which receives drawing data from the CPU 1 and outputs a drive signal for driving the deflector in each of the X and Y directions. IIJ III
unit, 3 is an output device for X main deflection which receives a deflection signal in the X direction from the deflector control unit 2, 4 is Xf' in the X direction;
Output device for Hi direction output device A y main deflection output device that receives a deflection signal in the y direction from the direction device control unit 2, 6 is a y in the y direction.
This is a sub-deflection output device. As the main deflection output devices 3 and 5, for example, D/A converters are used.

7はx、y各方向の偏向器の同期をとるための基準パル
スを発生する基準パルス発生器で、その出力は偏向器制
御ユニット2に入っている。8は偏向器υ1tlllユ
ニット2及び基準パルス発生器7の出力を受けて、x、
y各方向の副(サブ)偏向用出力器4,6に駆動信号を
与えるサブスキャン制御器である。9はX主偏向用出力
器3とX副偏向用出力器4の出力を加算する加算器、1
0は同じくy主偏向用出力器5とy副偏向用出力器6の
出力を加算する加棹器、11はこれら加算器9.10の
出力が印加される偏向器である。このように構成された
装置の動作を説明すれば、以下のとおりである。
A reference pulse generator 7 generates reference pulses for synchronizing the deflectors in each of the x and y directions, and its output is fed into the deflector control unit 2. 8 receives the outputs of the deflector υ1tlll unit 2 and the reference pulse generator 7, x,
This is a sub-scan controller that provides drive signals to the sub-deflection output devices 4 and 6 in each of the y directions. 9 is an adder for adding the outputs of the X main deflection output device 3 and the X sub deflection output device 4;
0 is a deflector which adds the outputs of the y main deflection output device 5 and the y sub deflection output device 6, and 11 is a deflector to which the outputs of these adders 9 and 10 are applied. The operation of the device configured as described above will be explained as follows.

本発明は、従来例えば第6図(イ)に示すように大きい
径のビームステップでパターンを描画していたために発
生する単位面積当たりのイオン打込み量のムラを、同図
(ロ)に示すように従来の1スポツトを更に細かく分割
し、均一なイオン打込みができるようにしたものである
。先ず、CPU1から偏向器制御ユニット2に描画すべ
きパターンデータが転送される。このパターンデータは
、該偏向器制御ユニット2からX主偏向用出力器3゜y
主偏向用出力器5に与えられる。この結果、該x、y主
偏向用出力器の出力に基づいて設定される材料上の各ビ
ーム照射位置に第2図(イ)に示すように従来どおりの
スポット座標位置がセットされる。ここで、土中は座標
位置の中心を示す。
The present invention solves the unevenness in the amount of ion implantation per unit area that occurs due to the conventional method of drawing patterns with a beam step of a large diameter, as shown in FIG. 6(A), as shown in FIG. 6(B). The conventional single spot is divided into smaller parts to enable uniform ion implantation. First, pattern data to be drawn is transferred from the CPU 1 to the deflector control unit 2. This pattern data is transmitted from the deflector control unit 2 to the X main deflection output device 3゜y.
It is given to the main deflection output device 5. As a result, conventional spot coordinate positions are set at each beam irradiation position on the material, which is set based on the outputs of the x and y main deflection output devices, as shown in FIG. 2(a). Here, soil indicates the center of the coordinate position.

dは前述したのと同様のステップ吊である。d is a step suspension similar to that described above.

一方、基準パルス発生器7より発生するパルスに同期し
て、従来の1スポツトを照射するタイミングに合わせて
サブスキャン制御器8からX lif+偏向用出力器4
.yf?1Jffii向用出力器6に対して、それぞれ
第3図に示すような制御信号が出力される。
On the other hand, in synchronization with the pulses generated by the reference pulse generator 7, the sub-scan controller 8 outputs the
.. yf? Control signals as shown in FIG. 3 are outputted to the output devices 6 for 1Jffii, respectively.

