[go: up one dir, main page]

JPH0126002Y2 - - Google Patents

Info

Publication number
JPH0126002Y2
JPH0126002Y2 JP12102480U JP12102480U JPH0126002Y2 JP H0126002 Y2 JPH0126002 Y2 JP H0126002Y2 JP 12102480 U JP12102480 U JP 12102480U JP 12102480 U JP12102480 U JP 12102480U JP H0126002 Y2 JPH0126002 Y2 JP H0126002Y2
Authority
JP
Japan
Prior art keywords
conductor
cable
wire
flat cable
conductors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12102480U
Other languages
Japanese (ja)
Other versions
JPS5743513U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12102480U priority Critical patent/JPH0126002Y2/ja
Publication of JPS5743513U publication Critical patent/JPS5743513U/ja
Application granted granted Critical
Publication of JPH0126002Y2 publication Critical patent/JPH0126002Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】 本案はフラツトケーブルに係り、可撓性に富
み、且つ耐繰返し屈曲性に優れたものを得ること
を目的とする。
[Detailed Description of the Invention] The present invention relates to a flat cable and aims to provide a flat cable that is highly flexible and has excellent repeated bending resistance.

フラツトケーブルは絶縁材料中に多数本の導体
を所定の間隔で互いに並行に内包させた全体偏
平・肉薄形態のケーブルで、テープ電線、リボン
ケーブル・平形ケーブルなどとも称される。
A flat cable is a completely flat and thin cable in which a large number of conductors are enclosed in an insulating material parallel to each other at predetermined intervals, and is also called a tape wire, ribbon cable, flat cable, etc.

一般には、並列配列した導体群を2枚の絶縁樹
脂テープでサンドイツチに挾んで熱圧着或は接着
剤で三者一体化することにより製造される。その
他、並列配列した導体群を樹脂押出し機のヘツド
を通すことにより全体一体に絶縁被覆する。予め
個々に絶縁被覆処理した導体を互いに並行に接触
させてならべ隣接導体の被覆同士を接着又は融着
して全体一体化させる。絶縁被覆導体を並列配列
し、その並列導体を経糸としてそれを緯糸で全体
フラツトな織物状に織る(製織型フラツトケーブ
ル)、などの方法によつても製造される。
Generally, it is manufactured by sandwiching a group of conductors arranged in parallel between two sheets of insulating resin tape on a sandwich bench and joining them together using thermocompression bonding or adhesive. In addition, the conductors arranged in parallel are passed through the head of a resin extruder to insulate them as a whole. Conductors that have been individually insulated in advance are brought into contact with each other in parallel, and the coatings of adjacent conductors are bonded or fused together to integrate them as a whole. It can also be manufactured by a method such as arranging insulated conductors in parallel and using the parallel conductors as warp threads and weaving the weft threads into a completely flat fabric (weaving type flat cable).

フラツトケーブルは、各導体を一括接続処理す
ることができ配線作業を容易・迅速にし合理化で
きる。配線ケーブル自体の占める空間が小さくて
すみ機器を小型化することができる、などの利点
があるので、例えばコンピユータ、通信機、自動
工作機械、複写機、フアクシミリなどその他の電
気・電子機器の内部配線路・外部配線路などとし
て賞用されている。
Flat cables can connect each conductor at once, making wiring work easier, faster, and more streamlined. It has the advantage that the wiring cable itself occupies a small space and the equipment can be made smaller, so it can be used for internal wiring of other electrical and electronic equipment such as computers, communication equipment, automatic machine tools, copying machines, facsimile machines, etc. It has been used as a wiring route, external wiring route, etc.

ところで上記のような電気・電子機器には例え
ば情報読み取り機構部、記録機構部、表示機構部
など多くの可動部分が含まれるが、これ等の可動
機構に接続されるケーブルについては機構の運動
に実質的に抵抗なく追随すべく十分に柔軟で可撓
性に富むものであること、及び断続的な繰返し屈
曲を受けても長期にわたつて断線トラブルを生じ
ない優れた耐繰返し屈曲性を有するものであるこ
とが要求される。例えば上記例のような可動機構
部に接続使用するケーブルとしては1千万回以上
の過酷な繰返し曲げに耐える高い屈曲寿命のある
ものであることが要求される。
By the way, the electrical/electronic equipment mentioned above includes many moving parts, such as an information reading mechanism, a recording mechanism, and a display mechanism, but the cables connected to these movable mechanisms are affected by the movement of the mechanism. It must be sufficiently soft and flexible so that it can follow the wire virtually without resistance, and it must have excellent repeated bending resistance that will not cause disconnection troubles over a long period of time even when subjected to intermittent repeated bending. This is required. For example, a cable used for connection to a movable mechanism as in the above example is required to have a long bending life that can withstand severe repeated bending of 10 million times or more.

