[go: up one dir, main page]

JPH01261286A - Stabilization of formed article - Google Patents

Stabilization of formed article

Info

Publication number
JPH01261286A
JPH01261286A JP8926188A JP8926188A JPH01261286A JP H01261286 A JPH01261286 A JP H01261286A JP 8926188 A JP8926188 A JP 8926188A JP 8926188 A JP8926188 A JP 8926188A JP H01261286 A JPH01261286 A JP H01261286A
Authority
JP
Japan
Prior art keywords
resin
formed article
copper
sintered form
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8926188A
Other languages
Japanese (ja)
Inventor
Eiichiro Takiyama
栄一郎 滝山
Atsushi Hasegawa
淳 長谷川
Akira Yokoyama
横山 朗
Tateshi Ogura
小倉 立士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP8926188A priority Critical patent/JPH01261286A/en
Publication of JPH01261286A publication Critical patent/JPH01261286A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To improve a formed article in mechanical strength shortage, instability at room temperature under high humidity, etc., by impregnating a formed article of copper oxide-contg. metallic oxide sintered form with a liquid thermosetting resin followed by curing to seal the voids in the sintered form with the resultant cured resin. CONSTITUTION:Firstly, a formed article of a metallic oxide sintered form (said metal containing copper, e.g., copper-barium-yttrium, copper-calcium-strontium- bismuth) is prepared. Thence, this formed article is impregnated with a liquid curable resin (e.g., unsaturated polyester resin, epoxy monoacrylate resin) followed by curing to seal the voids in the sintered form with the resultant cured resin. Thus, said formed article can be stabilized, and in case said sintered form is a ceramic superconductor, Meissner effect will stably be retained even at room temperature and high humidity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、いわゆる酸化物超伝導体の作用、特、にマイ
スナー効果なる名称で知られている超伝導体が超伝導と
なる温度で示す磁力線排除効果に伴う磁石或は超伝導体
の浮上効果を安定して発揮できる成形品の安定化方法に
関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is directed to the effects of so-called oxide superconductors, particularly to the temperature at which the superconductor known as the Meissner effect becomes superconducting. The present invention relates to a method for stabilizing a molded product that can stably exhibit the levitation effect of a magnet or superconductor due to the magnetic force line exclusion effect.

〔従来の技術〕[Conventional technology]

金属酸化物焼結体(以下セラミックスと云う)が液体窒
素の温度で示す超伝導が発表されて以来、このものの持
つ欠点も幾つか指摘され、実用化に当ってはその改良が
求められていることはよく知られている。
Since the announcement of the superconductivity of metal oxide sintered bodies (hereinafter referred to as ceramics) at the temperature of liquid nitrogen, several drawbacks of this material have been pointed out, and improvements are required for practical use. This is well known.

その一つには、セラミックス超伝導体が比較的不安定で
あって、特に高温、高湿度下では速やかにその超伝導性
並びにそれが示す効果が消失すること、また焼結体であ
ることからくる強度不足などがあげられる。
One of the reasons is that ceramic superconductors are relatively unstable, and their superconductivity and the effects they exhibit quickly disappear, especially under high temperature and high humidity conditions, and also because they are sintered bodies. Examples include insufficient strength to move.

超伝導の示す大きな現象は、電気抵抗がゼロになること
からくる永久電流の発生とそれに伴う強磁場が得られる
可能性、並びにいわゆるマイスナー効果であると思われ
る。
The major phenomena exhibited by superconductivity are thought to be the generation of persistent current due to zero electrical resistance, the possibility of obtaining a strong magnetic field accompanying this, and the so-called Meissner effect.

本来、マイスナー効果は一定温度で磁場を下げても、一
定磁場で温度を下げても、超伝導状態に移れば伝導体内
の磁場はゼロになることを意味しており、これは電気抵
抗ゼロからは導けない独立した超伝導の基本的性質の一
つである。
Originally, the Meissner effect means that even if the magnetic field is lowered at a constant temperature, or even if the temperature is lowered with a constant magnetic field, the magnetic field within the conductor will become zero once it transitions to a superconducting state, which means that the electrical resistance will change from zero to zero. is one of the fundamental properties of independent superconductivity that cannot be guided.