図に示す例は、2×2に分割する場合を示している。(
イ)はX方向の制御信号を、(ロ)はX方向の制御信号
をそれぞれ示している。2×2に分割する場合には、各
ビーム照)!位置においてそれぞれ第2図の(ロ)に示
すようにd/2Xd/2・のサイズのスポットビームで
且つ1/(2X2>の照射時間でスキャンする。ここで
は、描画スポットを第4象限にとっている。第2図(ロ
)において、土中が主偏向器でセットされる材料上の各
ビーム照射値の内、任意の照射位置の中心位置で、副偏
向用出力器4,6で矢印方向にスボッ1−ビームが偏向
される。土中を基準とすると、X方向の場合は第3図〈
イ)に示すように、スポット期間1.2,3.4に対し
てそれぞれ一、+、十、−の方向にd/4の振幅を加え
る。具体的には加算器ってX主偏向用出力器3の出力と
X副偏向用出力器4の出力を加算し、その加算結果を偏
向器11に印加する。
The example shown in the figure shows a case where the image is divided into 2×2. (
A) shows a control signal in the X direction, and (b) shows a control signal in the X direction. When dividing into 2 x 2, each beam illuminates)! At each position, as shown in FIG. 2 (b), scan with a spot beam of size d/2Xd/2 and an irradiation time of 1/(2X2>).Here, the drawing spot is set in the fourth quadrant. In Fig. 2 (b), the sub-deflection output devices 4 and 6 are used to direct the sub-deflection output devices 4 and 6 in the direction of the arrow at the center of the arbitrary irradiation position of each beam irradiation value on the material set by the main deflector. Subop 1 - The beam is deflected. If the ground is the reference point, in the X direction, see Figure 3.
As shown in b), an amplitude of d/4 is applied in the directions of 1, +, 10, and - for spot periods 1.2 and 3.4, respectively. Specifically, the adder adds the output of the X main deflection output device 3 and the output of the X sub-deflection output device 4, and applies the addition result to the deflector 11.

また、X方向については、土中を基準とすると、X方向
の場合は第3図(ロ)に示すように、スポット期間1,
2,3.4に対してそれぞれ−、−9+、十の方向にd
/4の振幅を加える。具体的には加fi器10でy主偏
向用出力器5の出力とy副偏向用出力器6の出力を加算
し、その加算結果を偏向器11に印加する。これにより
、材料上の各ビーム照射位置がそれぞれ第2図(ロ)に
示すような細かいスポットビームによる描画されるので
第6図(ロ)の様な描画を行うことができる。なお、こ
の場合、照射するビームは電子光学系により細く(この
場合、d/2Xd/2に)絞ることはいうまでもない。
In addition, regarding the X direction, if the soil is used as a reference, in the case of the X direction, as shown in Figure 3 (b), spot period 1,
d in the direction of -, -9+, and ten for 2 and 3.4, respectively.
Add an amplitude of /4. Specifically, the adder 10 adds the output of the y main deflection output device 5 and the output of the y sub-deflection output device 6, and applies the addition result to the deflector 11. As a result, each beam irradiation position on the material is drawn by a fine spot beam as shown in FIG. 2(b), so that drawing as shown in FIG. 6(b) can be performed. In this case, it goes without saying that the irradiated beam is narrowed (in this case, to d/2Xd/2) by the electron optical system.

このように、本発明によれば、従来の1スポツトによる
描画を4点のスポットのスキャンに分割することができ
る。つまり、本発明によれば、多分割によりトータルの
イオン打ち込み巾の均一化を図ることができる。この時
、X副偏向用出力器4.y副偏向用出力器6としては第
3図に示すように変換ビット数の少ないものを用いるこ
とができるため、X主偏向用出力器3゜y主偏向用出力
器5に比べて高速で処理することが可能となる。
As described above, according to the present invention, the conventional one-spot drawing can be divided into four-spot scans. That is, according to the present invention, the total ion implantation width can be made uniform by multi-division. At this time, the X sub-deflection output device 4. As the y sub-deflection output device 6, an output device with a small number of conversion bits can be used as shown in FIG. It becomes possible to do so.