フラツトケーブルは、偏平な構造体であるから
所謂丸型ケーブルよりも曲げられた時の歪が少な
くて可撓性が得やすく、可動機構等に接続されて
繰返し屈曲を受けるような用途に適している。
Because flat cables have a flat structure, they suffer less distortion when bent than so-called round cables, making it easier to obtain flexibility, making them suitable for applications where they are connected to movable mechanisms and subject to repeated bending. ing.

又フラツトケーブルのうちでも個々の導体が単
線のものよりも撚線のもの(例えば米国 ゴア
社、商品名Dore−Flex)の方が可撓性に富み屈
曲用として適している。しかし撚線導体であつて
もその構成素線は充実体であるから同断面積の単
線導体と比べれば可撓性があるといえどもいまだ
かなりの曲げ抵抗・復元抵抗がある。従つて内部
導体として撚線を用いたフラツトケーブルでもそ
の可撓性にはある限界があり、機器によつては使
用不適のケースも多い。又単線・撚線何れの場合
も繰返し曲げにより曲げ部が毛髪状のクラツクを
生じながら劣化し、その部分の電気抵抗が増大し
て何れ破線(断線)を生じる結果となり比較的そ
の屈曲寿命は短い。
Also, among flat cables, stranded cables (for example, Dore-Flex, manufactured by Gore, Inc., USA) are more flexible and suitable for bending than those in which the individual conductors are single wires. However, even though it is a stranded conductor, its constituent wires are solid, so even though it is more flexible than a single wire conductor with the same cross-sectional area, it still has considerable bending resistance and restoring resistance. Therefore, even flat cables using stranded wires as internal conductors have a certain limit in their flexibility, and are often unsuitable for use with certain types of equipment. In addition, in the case of both solid and stranded wires, repeated bending causes hair-like cracks to deteriorate at the bent portion, which increases the electrical resistance of the wire and eventually results in broken wires (broken wires), resulting in a relatively short bending life. .

フラツトケーブルの屈曲寿命の点からいえば、
個々の導体を横断面丸型とするよりも横断面偏平
平型にした方が屈曲時に発生する歪みが少なく屈
曲寿命は優れたものになる。しかし該ケーブルは
接続のためにケーブル端末の絶縁被覆を取除く
と、その部分の平型導体の屈曲寿命が極端に短く
なる、同一断面積の丸型・正方形導体を用いたも
のよりもケーブルの全体幅が広いものとなり導体
の高密度実装性が悪くなる、鋭角の曲げに弱い、
等の欠点がある。
In terms of the bending life of flat cables,
If each conductor has a flat cross section than if the individual conductor has a round cross section, less distortion occurs during bending and the bending life is better. However, when the insulation coating is removed from the cable end for connection, the bending life of the flat conductor in that part becomes extremely short, compared to cables using round or square conductors with the same cross-sectional area. The overall width is wide, which impairs high-density mounting of conductors, and is susceptible to sharp bends.
There are drawbacks such as.

本案は、上述従来のフラツトケーブルの各種欠
点を除去し、従来のものよりも可撓性に富み、且
つ耐繰返し屈曲性に優れたものを得るもので、図
示例に示すようにフラツトケーブルAの個々の導
体1として、可撓性に富み且つ引張り強度の強い
延伸多孔質の4弗化エチレン樹脂(PTFE)から
なる条線11を芯体とし、そのまわりに長手に沿
つて導電性材料テープ121を二層以上多層に、
一層ごとに巻付方向を逆にして螺旋に巻き付けて
導体層12を形成したもの(第3図)を用いるこ
とを特徴とする。
This proposal eliminates the various drawbacks of the conventional flat cables mentioned above, and provides a cable that is more flexible than the conventional cables and has excellent repeated bending resistance. Each conductor 1 of A has a core wire 11 made of stretched porous polytetrafluoroethylene resin (PTFE), which is highly flexible and has a strong tensile strength, and a conductive material is arranged around it along its length. Tape 12 1 in two or more layers,
It is characterized in that the conductor layer 12 is formed by spirally winding each layer with the winding direction reversed (FIG. 3).

この考案において導体1の芯体条線11として
使用する延伸多孔質PTFEは、一般に用いられて
いる化学繊維とはその構造が大きく異なり、その
肉質が連続気孔性の多孔質構造に形成されている
もので、その多孔質構造によつて高い柔軟性を示
すとともに、延伸により強い引張強度も兼ね備え
たものである。
The expanded porous PTFE used as the core wire 11 of the conductor 1 in this invention has a structure that is significantly different from commonly used chemical fibers, and its flesh is formed into a continuous porous structure. It exhibits high flexibility due to its porous structure, and also has high tensile strength due to stretching.

この材料の製法は特公昭51−18991号公報・特
開昭50−22881号公報に開示されているが、概略
次の通りである。
The manufacturing method of this material is disclosed in Japanese Patent Publication No. 18991/1982 and Japanese Patent Application Laid-open No. 22881/1989, and is roughly as follows.

