[go: up one dir, main page]

JPH01260796A - Electroluminescent element - Google Patents

Electroluminescent element

Info

Publication number
JPH01260796A
JPH01260796A JP63089628A JP8962888A JPH01260796A JP H01260796 A JPH01260796 A JP H01260796A JP 63089628 A JP63089628 A JP 63089628A JP 8962888 A JP8962888 A JP 8962888A JP H01260796 A JPH01260796 A JP H01260796A
Authority
JP
Japan
Prior art keywords
group
manganese
current limiting
limiting layer
excluding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63089628A
Other languages
Japanese (ja)
Inventor
Yuichi Aoki
裕一 青木
Shiro Kobayashi
史朗 小林
Koji Nakanishi
功次 中西
Etsuo Ogino
悦男 荻野
Toshitaka Shigeoka
重岡 利孝
Katsuhisa Enjoji
勝久 円城寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP63089628A priority Critical patent/JPH01260796A/en
Publication of JPH01260796A publication Critical patent/JPH01260796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

PURPOSE:To prevent the rapid increase of the current due to the temperature rising of an electroluminescent element so as to prevent the breakdown of which by using a mixture of powder of two components as an inorganic resistant powder constructing the current limiting layer of the element and minimizing the temperature dependency of the electric resistance of one component of larger electric resistance than the other component. CONSTITUTION:An electroluminescent element is constructed with a transparent electrode 2, a layer 3 consisting of luminescent material, a current limiting layer 4 and a rear electrode 5 piled up successively on a transparent substrate 1. The current limiting layer 4 of the EL element is made of a mixed powder of [a] manganese oxides selected from the group consisting of manganese monoxide and manganese 4-3 oxide and [b] compounds and/or elements selected from the group consisting of manganese 3-2 oxide, beta-manganese dioxide, carbon black, and elements of the groups Ib, IIb, IIIb excluding boron, IV excluding carbon and silicon, V excluding nitrogen, phosphor and arcenic, VIa, VIIa and VIII, and is solidified with binder resin. Thereby the brightness ununiformity of the EL elements can be improved and the breakdown can be prevented to improve the reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕   − 本発明はエレクトロルミネセント素子(以後EL素子と
略称する)に関し、特に直流電流発光型のELデイスプ
レィデバイス等に有用なEL素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] - The present invention relates to an electroluminescent device (hereinafter abbreviated as an EL device), and particularly to an EL device useful for a direct current light emitting type EL display device.

〔従来の技術〕[Conventional technology]

近年コンピュータの普及に伴い、デイスプレィデバイス
の需要が高まっており、特に、現在量も広く使われてい
るCRT (陰掻線管)の厚味が大きすぎると云う欠点
を改善しようと云う動きが盛んである。平面デイスプレ
ィ装置として現在実用化の域に達しているものには代表
的なものを挙げるとLCD (液晶デイスプレィ)、P
D(プラズマデイスプレィ)、ELD (エレクトロル
ミネセントディスプレイ)、螢光表示管の4種があり、
ELDは中でも輝度の高さ、コントラストの良さ及び視
野角の広さに於いて群を抜いている。
In recent years, with the spread of computers, the demand for display devices has increased, and in particular, there is a movement to improve the thickness of CRTs (curvature tubes), which are currently widely used. It's thriving. Typical flat display devices that have now reached the stage of practical use include LCD (Liquid Crystal Display), P.
There are four types: D (plasma display), ELD (electroluminescent display), and fluorescent display tube.
Among them, ELD stands out in terms of high brightness, good contrast, and wide viewing angle.

ところが、現在量産段階にあるELDは二重絶縁型で、
この種の構成は真空成膜によって形成された薄膜を何層
も有しており、それぞれの層を形成する際の歩留りがあ
まり高くならないことから、総合的な歩留りを向上させ
ることが非常に困難である。
However, the ELDs currently in mass production are double-insulated.
This type of structure has many layers of thin films formed by vacuum deposition, and the yield when forming each layer is not very high, making it extremely difficult to improve the overall yield. It is.

しかし、現在開発途上にある直流電流を流すことによっ
て発光させる方式のELDでは、直流電流を制限するた
めに設ける層の厚味を厚くしてピンホール生成の可能性
を小さ(し、歩留りを上げることが可能である。
However, with ELDs that are currently under development and emit light by passing a direct current through them, the thickness of the layer provided in order to limit the direct current is increased to reduce the possibility of pinhole formation (and increase the yield). Is possible.