上述の実施例では、1スポットを2×2に分割した場合
を例にとったが、これに限るものではなく、それ以上の
分割も可能である。例えば、第4図に示すような制御信
号をx、y各方向の副偏向用出力器4.6から出力すれ
ば、第2図(ハ)に示すような3×3の分割が可能とな
る。第4図の場合、d/6の振幅を9スポツト期間のそ
れぞれに対して、図に示すような+、−の方向に変化さ
けることで、第2図(ハ)に示す9分割が可能となる。
In the above-mentioned embodiment, the case where one spot is divided into 2×2 was taken as an example, but the invention is not limited to this, and more divisions are also possible. For example, if a control signal as shown in Fig. 4 is outputted from the sub-deflection output device 4.6 in each of the x and y directions, 3 x 3 division as shown in Fig. 2 (c) is possible. . In the case of Fig. 4, by avoiding changing the amplitude of d/6 in the + and - directions as shown in the figure for each of the 9 spot periods, it is possible to divide into 9 as shown in Fig. 2 (C). Become.

この場合、各分割スポットのサイズは1/3X1/3に
絞り、且つ各分割スポットの照射時間は1/(3x3)
になされる。また、本発明はそれ以上のnxn分割にも
同様に適用することができる。また、上述の実施例では
、主どして集束イオンビーム装置によるイオン注入装置
の場合を例にとったが、これに限るものではなく、その
他の例えば電子ビーム描画装置等の荷電粒子ビーム描画
装置に適用が可能である。ただし、イオンビームの注入
の場合が、電子ビーム描画の場合に比較してクーロン効
果(照射領域が材料上で周囲に拡がる現象)が少ないの
で、多分割による照eJ4ffiの均一化の効果が大き
い。
In this case, the size of each divided spot is narrowed down to 1/3x1/3, and the irradiation time of each divided spot is 1/(3x3).
done to. Furthermore, the present invention can be similarly applied to further nxn divisions. In addition, in the above-mentioned embodiments, the case of an ion implantation device using a focused ion beam device was mainly taken as an example, but the invention is not limited to this, and other charged particle beam lithography devices such as an electron beam lithography device can be used. It can be applied to However, in the case of ion beam implantation, the Coulomb effect (a phenomenon in which the irradiation area spreads to the surroundings on the material) is smaller than in the case of electron beam lithography, so the effect of making the illumination eJ4ffi uniform by multi-division is large.

[発明の効果] 以上詳細に説明したように、本発明によれば従来の描画
走査ステップをビームの1ショット単位で多分割して描
画することにより ■材料にイオンの打込みを行った場合、イオンの打込み
mが均一になる。
[Effects of the Invention] As explained in detail above, according to the present invention, by dividing the conventional drawing scanning step into multiple beam shots, ■ When implanting ions into a material, the ion The implantation m becomes uniform.

■1回のスポット照射時間はnxn分割時には1/(n
Xn)にするために、従来技術の場合と照1>j ll
i間そのものは殆ど変わらない。
■One spot irradiation time is 1/(n
Compared to the case of the prior art, in order to make
The distance between i itself is almost unchanged.

このように本発明によれば、D/△変換器のビツ1〜@
を大きくすることなく均一なビーム照!)111を1!
7ることができる荷電粒子ビーム描画装置を実現するこ
とができる。
As described above, according to the present invention, bits 1 to @ of the D/Δ converter
Uniform beam illumination without increasing the size! ) 111 to 1!
It is possible to realize a charged particle beam lithography device that can perform 7 steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す要部構成ブロック図、
第2図はスポットビームの分割状態を示す図、第3図、
第4図は副偏向用出力器の出力信号波形を示す図、第5
図はイオンビームの打込み吊とステップ(イオン打込み
時間)の関係を示す図、第6図は従来のスポットビーム
方式と本発明によるスポットビーム方式の比較説明図で
ある。 1・・・CPU 2・・・偏向器問罪ユニット 3・・・X主偏向用出力器 4・・・X副偏向用出力器 5・・・y主偏向用出力器 6・・・y副偏向用出力器 7・・・基準パルス発生器 8・・・サブスキャン制御器 9.10・・・加算器    11・・・偏向器第3図 (イ)          (2X2例)      
     (ロ)第4図 (3X3例)
FIG. 1 is a block diagram showing an embodiment of the present invention;
Figure 2 shows the split state of the spot beam; Figure 3;
Figure 4 is a diagram showing the output signal waveform of the sub-deflection output device, Figure 5
The figure shows the relationship between the ion beam implantation length and the step (ion implantation time), and FIG. 6 is a comparative diagram of the conventional spot beam method and the spot beam method according to the present invention. 1... CPU 2... Deflector interrogation unit 3... Output device for X main deflection 4... Output device for X sub-deflection 5... Output device for y main deflection 6... Y sub-deflection Output device 7...Reference pulse generator 8...Subscan controller 9.10...Adder 11...Deflector Fig. 3 (A) (2X2 example)
(b) Figure 4 (3x3 examples)