一般には、結果として発現する磁石の浮上効果のみが華
々しく取上げられ、これがマイスナー効果として認識さ
れていることから、本発明でもこの慣例に従うこととす
る。
In general, only the resulting magnetic levitation effect is highlighted and is recognized as the Meissner effect, so the present invention also follows this convention.

[発明が解決しようとする課題〕 本発明は、従来のセラミックス超伝導体が焼結体である
が故に成形品の強度不足並びに室?ML %高湿度下で
の不安定性である欠点を削除した、室温、高湿度下でも
安定的にマイスナー効果を持続することのできる成形品
を提供せんとするものである。
[Problems to be Solved by the Invention] The present invention solves the problem of lack of strength of molded products and problems due to the fact that conventional ceramic superconductors are sintered bodies. ML% The object of the present invention is to provide a molded article that can maintain the Meissner effect stably even at room temperature and high humidity, without the drawback of instability under high humidity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、前記課題を解決するために種々検討した
結果、 銅の酸化物を含む金属酸化物焼結体の成形品に、液状熱
硬化性樹脂を含浸、硬化させて焼結体中の空隙を硬化樹
脂で密封することにより、前記課題が解決されることを
知り、本発明に到達した。
As a result of various studies to solve the above-mentioned problems, the present inventors impregnated and hardened a liquid thermosetting resin into a molded product of a metal oxide sintered body containing a copper oxide. The present invention was achieved based on the knowledge that the above problem can be solved by sealing the voids in the resin with a cured resin.

〔作  用〕[For production]

本発明では、セラミックス単独でなく、セラミックスに
熱硬化性樹脂を含浸、硬化させる手段を採用することに
よって、セラミックスの空隙部分(一般に20〜35%
存在すると云われている)に樹脂相が存在する二相構造
となるが、セラミックスのマイスナー効果を阻害しない
という知見に基づくものである。併せて、本発明の成形
品においては、セラミックス超伝導体が硬化樹脂により
外界と遮断されるため室温での不安定性が改善されると
共に、硬化樹脂の使用により成形品の強度も改善される
という利点がある。
In the present invention, by employing a method of impregnating and curing ceramics with a thermosetting resin instead of using ceramics alone, the voids of the ceramics (generally 20 to 35%
This is based on the knowledge that although it has a two-phase structure in which a resin phase exists (which is said to exist), it does not inhibit the Meissner effect of ceramics. In addition, in the molded product of the present invention, instability at room temperature is improved because the ceramic superconductor is isolated from the outside world by the hardened resin, and the strength of the molded product is also improved by using the hardened resin. There are advantages.

本発明で使用可能なセラミックスは、銅の酸化物を必須
成分として含む金属酸化物を焼成して得られる液体水素
の沸点即ち約20°に以上の温度で超伝導を示す、いわ
ゆる高温超伝導体を可能にする種類のものである。
The ceramics that can be used in the present invention are so-called high-temperature superconductors that exhibit superconductivity at temperatures above the boiling point of liquid hydrogen, that is, about 20 degrees, obtained by firing a metal oxide containing copper oxide as an essential component. This is the kind of thing that makes it possible.

銅の酸化物は必須成分であるが、それ以外の金属酸化物
としては、周期律表第■族アルカリ土類金属、第■族希
土類金属、並びにビスマス、タリウムなどの酸化物があ
げられる。
Copper oxide is an essential component, but other metal oxides include oxides of group Ⅰ alkaline earth metals of the periodic table, group Ⅰ rare earth metals, as well as bismuth, thallium, and the like.