現在知られているこの種のELDの構成は、第1図に示
す様に、ガラス基板上に透明電極を形成し、その上に順
次発光層、電流制限層、背面電極を形成したものであり
(例えば英国特許GB217634OA)、二重絶縁型
に較べて真空成膜によって形成される絶縁膜が二層とも
使用されないことから、歩留りも高くなり、コストも低
下する。
The currently known structure of this type of ELD is as shown in Figure 1, in which a transparent electrode is formed on a glass substrate, and a light emitting layer, a current limiting layer, and a back electrode are sequentially formed on the transparent electrode. (For example, British Patent GB217634OA) Compared to the double insulation type, since neither of the two insulation films formed by vacuum film formation is used, the yield is higher and the cost is lower.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記従来のEL素子においては、電流制
限層の電気抵抗が発光による温度上昇で急激に低下し、
更に大きな電流が流れることによって発熱すると云う悪
循環によって輝度むらや寿命短縮が起こると云う重大な
問題点があった。
However, in the conventional EL element described above, the electrical resistance of the current limiting layer rapidly decreases due to the temperature rise due to light emission.
There is a serious problem in that the vicious cycle of heat generation due to the flow of even larger currents causes uneven brightness and shortened lifespan.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、前記従来の問題点を解決するためになされた
ものであって、 透明基板上に、透明電極9発光物質よりなる層。
The present invention has been made in order to solve the above-mentioned conventional problems, and includes a transparent electrode 9 and a layer made of a luminescent material on a transparent substrate.

電流制限層、および背面電極を順次積層して成るエレク
トロルミネセント素子において、該電流制限層を、 a.一酸化マンガンおよび四三酸化マンガンよりなる群
より選ばれた少なくとも1種のマンガン酸化物、 および b.三二酸化マンガン、ベータ型二酸化マンガン、カー
ボンブラック、および Ib族、nb族、ホウ素を除<nrb族、炭素およびケ
イ素を除く■族、窒素、リン、ヒ素を除くv族、■a族
、VIa族及び■族の各元素よりなる群より選ばれた少
なくとも1種の化合物および/または元素 の混合粉末をバインダー樹脂で固定したものとしている
In an electroluminescent device formed by sequentially laminating a current limiting layer and a back electrode, the current limiting layer is formed by: a. at least one manganese oxide selected from the group consisting of manganese monoxide and trimanganese tetroxide, and b. Manganese sesquioxide, beta manganese dioxide, carbon black, Ib group, nb group, excluding boron < nrb group, ■ group excluding carbon and silicon, V group excluding nitrogen, phosphorus, arsenic, ■ a group, VIa group A mixed powder of at least one compound and/or element selected from the group consisting of each element of group (1) is fixed with a binder resin.

まず31群の物質は、比抵抗が10&Ω・ロオーダーの
物質であり、しかもこれが温度の上昇によって不変であ
るか、又はごくわずかだけ変化するものである。因みに
.一酸化マンガンと四三酸化マンガンの室温付近での比
抵抗はそれぞれ1.5×10hΩ・(2)及び2.3X
10hΩ・口であり、100℃付近では1.5X10’
Ω・口及び2.0×10bΩ・口である。
First, the materials of Group 31 are materials with a specific resistance of 10 &Ω·low order, and this does not change or changes only slightly with an increase in temperature. By the way. The specific resistances of manganese monoxide and trimanganese tetroxide near room temperature are 1.5×10hΩ・(2) and 2.3X, respectively.
10hΩ・1.5×10' at around 100℃
Ω・mouth and 2.0×10bΩ・mouth.

次にす0群の物質は、比抵抗が31群の物質に較べて低
い物質であり、たとえば三二酸化マンガン及びベータ型
二酸化マンガンはそれぞれ室温付近で5X102Ω・国
、7X10’ Ω・口の比抵抗を有する。また、カーボ
ンブラックは10−1Ω・(至)付近を中心としてかな
り幅広い比抵抗値を有する。これらの他にも、多種の金
属又は半金属が、比較的に低い比抵抗を有する。
Next, the substances in the 0 group have a lower resistivity than the substances in the 31 group. For example, manganese sesquioxide and beta-type manganese dioxide each have a resistivity of 5 x 102 ohms and 7 x 10' ohms at room temperature, respectively. has. Further, carbon black has a fairly wide range of resistivity values, centered around 10-1 Ω·(maximum). In addition to these, many other metals or metalloids have relatively low resistivities.