即ち、PTFE微粉末と液状潤滑剤(ソルベント
ナフサ・ホワイトオイルなどの液状炭化水素、ア
ルコール、石油エーテル、ベンゼンなど)との混
和物、又はこれに所望により適当量の例えば導電
性炭素粉末などその他の有機・無機の副配合物を
加えた混和物を予備成形し、この予備成形物を押
出し・圧延等の手段でシート状・フイルム状・チ
ユーブ状・ロツド状・テープ状・紐状等所要の形
状に成形する。その成形物から液状潤滑剤を除去
いた後(除去しなくともよいが、除去した方が好
結果が得られる)、それを未焼結状態に於て一軸
或は多軸に約1.5〜1500倍に延伸処理する。この
延伸処理により成形品の肉は無数の微小結節が無
数の微細なフイブリルによつて互いに連結された
連続微細多孔質構造になる。
That is, a mixture of PTFE fine powder and a liquid lubricant (liquid hydrocarbon such as solvent naphtha, white oil, alcohol, petroleum ether, benzene, etc.), or if desired, an appropriate amount of other materials such as conductive carbon powder, etc. A mixture containing organic and inorganic sub-compounds is preformed, and this preform is shaped into a desired shape such as a sheet, film, tube, rod, tape, string, etc. by extrusion, rolling, etc. Form into. After removing the liquid lubricant from the molded product (it is not necessary to remove it, but better results will be obtained if it is removed), it is heated approximately 1.5 to 1500 times uniaxially or multiaxially in an unsintered state. Stretched. Through this stretching process, the flesh of the molded product becomes a continuous fine porous structure in which countless micronodules are interconnected by countless fine fibrils.

次いでその延伸処理物をそのまま或はその延伸
処理物を熱収縮しないように押えた状態に於て
327℃以下の温度で熱セツトして或は327℃以上の
温度で焼結処理する。この得られた製品がもとも
と紐状ないし糸状の場合には、そのまま導体1の
芯11として利用し、シート状物の場合はそれを
紐状ないし糸状に裁断して利用し、或は繊維状に
ほぐして丸める或は撚つて紐状ないし糸状にして
利用する。
Next, the stretched product is held as it is, or the stretched product is held down so as not to shrink due to heat.
Heat set at a temperature below 327°C or sintered at a temperature above 327°C. If the obtained product is originally string-like or thread-like, it can be used as it is as the core 11 of the conductor 1, and if it is a sheet-like product, it can be cut into a string-like or thread-like shape and used, or it can be made into a fiber-like material. Use by loosening and rolling or twisting into a string or string.

上記の延伸多孔質のPTFEの紐状ないし糸状物
は極めて耐熱性に優れると共に一般の化学繊維に
比べて可撓性に富み、且つ引張り強度も10Kg/mm2
と大きく、長手方向への伸びをほとんど生じな
い。
The above-mentioned stretched porous PTFE strings or filaments have extremely high heat resistance, are more flexible than general chemical fibers, and have a tensile strength of 10 kg/mm 2
It is large and hardly elongates in the longitudinal direction.

導体層12を形成するために条線11に巻き付
ける導電性材料テープ121としては一般に厚さ
0.01〜0.1m/m程度の銅箔その他導電性のよい
金属箔、それ等の箔に銀・スズ・ニツケルなどを
メツキ処理したもの、合成樹脂フイルムに金属を
蒸着又は金属箔をラミネートしたものなどを適宜
の幅、例えば0.2〜2m/m程度の細幅テープに
裁断してものが挙げられる。
The conductive material tape 12 1 that is wound around the wire 11 to form the conductor layer 12 generally has a thickness of
Copper foil and other highly conductive metal foils with a thickness of about 0.01 to 0.1 m/m, foils plated with silver, tin, nickel, etc., synthetic resin films with metal vapor-deposited or metal foil laminated, etc. and cut into narrow tapes with an appropriate width, for example, about 0.2 to 2 m/m.

そして上記のような導電性材料テープ121
条線11のまわりに長手に沿つて螺旋間に隙間を
存在させて、或は隙間なく各螺旋を適当に重ねな
がら巻き付ける。巻き付けは二層以上多層に巻付
けるものとし、その際巻付け方向を一層ごと逆に
する。
Then, the conductive material tape 12 1 as described above is wound around the wire 11 along its length, with gaps between the spirals, or with the spirals appropriately overlapping each other without any gaps. Winding shall be done in two or more layers, with the winding direction being reversed for each layer.

而して上記の導体1を前述従来と同様に多数本
並列配列し、その導体群を二枚の絶縁樹脂テープ
でサンドイツチに挾んで熱圧着或は接着剤で絶縁
被覆2する。或は並列導体群を樹脂押出し機のヘ
ツドを通すことにより絶縁被覆2を設ける。或は
個々に絶縁被覆処理した導体1を互いに並行に接
触させてならべ隣接導体の被覆同士を接着又は融
着して全体一体化させる。或は絶縁被覆処理した
導体1を並行配列し、それを緯糸で製織する、等
の手法によりフラツトケーブルを得るものであ
る。
A large number of the above-mentioned conductors 1 are arranged in parallel in the same manner as in the prior art, and the conductor group is sandwiched between two sheets of insulating resin tape on a sandwich bench and insulated by thermocompression bonding or adhesive 2. Alternatively, the insulation coating 2 is provided by passing the parallel conductor group through the head of a resin extruder. Alternatively, the conductors 1 which have been individually insulated are brought into contact with each other in parallel, and the coatings of adjacent conductors are bonded or fused together to integrate them as a whole. Alternatively, a flat cable can be obtained by arranging insulated conductors 1 in parallel and weaving them with wefts.