代表的な組合せ例としては、 銅〜バリウム〜イツトリウム、 銅〜カルシウム〜ストロンチウム〜ビスマスなどの酸化
物焼結体の成形品があげられる。
Typical examples of combinations include molded products of sintered oxides of copper, barium, yttrium, copper, calcium, strontium, and bismuth.

セラミックス成形品は慣用の焼結手段を用いて特定形状
のものを得ることができる。
Ceramic molded articles can be obtained in specific shapes using conventional sintering means.

本発明で利用される液状熱硬化性樹脂としては、セラミ
ックスに液状で含浸できるものであれば、その種類、性
状に特に制限を加える必要はないが、セラミックスが湿
気を嫌うこと、並びに含浸する面からは極力粘度が低い
ことが望ましい。それらを考慮すると、モノマーで粘度
調整を容易に行えるラジカル硬化型樹脂が最適である。
The liquid thermosetting resin used in the present invention is not particularly limited in type and properties as long as it can be impregnated into ceramics in liquid form. Therefore, it is desirable that the viscosity be as low as possible. Taking these into consideration, radical curing resins whose viscosity can be easily adjusted using monomers are optimal.

熱硬化性樹脂の例としては、不飽和多塩基酸と多価アル
コールとを飽和多塩基酸の存在下又は不存在下に反応さ
せて得られる不飽和アルキッドをスチレンなどのモノマ
ーに配合して得られる不飽和ポリエステル樹脂、エポキ
シ樹脂と(メタ)アクリル酸との反応によって得られる
エポキシアクリレート即ちビニルエステル樹脂、ジアリ
ルフタレート樹脂、などが代表的にあげられる。この他
に、ポリエステルルアクリレート、ウレタンルアクリレ
ートなどのオリゴアクリレートと呼ばれる(メタ)アク
リロイル基を分子末端又は側鎖に導入したオリゴマーさ
らにはポリエン−ポリチオール樹脂も使用可能である。
Examples of thermosetting resins include unsaturated alkyds obtained by reacting unsaturated polybasic acids and polyhydric alcohols in the presence or absence of saturated polybasic acids, which are obtained by blending monomers such as styrene. Typical examples thereof include unsaturated polyester resins obtained by the reaction of epoxy resins and (meth)acrylic acid, epoxy acrylate or vinyl ester resins obtained by the reaction of epoxy resins and (meth)acrylic acid, and diallyl phthalate resins. In addition, oligomers called oligoacrylates, such as polyester acrylate and urethane acrylate, in which a (meth)acryloyl group is introduced into the molecular terminal or side chain, as well as polyene-polythiol resins can also be used.

また、エポキシ樹脂も、特に脂環式、エステル型、或い
はビスフェノールF型のような低粘度タイプのものであ
れば、実用的に充分使用可能である。これら熱硬化性樹
脂は市販されており、その製造法も公知である。また、
熱可塑性ポリマーを配合して、熱硬化性樹脂を変性する
こともできる。
Epoxy resins can also be used practically, especially if they are of low viscosity type such as alicyclic, ester, or bisphenol F type. These thermosetting resins are commercially available, and their manufacturing methods are also known. Also,
Thermoplastic polymers can also be blended to modify thermosetting resins.

セラミックス成形品への液状熱硬化性樹脂の含浸は、減
圧又は加圧下で実施することが好ましい。
Impregnation of the liquid thermosetting resin into the ceramic molded article is preferably carried out under reduced pressure or increased pressure.

〔実 施 例〕〔Example〕

以下、本発明の理解を助けるために、実施例を示す。文
中の部及び%は何れも重量基準で示されている。
Examples are shown below to help understand the present invention. All parts and percentages in the text are expressed on a weight basis.

実施例 1 フルウチ化学■製の直径的20mm、厚さ約8III1
1の銅〜バリウム〜イツトリウムの金属酸化物(比率3
:2:1)焼結体を、同社製装置内で液体窒素にて冷却
、付属の磁石が約5mn+浮上することを確認した後、
室温に戻した。
Example 1 Made by Furuuchi Kagaku ■, diameter 20 mm, thickness approximately 8III1
1 copper-barium-yttrium metal oxide (ratio 3
:2:1) After cooling the sintered body with liquid nitrogen in the company's equipment and confirming that the attached magnet floats approximately 5mm+,
Returned to room temperature.