Ib族元素(メンプレエフ周期 表、以下同じ)とは、
銅、銀、金であり、mb族元素とは、亜鉛。
Group Ib elements (Memphreyev periodic table, same below) are:
These are copper, silver, and gold, and the MB group element is zinc.

カドミウム、水銀であり、ホウ素を除くIIIb族元素
とは、アルミニウム、ガリウム、インジウム。
Group IIIb elements, excluding boron, include cadmium and mercury, and include aluminum, gallium, and indium.

タリウムであり、炭素およびケイ素を除く■族元素とは
、チタン、ジルコニウム、ハフニウム、ゲルマニウム、
スズ、鉛であり、窒素、リン、ヒ素を除く■族元素とは
、バナジウム、ニオブ、タンタル、アンチモン、ビスマ
スであり、Via族元素とは、クロム、モリブデン、タ
ングステンであり、VIa族元素とは、マンガン、テク
ネチウム、レニウムであり、■族元素とは、鉄、コバル
ト、ニッケル、ルテニウム、ロジウム、パラジウム、オ
スミウム、イリジウム、白金である。
Thallium is group II elements excluding carbon and silicon, which include titanium, zirconium, hafnium, germanium,
These are tin and lead, and group II elements excluding nitrogen, phosphorus, and arsenic are vanadium, niobium, tantalum, antimony, and bismuth. Group Vi elements are chromium, molybdenum, and tungsten, and group VIa elements are , manganese, technetium, and rhenium, and group Ⅰ elements are iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium, and platinum.

以上の電流制限層構成成分は、いずれも粉体で使用され
、これらはバインダー樹脂を用いて固定される。バイン
ダー樹脂としては、通常の有機高分子物質やシリコーン
樹脂を用いることができる。
All of the above current limiting layer constituents are used in powder form, and these are fixed using a binder resin. As the binder resin, ordinary organic polymer substances and silicone resins can be used.

これらにはたとえば、ビニル系樹脂、ポリエステル系樹
脂、ポリアミド系樹脂、ポリイミド系樹脂、セルロース
系樹脂、ポリウレタン系樹脂、尿素系樹脂、エポキシ系
樹脂、メラミン系樹脂、シリコーン系樹脂などが挙げら
れるが、特に、極性基を有した高分子材料が好適に用い
られる。
Examples of these include vinyl resins, polyester resins, polyamide resins, polyimide resins, cellulose resins, polyurethane resins, urea resins, epoxy resins, melamine resins, silicone resins, etc. In particular, polymeric materials having polar groups are preferably used.

極性基を有した高分子材料としてはたとえば、ビニルア
ルコールやアクリル酸、メタクリル酸、N、N−ジメチ
ルアミノメタクリレート残基を有した共重合体、ポリオ
ールを当量より過剰に含んだポリウレタンやシリコーン
樹脂が挙げられる。
Examples of polymeric materials with polar groups include vinyl alcohol, acrylic acid, methacrylic acid, copolymers with N,N-dimethylaminomethacrylate residues, polyurethanes and silicone resins containing polyols in excess of the equivalent amount. Can be mentioned.

これらは単独でも、混合物としても用いることができる
These can be used alone or as a mixture.

これらバインダー樹脂を用いて結合される粉体の平均粒
径は10nm〜10μmであることが好ましく、より好
ましくは1100n〜3μmである。
The average particle diameter of the powder bound using these binder resins is preferably 10 nm to 10 μm, more preferably 1100 nm to 3 μm.

10nmより粒径が小さくなると粉体の表面原子の割合
が大きくなりすぎて本来の特性が得られにくくなり、又
10μmよりも太き(なると、分散性の低下や膜厚むら
の原因となりやすい。
When the particle size is smaller than 10 nm, the ratio of surface atoms of the powder becomes too large, making it difficult to obtain the original properties, and when the particle size is larger than 10 μm, it tends to cause a decrease in dispersibility and uneven film thickness.