即ち上記のように導体1として、可撓性に富み
且つ引張り強度の強い延伸多孔質PTFE条線11
を芯体とし、そのまわりに長手に沿つて導電性材
料テープ121を多層に、且つ各層の巻付方向を
一層ごとに逆にして螺旋に巻き付けて導電層12
を形成してなるものを用いてフラツトケーブルを
構成すると、 (1) 個々の導体1は条線11まわりの導体層12
が線路長の少なくとも1.1倍以上、通常は2倍
以上の長さの長い導電性材料テープがその線路
長内に螺旋に巻回して納まつたコイル構成であ
ることから曲げ力が作用したときその導体層1
2自体が例えば電話受話器のカールケーブル或
は可撓性コイル構造管と同じような理屈で極め
て優れた可撓性を示すものであること、又芯と
して特定した延伸多孔質PTFE条線11は摩擦
係数が極めて小さく(4弗化エチレン樹脂は他
の合成樹脂に比べて極めて摩擦係数が小さい)、
微小繊維が自由に変位可能な特殊な微細繊維質
多孔性肉質に基づき極めて柔軟で優れた可撓性
のものであり曲げ力で容易に屈撓し、その曲げ
部の条線外周とその外側巻回導体層12との相
互間に容易に滑りずれを生じ、上記導体層12
の可撓性を阻害しない。
That is, as described above, the conductor 1 is a stretched porous PTFE wire 11 that is highly flexible and has high tensile strength.
is used as a core, and conductive material tape 121 is wound around the core in multiple layers along the longitudinal direction, and the winding direction of each layer is reversed to form a conductive layer 12.
(1) Each conductor 1 has a conductor layer 12 around the wire 11.
When a bending force is applied to the coil, the conductive material tape is wound spirally within the length of the line. Conductor layer 1
2 itself exhibits extremely excellent flexibility in the same way as, for example, the curled cable of a telephone receiver or a flexible coil structure tube, and the expanded porous PTFE wire 11 specified as the core has a high resistance to friction. The coefficient is extremely small (tetrafluoroethylene resin has an extremely small coefficient of friction compared to other synthetic resins),
It is extremely flexible and has excellent flexibility due to its special microfiber porous texture that allows microfibers to freely displace. The conductor layer 12 easily slips and slips between the conductor layer 12 and the conductor layer 12.
does not impede the flexibility of the

従つて該フラツトケーブルAは内部導体とし
て従来のように単線或は撚線を用いたものより
も格段に優れた可撓性を示し、曲げ抵抗・復元
抵抗が小さい。
Therefore, the flat cable A exhibits much better flexibility than conventional cables using single or stranded wires as internal conductors, and has low bending resistance and restoring resistance.

(2) 導体層12は上記のように可撓性に富むコイ
ル構造であり、又芯である条線11は引張り強
度が大きく導体1全体の長手方向への伸びが少
ないことから曲げにより導体1自体に生じる内
部歪が小さく、導体として単線或は撚線を用い
たものよりも耐繰返し屈曲性に強く、屈曲寿命
が長いものとなる。
(2) As mentioned above, the conductor layer 12 has a highly flexible coil structure, and since the core wire 11 has high tensile strength and has little elongation in the longitudinal direction of the conductor 1 as a whole, the conductor 1 can be easily bent by bending. The internal strain generated in the conductor itself is small, and the conductor has stronger resistance to repeated bending and has a longer bending life than a conductor using a single wire or a stranded wire.

(3) 導体として平型導体を用いたものに比べて、
被覆を剥離してもその露出導体1の可撓性及び
耐繰返し屈曲性は長期にわたつて良好に保持さ
れる、導体の実装密度が高くなる、鋭角の曲げ
にも強い。
(3) Compared to those using flat conductors as conductors,
Even if the coating is peeled off, the flexibility and repeated bending resistance of the exposed conductor 1 are maintained well over a long period of time, the packaging density of the conductor is increased, and it is resistant to sharp bending.

(4) 導体1自体の重量は同径の単導線或は撚線に
比べて1/2以下となり、従つてケーブル全体重
量も軽量のものとなる。
(4) The weight of the conductor 1 itself is less than 1/2 that of a single conductor wire or stranded wire of the same diameter, and therefore the overall weight of the cable is also lighter.