100ccポリエチレン製ビーカー中に、不飽和ポリエ
ステル樹脂(昭和高分子■製すゴラック1608)50
部、メチ1210部、過酸化ベンゾイル1部を均一に溶
解し、その中に前記セラミックス焼結体を含浸、直ちに
50〜60Torrの減圧下で細かい気泡の発生が完全
に終るまで含浸した。樹脂の含浸量は約30%であった
In a 100cc polyethylene beaker, add 50 unsaturated polyester resin (GOLAC 1608 manufactured by Showa Kobunshi).
1 part of methi, 1210 parts of methi, and 1 part of benzoyl peroxide were uniformly dissolved, and the ceramic sintered body was impregnated therein, and immediately impregnated under a reduced pressure of 50 to 60 Torr until the generation of fine bubbles was completely stopped. The amount of resin impregnated was about 30%.

含浸終了後、常圧に戻し、最初60℃で一夜、次でビー
カーから取出して100℃で2時間加温して硬化を完了
させた。
After the impregnation was completed, the pressure was returned to normal, and the mixture was first heated at 60°C overnight, then taken out from the beaker and heated at 100°C for 2 hours to complete curing.

黒色で、硬く均一な成形品(A)が得られた。その一部
分を切断、研摩し、顕微鏡で観察した所、セラミックの
粒子相と樹脂相の二相からなることが確認された。
A black, hard and uniform molded article (A) was obtained. When a portion of it was cut and polished and observed under a microscope, it was confirmed that it consisted of two phases: a ceramic particle phase and a resin phase.

この成形品(A)を、余分な樹脂部分から切断。Cut this molded product (A) from the excess resin.

研摩して、表面の樹脂を一層残して取除き、同様にして
作製した後、前記と同じ方法でマイスナー効果を測定し
た所、約5mmの高さに磁石が浮上した。
After polishing and removing all but one layer of the resin on the surface, and fabricating it in the same manner, the Meissner effect was measured in the same manner as above, and the magnet levitated to a height of about 5 mm.

別に、フルウチ化学製の前記焼結体と本発明の成形品(
A)を用意し、それぞれを40℃、95%のR,H,の
デシケータ−中で保存した所、1ケ月後には焼結体の方
はマイスナー効果が消失して、磁石浮上能力がみられな
くなったのに反して、成形品(A)は1ケ月後も以前と
変らぬ磁石浮上効果を示した。
Separately, the sintered body manufactured by Furuuchi Chemical Co., Ltd. and the molded article of the present invention (
A) was prepared and stored in a desiccator at 40°C and 95% R and H. After one month, the Meissner effect of the sintered body disappeared and magnetic levitation ability was observed. On the other hand, molded product (A) showed the same magnetic levitation effect even after one month.

実施例 2 エポキシ樹脂として、メタアクリル酸とエポキシ基の約
50C%)を反応させたタイプを用いる。
Example 2 As an epoxy resin, a type in which methacrylic acid and epoxy groups (approximately 50 C%) were reacted was used.

エポキシモノアクリレート樹脂の合成 撹拌機、還流コンデンサー、温度計を付した1j7セパ
ラブルフラスコに、エポキシ当m187のビスフェノー
ルAジグリシジルエーテル型エポキシ樹脂を370部、
メタクリル酸86部、トリメチルベンジルアンモニウム
クロライド2g1ハイドロキノン0.2gを仕込み、1
30〜135℃に1.5時間反応すると、酸価は実質的
にゼロとなった。
Synthesis of epoxy monoacrylate resin In a 1J7 separable flask equipped with a stirrer, a reflux condenser, and a thermometer, 370 parts of bisphenol A diglycidyl ether type epoxy resin with an epoxy weight of 187 m,
86 parts of methacrylic acid, 2 g of trimethylbenzylammonium chloride, 0.2 g of hydroquinone,
After reacting at 30-135°C for 1.5 hours, the acid value became substantially zero.