また、該粉体の電気抵抗は、4〜4X10’Ω・Cであ
ることが好ましく、この範囲を越える比抵抗を有する成
分aと、より低い比抵抗を有する成分すとの混合比率を
調節することによって上記の範囲を実現する。この場合
、より大きな比抵抗を有する成分aの比抵抗は温度が変
化してもあまり大きく変化しないので、これに、より低
い比抵抗を有する成分すを加えて上記の範囲のものを調
製した場合、その電気抵抗の温度依存性は小さくするこ
とが出来る。該aおよびbの混合物の混合割合はa:b
 (重量比)で1 : 9999〜1 : 999であ
ることが好ましく、この様な混合割合とすることによっ
て、混合物の比抵抗を4〜4X105Ω・■としやすい
Further, the electrical resistance of the powder is preferably 4 to 4 x 10'Ω・C, and the mixing ratio of component a having a resistivity exceeding this range and component a having a lower resistivity is adjusted. This achieves the above range. In this case, the resistivity of component a, which has a larger resistivity, does not change much even when the temperature changes, so if component a, which has a lower resistivity, is added to it to prepare a product in the above range. , the temperature dependence of the electrical resistance can be reduced. The mixing ratio of the mixture of a and b is a:b
(weight ratio) is preferably 1:9999 to 1:999, and by setting such a mixing ratio, it is easy to set the specific resistance of the mixture to 4 to 4×10 5 Ω·■.

該a:b (重量比)が1:9999より小さいと本発
明の効果が現れに(<、又1:999より大きいと混合
粉末の比抵抗が大きくなり、駆動電圧が高くなったり、
電流制限層の膜厚むらによる輝度むらが生じやす(なっ
たりする。
If the a:b (weight ratio) is smaller than 1:9999, the effect of the present invention will not be apparent.
Luminance unevenness is likely to occur due to uneven thickness of the current limiting layer.

上記aおよびbの各群は、各々単独成分の粉末の混合物
であっても良いし、合金や混合酸化物等の粉末であって
も良い。
Each of the above groups a and b may be a mixture of powders each having a single component, or may be a powder of an alloy, a mixed oxide, or the like.

又aおよびbの混合粉末もa群およびb群の単独成分の
粉末の混合物であっても良いし、a群およびb群の化合
物の粉末又は混合物の粉末であっても良い。
Further, the mixed powder of a and b may be a mixture of powders of individual components of groups a and b, or may be a powder of compounds of groups a and b, or a powder of a mixture.

電流制限層の厚味は1μmを切ると粉体粒子が膜厚に較
べて大きくなってしまい、電気抵抗の均一性が損われる
し、100μmを越えると膜にクラックが生じ易くなり
、不安定になる。より好ましい膜厚は、5〜20μmで
ある。
If the thickness of the current limiting layer is less than 1 μm, the powder particles will become larger than the film thickness, impairing the uniformity of electrical resistance, and if it exceeds 100 μm, the film will tend to crack and become unstable. Become. A more preferable film thickness is 5 to 20 μm.

〔作 用〕[For production]

本発明は、前記従来の電流制限層の発熱によるブレーク
ダウンが、電流制限層に使用しているα。
In the present invention, breakdown due to heat generation of the conventional current limiting layer is caused by α used in the current limiting layer.

γ、もしくはδ型の二酸化マンガンの特性によって引き
おこされていることにかんがみなされたものであって、
本発明によれば、電流制限層を構成する抵抗体である無
機質粉体として二成分の粉末の混合物を用い、その電気
抵抗が高い方の成分の電気抵抗の温度依存性が小さくさ
れている。そのため、電流制限層の電気抵抗の温度依存
性もまた小さくなり、前記温度上昇による電流の急激な
増加を防止し、EL素子のブレイクダウンが防止できる
This is considered to be caused by the characteristics of γ- or δ-type manganese dioxide,
According to the present invention, a mixture of two component powders is used as the inorganic powder serving as the resistor constituting the current limiting layer, and the temperature dependence of the electrical resistance of the component having the higher electrical resistance is reduced. Therefore, the temperature dependence of the electrical resistance of the current limiting layer is also reduced, preventing a sudden increase in current due to the temperature rise, and preventing breakdown of the EL element.