(5) 導体層12は上記のように導電性材料テープ
121を一層ごとに巻き方向を逆にして巻き付
けて形成するものであるから、同一方向に重ね
巻きしたものに比べて、導体1の撚りぐせがな
くなり、ケーブル化したときにケーブルに歪を
生じることがない。その結果、ケーブルは均一
に屈曲されるため、導体1の一部分に応力の集
中することがなくなり、屈曲寿命が向上する。
さらに、導体1の撚りぐせが残らないので、コ
ネクタ接続時に導体1の接続個所にかかる応力
が減少し、断線が防止される。また、絶縁被覆
2を形成するとき、導体1には歪(撚りぐせ)
がないので、2枚の樹脂テープで挾んで一体化
した後に該被覆がはがれたりすることがなく、
押出被覆の場合には導体1の線間ピツチの設差
が少なくなる効果もある。また、導体1は撚り
ぐせがないので同じ方向に重ね巻きしたものの
ようにくせ直しをする必要がなく、さらに絶縁
被覆2の形成時にテンシヨンがかかつたときに
も同方向に重ね巻きしたものに比べて導体層1
2が伸びにくく、取扱いやすい。
(5) Since the conductor layer 12 is formed by winding the conductive material tape 12 1 layer by layer with the winding direction reversed, the conductor layer 12 is formed by winding the conductive material tape 12 1 layer by layer in the opposite direction. There is no twisting, and there is no distortion in the cable when it is made into a cable. As a result, the cable is bent uniformly, so stress is not concentrated on a portion of the conductor 1, and the bending life is improved.
Furthermore, since no twist remains in the conductor 1, the stress applied to the connection portion of the conductor 1 during connector connection is reduced, and disconnection is prevented. Also, when forming the insulation coating 2, the conductor 1 is strained (twisted).
Since there is no coating, the coating will not peel off after being sandwiched between two resin tapes and integrated.
In the case of extrusion coating, there is also the effect that the difference in pitch between the lines of the conductor 1 is reduced. In addition, since the conductor 1 does not have any twisting, there is no need to untwist it as would be the case with conductor 1 that is twisted in layers in the same direction.Furthermore, even when tension is applied during the formation of insulation coating 2, it can be twisted in layers in the same direction. Compared to conductor layer 1
2 is difficult to stretch and easy to handle.

(6) 導体層12は複数の導電性材料テープ121
を重ね巻きしたものであるから、一枚の場合に
比べて導体抵抗が低くなり、また、圧接型コネ
クタに接続したときに該テープのうちの何枚か
が切断されたときにも、残りのテープで導通状
態が確保されるので信頼性も向上する。さら
に、各導電性材料テープは厚さが0.01〜0.1mm
程度と薄いため、重ね巻きしたときに可撓性の
損なわれることがない。
(6) The conductor layer 12 includes a plurality of conductive material tapes 12 1
Since the tapes are wrapped in layers, the conductor resistance is lower than that of a single tape, and even if some of the tapes are cut when connected to an insulation displacement connector, the remaining Reliability is also improved because the tape ensures continuity. Additionally, each conductive material tape has a thickness of 0.01~0.1mm
Because it is so thin, its flexibility will not be lost when it is wrapped in layers.

又フラツトケーブルAにはそのケーブルの可撓
性を大幅に損なわない程度に金属箔・導電性樹脂
層(導電性PTFEなど)などによるシールド層
や、機械的強度増加用ジヤケツトなどを付加する
こともある。
In addition, a shield layer made of metal foil or a conductive resin layer (conductive PTFE, etc.) or a jacket for increasing mechanical strength should be added to the flat cable A to the extent that the flexibility of the cable is not significantly impaired. There is also.

耐熱性に優れたケーブルAを得る目的に於ては
絶縁被覆2として弗素系樹脂、例えばPTFE、延
伸多孔質PTFE,PFA(4弗化エチレン−パーフ
ロロアルキルビニルエーテル共重合体)、FEP
(4弗化エチレン−六弗化プロピレン共重合体)、
ETFE(4弗化エチレン−エチレン共重合体)、
PVdF(ポリ弗化ビニリデン)などその他の耐熱
性樹脂を用いればよい。個々の導体1の芯として
用いた延伸多孔質PTFEからなる条線11はそれ
自体耐熱性に優れた材料であるから、前記耐熱性
樹脂と組合わせることによつて耐熱性に優れたケ
ーブルとなる。
For the purpose of obtaining cable A with excellent heat resistance, a fluorine-based resin such as PTFE, expanded porous PTFE, PFA (tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer), FEP is used as the insulation coating 2.
(Tetrafluoroethylene-hexafluoropropylene copolymer),
ETFE (tetrafluoroethylene-ethylene copolymer),
Other heat-resistant resins such as PVdF (polyvinylidene fluoride) may be used. The wire 11 made of expanded porous PTFE used as the core of each conductor 1 is itself a material with excellent heat resistance, so by combining it with the heat resistant resin, it becomes a cable with excellent heat resistance. .