この段階でスチレン200 gを加え、エポキシモノア
クリレート樹脂が得られた。
At this stage, 200 g of styrene was added to obtain an epoxy monoacrylate resin.

前記エポキシモノアクリレート樹脂66部をポリエチレ
ン製ビーカーにとり、これにメチルテトラヒドロ無水フ
タル酸14部、過酸化ベンゾイル1部を加え均一溶液と
した。
66 parts of the epoxy monoacrylate resin was placed in a polyethylene beaker, and 14 parts of methyltetrahydrophthalic anhydride and 1 part of benzoyl peroxide were added thereto to form a homogeneous solution.

フルウチ化学■製超伝導セラミックス(ビスマス〜スト
ロンチウム〜カルシウム〜銅を1対1対1対2の比率で
含む金属酸化物)ペレットを前記溶液中に含浸させ、約
100Torrの減圧下に細かい気泡が発生しなくなる
まで含浸した後取出し、両面をポリエステルフィルムで
覆った。
Superconducting ceramic pellets (metal oxide containing bismuth, strontium, calcium, and copper in a ratio of 1:1:1:2) manufactured by Furuuchi Chemical ■ are impregnated into the solution, and fine bubbles are generated under reduced pressure of approximately 100 Torr. After impregnating the sample until it was no longer wet, it was taken out and both sides were covered with polyester film.

これを最初80℃で3時間加熱し、ポリエステルフィル
ムを除去して、120℃3時間、150℃5時間加熱、
硬化させた。
This was first heated at 80°C for 3 hours, the polyester film was removed, and heated at 120°C for 3 hours and 150°C for 5 hours.
hardened.

得られた成形品(B)の切断面はセラミック相と樹脂層
との二相であることが確認された。
It was confirmed that the cut surface of the obtained molded article (B) had two phases: a ceramic phase and a resin layer.

超電導セラミックスのペレットと成形品(B)の双方を
、40℃、95%R,)1.のデシケータ−中に1ケ月
間保存した所、セラミックスペレットは液体窒素で冷却
してもまったく磁石浮上効果を示さなかったのに反して
、成形品(B)は約1mmの浮上効果がみられた。
Both the superconducting ceramic pellets and the molded product (B) were heated at 40°C and 95% R,)1. When stored in a desiccator for one month, ceramic pellets showed no magnetic levitation effect at all even when cooled with liquid nitrogen, whereas molded product (B) showed a levitation effect of approximately 1 mm. .

〔発明の効果〕〔Effect of the invention〕

本発明の成形品は、室温、高湿度でも優れたマイスナー
効果を安定して保持することができ、しかも得られた成
形品の強度も改善されるので、多方面での使用が期待さ
れる。
The molded article of the present invention can stably maintain the excellent Meissner effect even at room temperature and high humidity, and the strength of the obtained molded article is also improved, so it is expected to be used in many fields.

特許出願人 昭和高分子株式会社Patent applicant: Showa Kobunshi Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)銅の酸化物を含む金属酸化物焼結体の成形品に、
液状熱硬化性樹脂を含浸、硬化させて、焼結体中の空隙
を硬化樹脂で密封させることを特徴とする成形品の安定
化方法。
(1) For molded products of metal oxide sintered bodies containing copper oxide,
A method for stabilizing a molded article, which comprises impregnating and curing a liquid thermosetting resin and sealing voids in a sintered body with the cured resin.
(2)成形品として銅〜バリウム〜イットリウム又は銅
〜カルシウム〜ストロンチウム〜ビスマスからなる金属
酸化物焼結体の成形品を使用することを特徴とする特許
請求の範囲第1項に記載の成形品の安定化方法。
(2) The molded product according to claim 1, wherein a molded product of a metal oxide sintered body consisting of copper, barium, yttrium, or copper, calcium, strontium, and bismuth is used as the molded product. Stabilization method.
(3)液状熱硬化性樹脂が不飽和ポリエステル樹脂又は
エポキシモノアクリレート樹脂を使用することを特徴と
する特許請求の範囲第1項に記載の成形品の安定化方法
(3) The method for stabilizing a molded article according to claim 1, wherein the liquid thermosetting resin is an unsaturated polyester resin or an epoxy monoacrylate resin.
JP8926188A 1988-04-13 1988-04-13 Stabilization of formed article Pending JPH01261286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8926188A JPH01261286A (en) 1988-04-13 1988-04-13 Stabilization of formed article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8926188A JPH01261286A (en) 1988-04-13 1988-04-13 Stabilization of formed article