実施例 実施例1〜6 ■ 塗料の調製 以下の手順によりまず塗料A〜■を各々調整した。Example Examples 1-6 ■ Preparation of paint First, paints A to (2) were each prepared according to the following procedure.

塗料A −酸化マンガン0.7gt−ニトロセルロースの25%
メチルエチルケトン(以後MEKと略称する)溶液20
0gと酢酸エチル/トルエン=1/1の溶媒1500g
と共にボールミルで2時間ミルし、均一に分散させた。
Paint A - Manganese oxide 0.7gt - 25% of nitrocellulose
Methyl ethyl ketone (hereinafter abbreviated as MEK) solution 20
0g and ethyl acetate/toluene = 1/1 solvent 1500g
The mixture was milled with a ball mill for 2 hours to ensure uniform dispersion.

塗料B 四三酸化マンガン0.7gをアセチルセルロースの25
%MEK溶液200gと酢酸エチル/トルエン=1/1
の溶媒1500 gと共にボールミルで2時間ミルし、
均一に分散させた。
Paint B 0.7g of trimanganese tetroxide and 25% of acetylcellulose
%MEK solution 200g and ethyl acetate/toluene = 1/1
milled in a ball mill for 2 hours with 1500 g of solvent,
Evenly dispersed.

塗料C 四三酸化マンガン0.4gをポリビニルブチラールの2
5%MBK溶液200gと酢酸エチル/トルエン=l/
1の溶媒1500gと共にボールミルで2時間ミルし、
均一に分散させた。
Paint C: Add 0.4 g of trimanganese tetroxide to 2 of polyvinyl butyral.
200g of 5% MBK solution and ethyl acetate/toluene = l/
Milled in a ball mill for 2 hours with 1500 g of the solvent of 1,
Evenly dispersed.

塗料D カーボンブラック1kgをニトロセルロースのMEK溶
液200gと、酢酸エチル/トルエン=171の溶媒1
500 gと共にボールミルで2時間ミルし、均一に分
散させた。
Paint D 1 kg of carbon black, 200 g of MEK solution of nitrocellulose, and solvent 1 of ethyl acetate/toluene = 171
Milled with 500 g in a ball mill for 2 hours to uniformly disperse.

塗料E カーボンブラックに代えてアンチモン粉末を用いた他は
塗料りの場合と同様に行い、均一に分散した塗料を得た
Paint E A uniformly dispersed paint was obtained in the same manner as in the case of paint except that antimony powder was used instead of carbon black.

塗料F カーボンブラックに代えて銀粉末を用いた他は塗料りの
場合と同様に行い、均一に分散した塗料を得た。
Paint F A uniformly dispersed paint was obtained in the same manner as in the case of paint except that silver powder was used instead of carbon black.

塗料G カーボンブランクに代えてゲルマニウム粉末を用いた他
は塗料りの場合と同様に行い、均一に分散した塗料を得
た。
Paint G A uniformly dispersed paint was obtained in the same manner as in the case of paint except that germanium powder was used in place of the carbon blank.

塗料H カーボンブラックに代えてチタニウム粉末を用いた他は
塗料りの場合と同様に行い、均一に分散した塗料を得た
Paint H A uniformly dispersed paint was obtained in the same manner as in the case of paint, except that titanium powder was used instead of carbon black.

塗料l カーボンブラックに代えてニッケル粉末を用いた他は塗
料りの場合と同様に行い、均一に分散した塗料を得た。
Paint 1 A uniformly dispersed paint was obtained in the same manner as in the case of paint, except that nickel powder was used instead of carbon black.

■ ELナセル作製 次にガラス基板等の透明絶縁基板1上にインジウムスズ
酸化物(ITO)をスパッタリング法で成膜し、それを
くし形電極2(透明電極)を形成する様にフォトリソグ
ラフィーによってバターニングした後、マンガンをドー
プしたZnS膜3 (発光層)を真空蒸着法で約500
nm厚成膜した。
■ Fabrication of EL nacelle Next, indium tin oxide (ITO) is formed into a film by sputtering on a transparent insulating substrate 1 such as a glass substrate, and then buttered by photolithography to form comb-shaped electrodes 2 (transparent electrodes). After coating, a manganese-doped ZnS film 3 (emissive layer) is deposited using a vacuum evaporation method with a thickness of about 500 ml.
A film with a thickness of nm was formed.