絶縁被覆2の材料として耐熱性の樹脂を用いる
場合の被覆法はその樹脂の物性に応じて圧着法ま
たは押出し法のいずれかを用いる。例えば溶融押
出しの困難なPTFEの場合は複数の導体を溝付き
のガイドロールを介して並行離間関係に配列し、
それを一対の圧着ロール間で上下から2枚の
PTFEテープを供給しつつ圧着一体化し、焼成す
ればよく、またFEP・ETFEなどの溶融可能な樹
脂の場合には、前記のように配列した導体を押出
機のヘツドを通過させ、その上に溶融樹脂を被覆
し、冷却してフラツトケーブルを作る。
When a heat-resistant resin is used as the material for the insulating coating 2, either a pressure bonding method or an extrusion method is used depending on the physical properties of the resin. For example, in the case of PTFE, which is difficult to melt extrude, multiple conductors are arranged in a parallel spaced relationship via grooved guide rolls.
Then, between a pair of crimping rolls, the two sheets from above and below are
All you have to do is feed the PTFE tape, press it together, and bake it. In the case of meltable resins such as FEP and ETFE, the conductors arranged as described above are passed through the head of an extruder, and then the PTFE tape is melted. Coat with resin and cool to make a flat cable.

上記のように導体1の芯11として延伸多孔質
のPTFE条線を利用し被覆材料2としてPTFE・
PFA・FEP・EPE等の弗素系のものを使用して
フラツトケーブルを構成した場合には、−196〜
200℃程度の広い温度範囲に於て十分に可撓性が
保持され、電気信号伝送特性も劣化せず、耐低温
特性・耐高温特性がよい。誘電率に周波数依存性
がほとんどないのでパルス伝送時のパルスなまり
がほとんどない。耐薬品性が良好である等の特徴
を具備した、可撓性に富み、耐繰返し屈曲性に優
れたフラツトケーブルが得られる。
As mentioned above, a stretched porous PTFE wire is used as the core 11 of the conductor 1, and PTFE/PTFE wire is used as the covering material 2.
If the flat cable is constructed using fluorine-based materials such as PFA, FEP, and EPE, -196 to
It maintains sufficient flexibility over a wide temperature range of about 200°C, does not deteriorate its electrical signal transmission characteristics, and has good low-temperature and high-temperature resistance. Since the dielectric constant has almost no frequency dependence, there is almost no pulse rounding during pulse transmission. A flat cable with features such as good chemical resistance, high flexibility, and excellent repeated bending resistance can be obtained.

実施例 導体芯11……直径0.27mmの未焼成PTFEモノ
フイラメントを加熱空気中で320℃に加熱後6倍
に延伸し、収縮しないように張力を加えながら加
熱空気中で340℃・1分間保持して得た、直径
0.20mmの延伸多孔質PTFEモノフイラメント。
Example Conductor core 11...An unfired PTFE monofilament with a diameter of 0.27 mm was heated to 320°C in heated air, stretched 6 times, and held in heated air at 340°C for 1 minute while applying tension to prevent shrinkage. The diameter obtained by
0.20mm expanded porous PTFE monofilament.

導電性材料テープ121……厚さ35μm・幅0.4
mmの銅箔テープ。
Conductive material tape 12 1 ...thickness 35μm, width 0.4
mm copper foil tape.

上記の芯11たる延伸多孔質PTFEモノフイラ
メントのまわりに長手に沿つて上記銅箔テープ1
1を0.6mmピツチで一層ごとに巻付方向を逆にし
て4回巻付け、直径0.4mmの銅箔巻付け導体1を
製造した。この導体1には撚りぐせがなく、くせ
直しの必要はなかつた。
The copper foil tape 1 is placed along the length around the expanded porous PTFE monofilament that is the core 11.
2 1 was wound four times at a pitch of 0.6 mm with the winding direction reversed for each layer to produce a copper foil-wound conductor 1 having a diameter of 0.4 mm. This conductor 1 had no twists and did not need to be straightened.

上記導体1を10本導体間隔1.27mmで互いに並行
に配列し、その並列導体群を厚さ0.2mmの2枚の
未焼成PTFEテープ間にサンドイツチに挾み、そ
れを溝付きの2本のロール間を通過させて全体一
体化させた。
Arrange the 10 conductors 1 in parallel with each other with a conductor interval of 1.27 mm, sandwich the parallel conductor group between two sheets of unfired PTFE tape with a thickness of 0.2 mm on a sandwich bench, and then roll it between two grooved rolls. The space was passed through to integrate the whole.

その後そのケーブルを長さ方向に張力を加えな
がら390℃の溶融塩に18秒間浸漬して未焼成
PTFEテープを焼成処理することにより導体間隔
1.27mmの10心フラツトケーブルを得た。
The cable is then immersed in molten salt at 390°C for 18 seconds while applying tension in the length direction to unfire it.
The conductor spacing is reduced by firing the PTFE tape.
A 1.27mm 10-core flat cable was obtained.

比較例 上記実施例に於て導体1として0.12mm径の銀メ
ツキ導線を7本撚りしたものを用い、他は同じ手
順で撚り導体を内部導体とするPTFE被覆の10心
フラツトケーブルを得た。
Comparative Example In the above example, seven twisted silver-plated conductors with a diameter of 0.12 mm were used as conductor 1, and the other procedures were the same to obtain a PTFE-coated 10-core flat cable with the twisted conductor as the internal conductor. .