Publications (1)

Publication Number Publication Date
JPH01261286A true JPH01261286A (en) 1989-10-18

Family

ID=13965816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8926188A Pending JPH01261286A (en) 1988-04-13 1988-04-13 Stabilization of formed article

Country Status (1)

Country Link
JP (1) JPH01261286A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011153A2 (en) * 1998-12-18 2000-06-21 International Superconductivity Technology Center Oxide superconductor and process for producing same
US6413624B1 (en) 1999-03-09 2002-07-02 International Superconductivity Technology Center Oxide superconductor and process for producing same
US7046110B2 (en) 2002-06-12 2006-05-16 International Superconductivity Technology Center, The Juridical Foundation Superconducting magnet made of high-temperature bulk superconductor and process of producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1011153A2 (en) * 1998-12-18 2000-06-21 International Superconductivity Technology Center Oxide superconductor and process for producing same
EP1011153A3 (en) * 1998-12-18 2003-09-03 International Superconductivity Technology Center Oxide superconductor and process for producing same
US6413624B1 (en) 1999-03-09 2002-07-02 International Superconductivity Technology Center Oxide superconductor and process for producing same
US7046110B2 (en) 2002-06-12 2006-05-16 International Superconductivity Technology Center, The Juridical Foundation Superconducting magnet made of high-temperature bulk superconductor and process of producing same

Similar Documents

Publication Publication Date Title
WO1988009312A1 (en) Superconductors and methods of making same
US4857504A (en) Melt-produced high temperature rare earth barium copper oxide superconductor and processes for making same
JPH01261286A (en) Stabilization of formed article
JPH01282176A (en) Method of stabilizing molding
Bergman Solid‐State Reactions between CaO Powder and Fe2O3
Flukiger et al. Superconducting Cu-Nb 3 Sn composites produced by cold extrusion of fine powders
JP3134931B2 (en) How to increase the critical current density of superconductors
US6291403B1 (en) Method of manufacturing superconducting ceramics under a magnetic field
EP0309169A2 (en) Superconducting shaped article
EP0315977A2 (en) Superconductor material comprising a three-component metallic oxide
US5716909A (en) Process for increasing the pinning force of superconducting Bi-Sr-Ca-Cu-O ceramic moldings
JPH01254740A (en) Molded article composed of two phases
JPH01261460A (en) Composite material composition
US5244868A (en) Method of making high Tc superconductor material, and article produced by the method
JPS63239113A (en) Production of superconductive material
US5194421A (en) Bi-Pb-Sr-Mg-Ba-Ca-Cu-O oxide superconductors and production thereof
US3351437A (en) Superconductive body of niobium-tin
Kraus et al. Superconductivity in Ba Intercalated C60
JP2821568B2 (en) Method for producing superconducting whisker composite
EP0430568A2 (en) Method of making high Tc superconductor material, and article produced by the method
JPS63218535A (en) Superconducting substance and its production
JPS63239115A (en) Superconductive material and its production
JPS63274027A (en) Method for manufacturing superconducting materials
Foner et al. Improved Performance Powder Metallurgy and In Situ Processed Multifilamentary Superconductors
JPS63239149A (en) superconducting materials