塗料A〜■を重量比で1対1となる様にAとD(実施例
1)、AとE(実施例2)、AとF(実施例3)、Bと
G(実施例4)、CとH(実施例5)、Cと1 (実施
例6)の組合せで各々混合し、スプレー塗装でZnS膜
上に各々塗布し、乾燥して電流制限層4(約10〜15
μm厚)とした後、更にその上にアルミニウムを真空蒸
着法で約10μm厚成膜し、針でITOのパターンとは
垂直に引っかいて電流制限層とアルミニウム層を一緒に
かきとってCL型の背面電極5を形成し、封止した。
A and D (Example 1), A and E (Example 2), A and F (Example 3), and B and G (Example 4) in a 1:1 weight ratio of paints A to ■. .
After that, an aluminum film with a thickness of about 10 μm was formed on top of it by vacuum evaporation method, and the current limiting layer and aluminum layer were scraped off together with the ITO pattern by scratching with a needle perpendicular to the ITO pattern to form a CL type. A back electrode 5 was formed and sealed.

以上の様にして作製したドツトマトリマス型ELパネル
を駆動回路に接続して発光させたところ、前面均一に発
光しており、輝度むらも観察されなかった。
When the dot-to-trimmed EL panel produced as described above was connected to a drive circuit and emitted light, it emitted light uniformly from the front surface, and no unevenness in brightness was observed.

比較例1 四三酸化マンガン.一酸化マンガン、カーボンブラック
、及び銀粉末をそれぞれ10g、ニトロセルロースの2
5%MEK溶液を4gと酢酸エチル/トルエン=1/1
の溶媒30gに添加して分散させた4種類の塗料を調製
し、これを用いて実施例と同様の手順でELナセル作製
し、駆動回路に接続して発光させようとしたが、全く発
光しなかった。
Comparative Example 1 Trimanganese tetroxide. 10 g each of manganese monoxide, carbon black, and silver powder, 2 g of nitrocellulose
4g of 5% MEK solution and ethyl acetate/toluene = 1/1
Four types of paints were prepared by adding and dispersing them to 30g of solvent, and using these, an EL nacelle was created in the same manner as in the example, and an attempt was made to connect it to a drive circuit to emit light, but no light was emitted at all. There wasn't.

比較例2 α−二酸化マンガン及びT−二酸化マンガンを用いて比
較例1の様な手順でELナセル作製した。
Comparative Example 2 An EL nacelle was produced in the same manner as in Comparative Example 1 using α-manganese dioxide and T-manganese dioxide.

−6発光は観測されたが、最初に見られた輝度むらが時
間が経過すると共にだんだんと大きくなり、ついには所
々ブレークダウンが起こった。
-6 luminescence was observed, but the brightness unevenness that was initially observed gradually became larger as time passed, and eventually breakdowns occurred in places.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、電流制限層を用いたEL素子輝度むら
を改善し、ブレークダウンを防止し、EL素子の信頼性
を向上することができる。
According to the present invention, it is possible to improve the brightness unevenness of an EL element using a current limiting layer, prevent breakdown, and improve the reliability of the EL element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例で作製したエレクトロルミネッセンス素
子の概略を示す断面図である。
FIG. 1 is a cross-sectional view schematically showing an electroluminescent device manufactured in an example.

Claims (2)