上記実施例で得た本案に係るケーブルと比較例
のケーブルを夫々手で曲げて可撓具合を比較した
ところ前者の方が格段に可撓性を示し、柔軟で屈
曲抵抗・復元抵抗が小さいものであつた。
When the cable according to the present invention obtained in the above example and the cable of the comparative example were bent by hand and their flexibility was compared, the former showed much more flexibility, and was flexible and had less bending resistance and restoring resistance. It was hot.

耐繰返し屈曲性試験 試験法…第4図示のように固定板3とその上方
に並行に位置して且つ往復動駆動される可動板4
との間にU字に曲げた試験片ケーブルAを介入さ
せてケーブルの両端部を夫々止め具31,41で
固定板3と可動板4とに固定してセツトする。そ
して上記両板3,4の間隔を調節してケーブルA
のU字の曲げを半径を25mmに保持させた状態に
し、可動板4を1周期1秒、ストローク200mmで
繰返し往復運動駆動させ、ケーブルAの導体が少
なくとも10-6秒以上の間断線する即ち瞬断現象
(導体内のクラツクまたはヒゲが屈曲によつて極
めて短時間断線状態になること。屈曲されていな
い状態では導通している。)を生じるまでの屈曲
回数を調べる。
Repeated bending resistance test Test method: As shown in Figure 4, a fixed plate 3 and a movable plate 4 positioned above it in parallel and driven in reciprocating motion.
A test piece cable A bent into a U-shape is inserted between the test piece cable A and both ends of the cable are fixed to the fixed plate 3 and the movable plate 4 using fasteners 31 and 41, respectively. Then, adjust the distance between the two plates 3 and 4 to connect the cable A.
The radius of the U-shaped bend is maintained at 25 mm, and the movable plate 4 is repeatedly driven in reciprocating motion with a cycle of 1 second and a stroke of 200 mm until the conductor of cable A is disconnected for at least 10 -6 seconds, i.e. Check the number of times the conductor is bent until a momentary disconnection phenomenon occurs (a crack or hair in the conductor becomes disconnected for a very short time due to bending. It is conductive when it is not bent).

上記の試験法により、前記実施例で得た本案に
係るケーブルについてその耐繰返し屈曲回数を試
験した結果、平均1500万回であつた。
Using the above test method, the cable according to the present invention obtained in the above example was tested for its repeated bending resistance, which was 15 million times on average.

一方前記比較例で得たケーブルのそれは平均
256万回であつた。
On the other hand, the cable obtained in the comparative example above has an average
It was 2.56 million times.

即ち、本案に係るケーブルは個々の導体1の導
体層12のコイル巻構造による導体層自体の可撓
性、芯として用いた延伸多孔質の4弗化エチレン
樹脂からなる条線11の優れた可撓性及び優れた
低摩擦性とが相まつて耐繰返し屈曲性に極めて優
れるものであつた。また導体層12は導電性材料
テープ121を二層以上多層に、且つ一層ごとに
巻付け方向を逆にしたコイル巻構造であるから、
導体1は撚りぐせがなく、均一な可撓性を示すの
で、これらの導体1を用いたケーブルの屈曲寿
命、可撓性が向上する。また、導電性材料テープ
を同一方向に重ね巻きしたものに比べて、導体層
12は伸びにくく撚りぐせもないことから、取扱
いやすく、その結果作業性の向上につながる。
That is, the cable according to the present invention has the flexibility of the conductor layer itself due to the coil-wound structure of the conductor layer 12 of each conductor 1, and the excellent flexibility of the wire 11 made of expanded porous polytetrafluoroethylene resin used as the core. The combination of flexibility and excellent low friction properties resulted in extremely excellent repeated bending resistance. Furthermore, since the conductor layer 12 has a coil-wound structure in which the conductive material tape 12 1 is made up of two or more layers and the winding direction is reversed for each layer,
Since the conductors 1 are not twisted and exhibit uniform flexibility, the bending life and flexibility of cables using these conductors 1 are improved. Furthermore, compared to conductive material tapes wound in layers in the same direction, the conductor layer 12 is less stretchable and does not twist, making it easier to handle, resulting in improved workability.