Claims (1)

【特許請求の範囲】[Claims]  スポット状ビームを材料上に照射して所定のパターン
を得る荷電粒子ビーム描画装置において、x、y各方向
にそれぞれ偏向器を駆動するための主偏向用出力器と副
偏向用出力器を設け、主偏向用出力器で材料上のビーム
照射位置を設定し、副偏向用出力器で前記各照射位置を
中心としてx、y2次元方向にスポットビームをスキャ
ンするように構成したことを特徴とする荷電粒子ビーム
描画装置。
In a charged particle beam drawing device that irradiates a spot beam onto a material to obtain a predetermined pattern, a main deflection output device and a sub-deflection output device are provided for driving deflectors in each of the x and y directions, A charging device characterized in that the main deflection output device sets the beam irradiation position on the material, and the sub-deflection output device scans the spot beam in two-dimensional x and y directions centering on each of the irradiation positions. Particle beam lithography equipment.
JP9090588A 1988-04-12 1988-04-12 Charged particle beam lithography device Pending JPH01261822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9090588A JPH01261822A (en) 1988-04-12 1988-04-12 Charged particle beam lithography device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9090588A JPH01261822A (en) 1988-04-12 1988-04-12 Charged particle beam lithography device

Publications (1)

Publication Number Publication Date
JPH01261822A true JPH01261822A (en) 1989-10-18

Family

ID=14011420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9090588A Pending JPH01261822A (en) 1988-04-12 1988-04-12 Charged particle beam lithography device

Country Status (1)

Country Link
JP (1) JPH01261822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228498A (en) * 2010-04-20 2011-11-10 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228498A (en) * 2010-04-20 2011-11-10 Nuflare Technology Inc Charged particle beam lithography apparatus and charged particle beam lithography method

Similar Documents

Publication Publication Date Title
US4743766A (en) Method of drawing a desired pattern on a target through exposure thereof with an electron beam
US3931458A (en) Method and apparatus for engraving elemental areas of controlled volume on a printing surface with an energy beam
US6433348B1 (en) Lithography using multiple pass raster-shaped beam
KR100417906B1 (en) Flash converter for determining shape data that specifies a flash field among pixels, and method thereof
JPS6028331B2 (en) Acousto-optic modulation scanning device
KR100434972B1 (en) Raster scan gaussian beam writing strategy and method for pattern generation
US4870286A (en) Electron beam direct drawing device
EP1060500B1 (en) An apparatus and method for controlling a beam shape in lithographiy systems
US20030089858A1 (en) Electron beam lithography system and method
US7425713B2 (en) Synchronous raster scanning lithographic system
US5030836A (en) Method and apparatus for drawing patterns using an energy beam
JP2003530674A (en) Bidirectional electron beam scanner
JPH01261822A (en) Charged particle beam lithography device
US4633090A (en) Method and apparatus for particle irradiation of a target
JP3098666B2 (en) Image forming device
JP2003195515A (en) Method for exposing printing form
JP3431336B2 (en) Electron beam exposure apparatus and method for correcting proximity effect in electron beam exposure
JP3484182B2 (en) Proximity effect correction method in electron beam exposure
JP3460210B2 (en) Beam exposure equipment
JPH11237728A (en) Method and device for plotting
JP2960940B2 (en) Scanning controller for ion beam in ion implanter
JP3357160B2 (en) Electron beam drawing method and electron beam drawing system
JPH01286310A (en) Charged beam exposure method
JPS61256627A (en) Charged particle exposure equipment
JP2003123683A (en) Focused charged particle beam processing method and focused charged particle beam processing apparatus