【特許請求の範囲】[Claims] (1) 透明基板上に、透明電極、発光物質よりなる層
、電流制限層、および背面電極を順次積層して成るエレ
クトロルミネセント素子において、該電流制限層が、 a. 一酸化マンガンおよび四三酸化マンガンよりなる
群より選ばれた少なくとも1種のマンガン酸化物、 および b. 三二酸化マンガン、ベータ型二酸化マンガン、カ
ーボンブラック、および I b族、、IIb族、ホウ素を除くIIIb族、炭素および
ケイ素を除くIV族、窒素、リン、ヒ素を除くV族、VIa
族、VIIa族及びVIII族の各元素、よりなる群より選ば
れた少なくとも1種の化合物および/または元素 の混合粉末をバインダー樹脂で固定したものであること
を特徴とするエレクトロルミネセント素子。
(1) An electroluminescent device comprising a transparent electrode, a layer made of a luminescent material, a current limiting layer, and a back electrode laminated in sequence on a transparent substrate, wherein the current limiting layer comprises: a. at least one manganese oxide selected from the group consisting of manganese monoxide and trimanganese tetroxide, and b. Manganese sesquioxide, beta manganese dioxide, carbon black, and Group Ib, , IIb, Group IIIb excluding boron, Group IV excluding carbon and silicon, Group V excluding nitrogen, phosphorus, arsenic, and VIa.
1. An electroluminescent element comprising a mixed powder of at least one compound and/or element selected from the group consisting of elements of Group VIIa and Group VIII, fixed with a binder resin.
(2) 該混合粉末中のaの混合割合が0.01〜0.
1重量%である請求項1記載のエレクトロルミネセント
素子。
(2) The mixing ratio of a in the mixed powder is 0.01 to 0.
2. The electroluminescent device according to claim 1, wherein the amount is 1% by weight.
JP63089628A 1988-04-12 1988-04-12 Electroluminescent element Pending JPH01260796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63089628A JPH01260796A (en) 1988-04-12 1988-04-12 Electroluminescent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63089628A JPH01260796A (en) 1988-04-12 1988-04-12 Electroluminescent element

Publications (1)

Publication Number Publication Date
JPH01260796A true JPH01260796A (en) 1989-10-18

Family

ID=13976024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63089628A Pending JPH01260796A (en) 1988-04-12 1988-04-12 Electroluminescent element

Country Status (1)

Country Link
JP (1) JPH01260796A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209647A (en) * 1998-12-16 2005-08-04 Cambridge Display Technol Ltd Organic light emitting devices
DE102004057379B3 (en) * 2004-11-26 2006-08-10 Schott Ag Organic luminous unit for e.g. motor vehicle light, has resistor dimensioned such that unit has same brightness at two different temperatures and operation after half-specified life span or after hundred hours of operation at same voltage

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005209647A (en) * 1998-12-16 2005-08-04 Cambridge Display Technol Ltd Organic light emitting devices
DE102004057379B3 (en) * 2004-11-26 2006-08-10 Schott Ag Organic luminous unit for e.g. motor vehicle light, has resistor dimensioned such that unit has same brightness at two different temperatures and operation after half-specified life span or after hundred hours of operation at same voltage

Similar Documents

Publication Publication Date Title
EP0830807B1 (en) Electroluminescent lamp having a terpolymer binder
US5045235A (en) Transparent conductive film
CN100385573C (en) A special silver paste for indium tin oxide and its manufacturing method
JPH1069979A (en) Manufacturing method and device structure of alternating current powder electroluminescent device
EP1594176B1 (en) Switching device
JPH1167459A (en) Organic electroluminescent element and its manufacture
DE4024602A1 (en) ELECTROLUMINESCENCE DEVICE
JP4559554B2 (en) Sintered body for sputtering, electron beam and ion plating, and sputtering target
CN100477015C (en) A kind of conductive silver paste for touch screen and manufacturing method thereof
US5115329A (en) Electroluminescent device having a liquid crystal layer adjacent to the electroluminescent layer without any electrode placed therebetween
JPH01260796A (en) Electroluminescent element
EP1538180A2 (en) Thick film compositions for use in electroluminescent products
US3564260A (en) Solid-state energy-responsive luminescent device
US5906721A (en) Composition and method for preparing phosphor films exhibiting decreased coulombic aging
US3649553A (en) Semiconductive electro-luminescent element
JP4958143B2 (en) Composition for forming transparent conductive film, transparent conductive film and display
JPH0249396A (en) Electroluminescent element
JPH0555010A (en) Manufacture of voltage-dependent nonlinear element
JPS6261295A (en) Thin film el element and manufacturing thereof
JP3515688B2 (en) Low electric resistance transparent conductive film
JPH05326147A (en) Electroluminescent element capable of taking out light from both surfaces
JPH0240892A (en) Manufacture of electroluminescent element
JPH04314781A (en) Red phosphor for low-velocity electron beams, its manufacture, and fluorescent display tube
JPS60225399A (en) Electrolunescent element
JPH09153401A (en) Resistance paste for low temperature firing