又前記実施例に於てケーブルの絶縁被覆2を
PFA・FEP・EPE・ETFE等の溶融可能な樹脂
を用いて押出し法で形成して得たケーブルについ
ても実施例で得たものと同様の優れた可撓性・屈
曲寿命を有するものであり、又耐低温特性・耐高
温特性・耐薬品性も優れるものであつた。
In addition, in the above embodiment, the insulation coating 2 of the cable is
Cables formed by extrusion using meltable resins such as PFA, FEP, EPE, and ETFE also have excellent flexibility and bending life similar to those obtained in the examples. It also had excellent low-temperature resistance, high-temperature resistance, and chemical resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はフラツトケーブルの一部の平面図、第
2図は第1図−線拡大横断面図、第3図は内
部導体の一部の拡大正面図、第4図は耐繰返し屈
曲性試検要領を示す図。 Aはフラツトケーブル、1は導体、11は導体
芯、121はその芯に巻付けた導電性材料テープ、
12はその二層以上多層巻付けにより形成された
導体層、2は絶縁被覆、3は屈曲試験機の固定
板、4は同可動板。
Figure 1 is a plan view of a part of the flat cable, Figure 2 is an enlarged cross-sectional view taken along the line shown in Figure 1, Figure 3 is an enlarged front view of a part of the internal conductor, and Figure 4 is the repeated bending resistance. A diagram showing the procedure for the trial examination. A is a flat cable, 1 is a conductor, 11 is a conductor core, 12 1 is a conductive material tape wrapped around the core,
12 is a conductor layer formed by winding two or more layers, 2 is an insulating coating, 3 is a fixed plate of the bending tester, and 4 is a movable plate thereof.

Claims (1)

【実用新案登録請求の範囲】 (1) フラツトケーブルに於て、各並列導体1が、
延伸多孔質の4弗化エチレン樹脂からなる条線
11を芯体とし、そのまわりに長手に沿つて導
電性材料テープ121を二層以上多層に、一層
ごとに巻付け方向を逆にして螺旋に巻付けて導
体層12を形成してなるものである、フラツト
ケーブル。 (2) フラツトケーブルの絶縁被覆2の材料が弗素
系樹脂である、実用新案登録請求の範囲第(1)項
に記載のフラツトケーブル。 (3) フラツトケーブルが、外表面に導電層を有す
るものである、実用新案登録請求の範囲第(1)項
又は(2)項記載のフラツトケーブル。
[Claims for Utility Model Registration] (1) In a flat cable, each parallel conductor 1 is
A wire 11 made of stretched porous polytetrafluoroethylene resin is used as a core body, and two or more layers of conductive material tape 12 1 are wound around the wire 11 along the length thereof, with each layer being wound in the opposite direction. A flat cable is formed by winding the conductor layer 12 around the wire. (2) The flat cable according to claim (1) of the utility model registration, wherein the material of the insulation coating 2 of the flat cable is a fluororesin. (3) The flat cable according to claim 1 or 2 of the utility model registration claim, wherein the flat cable has a conductive layer on its outer surface.
JP12102480U 1980-08-26 1980-08-26 Expired JPH0126002Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12102480U JPH0126002Y2 (en) 1980-08-26 1980-08-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12102480U JPH0126002Y2 (en) 1980-08-26 1980-08-26

Publications (2)

Publication Number Publication Date
JPS5743513U JPS5743513U (en) 1982-03-10
JPH0126002Y2 true JPH0126002Y2 (en) 1989-08-03

Family

ID=29481704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12102480U Expired JPH0126002Y2 (en) 1980-08-26 1980-08-26

Country Status (1)

Country Link
JP (1) JPH0126002Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026132U (en) * 1984-02-21 1985-02-22 株式会社潤工社 flat cable
JPH043366Y2 (en) * 1988-08-26 1992-02-03
TWI809484B (en) * 2021-08-23 2023-07-21 蔡易潔 Flat combined wires

Also Published As

Publication number Publication date
JPS5743513U (en) 1982-03-10

Similar Documents

Publication Publication Date Title
US5245134A (en) Polytetrafluoroethylene multiconductor cable and process for manufacture thereof
US4443657A (en) Ribbon cable with a two-layer insulation
US5306869A (en) Ribbon cable construction
US5635677A (en) Series of parallel electrical conductors held together by interwoven braiding
US5393929A (en) Electrical insulation and articles thereof
US4423282A (en) Flat cable
US6894226B2 (en) Coaxial cables, multicore cables, and electronic apparatuses using such cables
GB2118520A (en) Winding or insulating tape made of a high temperature-resistant synthetic resin
US20110036613A1 (en) Electronic wire and method of manufacturing the same
WO2003067611A1 (en) High accuracy foamed coaxial cable and method for manufacturing the same
WO1993015511A1 (en) Externally and internally shielded double layered flat cable assembly
US4988835A (en) Polyvinylidene fluoride electrical cable
JP4618536B2 (en) Flat cable
JP2011124117A (en) Cable for movable portion
JPH0126002Y2 (en)
JP6774462B2 (en) Multi-core communication cable
JP3648103B2 (en) Extra-fine flat cable
JPH037842Y2 (en)
JPS6222967Y2 (en)
JP5326775B2 (en) Coaxial wire and manufacturing method thereof
US3855051A (en) Thermal barrier tape
JP3957522B2 (en) High precision foamed coaxial cable
EP0487354B1 (en) Method of making an electrical ribbon cable
WO2005122188A1 (en) High-precision foamed coaxial cable
WO1992004719A1 (en) Polytetrafluoroethylene insulated multiconductor cable and its manufacture