[go: up one dir, main page]

JPH01259150A - Manufacture of high-strength al-cu-li-mg-zr superplastic sheet - Google Patents

Manufacture of high-strength al-cu-li-mg-zr superplastic sheet

Info

Publication number
JPH01259150A
JPH01259150A JP8740488A JP8740488A JPH01259150A JP H01259150 A JPH01259150 A JP H01259150A JP 8740488 A JP8740488 A JP 8740488A JP 8740488 A JP8740488 A JP 8740488A JP H01259150 A JPH01259150 A JP H01259150A
Authority
JP
Japan
Prior art keywords
rolling
hours
temperature
superplastic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8740488A
Other languages
Japanese (ja)
Inventor
Hideo Yoshida
英雄 吉田
Hiroki Tanaka
宏樹 田中
Makoto Tsuchida
信 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP8740488A priority Critical patent/JPH01259150A/en
Publication of JPH01259150A publication Critical patent/JPH01259150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture an Al alloy sheet reduced in anisotropy, having high strength, and capable of plastic deformation by subjecting an ingot of an Al alloy containing specific amounts of Li, Cu, Mg, Zr, and Ti to homogenizing treatment or further to solution heat treatment and then applying rolling to the above under specific conditions. CONSTITUTION:An ingot of an Al alloy having a composition containing, by weight, 1.7-2.3% Li, 1.8-3.0% Cu, 1.1-3.0% Mg, 0.05-0.20% Zr, and 0.01-0.10% Ti is subjected to single-stage or multistage homogenizing treatment at 450-540 deg.C for 1-50h. Subsequently, the above ingot is subjected to solution heat treatment at >=460 deg.C and then to heating at 300-450 deg.C for 1-50h to undergo precipitation treatment and successively rolled at the above temp. so as to be worked into a metal sheet. At this time, rolling is carried out while regulating the equivalent strain rate represented by equation I to <=10S<-1>. By this method, the high-strength superplastic Al alloy sheet reduced in anisotropy at high temp. in the range of strain rate where deformation rate is extremely high can be manufactured.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超塑性変形か可能であるAl−Li系合金板を
製造する方法に関し、さらに詳しくは高温で変形速度が
極めて高いひずみ速度範囲で、異方性が少なく超塑性変
形が可能なAl−Cu−Li−Mg−Zr系超塑性アル
ミニウム合金板を、圧延で製造する方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically relates to a method for producing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically, it relates to a method for producing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically, it relates to a method for producing an Al-Li alloy plate that is capable of superplastic deformation, and more particularly, it relates to a method for producing an Al-Li alloy plate that is capable of superplastic deformation, and more specifically, it relates to a method for producing an Al-Li alloy plate that can undergo superplastic deformation, and more specifically, The present invention relates to a method of manufacturing an Al-Cu-Li-Mg-Zr based superplastic aluminum alloy plate with little anisotropy and capable of superplastic deformation by rolling.

[従来の技術] 航空機用アルミニウム合金板は、機体の軽量化のために
、A I −Cu −M g系の2024合金板やA 
I −Z n −M g−Cu系の7075合金板から
密度の低いAl−Li系合金板に移行しつつある。
[Prior Art] In order to reduce the weight of the aircraft, aluminum alloy plates for aircraft are made of AI-Cu-Mg-based 2024 alloy plates and A
There is a transition from I-Z n -M g-Cu based 7075 alloy plates to lower density Al-Li based alloy plates.

また、成形加工技術の而も、従来のロールフォーミング
やプレス成形(板金加工)したものを組立て接合などを
行う方法から一体化加工か11J能な超塑性成形か取り
入れられている。
In addition, the forming technology has been changed from the conventional method of assembling and joining products that have been roll-formed or press-formed (sheet metal processing) to integrated processing or 11J-capable superplastic forming.

超塑性成形法は、複雑な形状の製品を一度で成形するこ
とかできるため、部品の接合部か少なく、軽量化が可能
となり、また、組立て工数も少なく、製造コストの低減
をもたらす方法である。
The superplastic molding method allows products with complex shapes to be molded in one go, so there are fewer joints between parts, which makes it lighter. It also reduces assembly man-hours, reducing manufacturing costs. .

このため超塑性変形が可能なAl−Li系合金材料か要
求されている。
For this reason, an Al-Li alloy material that is capable of superplastic deformation is required.

従来、Al−Li系合金としては、Al−Li−Cu−
Mg−Zr系の8090合金とAl−Cu−Li−Zr
系の2090合金か、国際的に登録されている。このう
ちAl−Li−Cu−M g −Z r系合金の超塑性
変形を得るために、均質化処理温度、熱間加」二温度、
中間焼鈍温度および冷間加工度を規制する方法が提案さ
れている。(特開昭62−1704G2) しかし、A I−Cu−L i −Mg−Z r系合金
の変形速度が極めて高いひずみ速度範囲で超塑性変形か
得られる材料がなく、このような材料の開発か強く要望
されていた。
Conventionally, Al-Li-Cu-
Mg-Zr based 8090 alloy and Al-Cu-Li-Zr
The 2090 alloy is internationally registered. Among these, in order to obtain superplastic deformation of the Al-Li-Cu-Mg-Zr alloy, the homogenization treatment temperature, hot working temperature,
Methods have been proposed to regulate the intermediate annealing temperature and degree of cold working. (Japanese Patent Application Laid-Open No. 62-1704G2) However, there is no material that can achieve superplastic deformation in the strain rate range where the deformation rate of AI-Cu-Li-Mg-Zr alloys is extremely high, and the development of such a material is difficult. It was strongly requested.

一′6− [発明か解決しようとする課題] 前述したように超塑性材料を製造するためには、種々の
加工か施されるが、このときの冷間圧延の加工度が高い
と、圧延方向によって伸びか異なり、超塑性変形加工し
たとき圧延方向に対して直角h゛向の伸びが低いという
欠点かある。
1'6- [Problem to be solved by the invention] As mentioned above, in order to manufacture superplastic materials, various processing is performed, but if the working degree of cold rolling is high at this time, rolling The elongation differs depending on the direction, and when subjected to superplastic deformation processing, the elongation in the direction h perpendicular to the rolling direction is low.

また、冷間加工度を高くする必要のある場合1.5mm
以上の厚板の超塑性材料が製造できなかった。本発明は
、変形速度が極めて高い範囲で超塑性的変形が得られ、
しかも圧延方向による仲ひの異方性が少なく、また1、
5mm以上の厚さの板をA I−Cu−L i −Mg
−Z r系合金材料で制御した圧延で製造する方法を提
供するものである。
In addition, if it is necessary to increase the degree of cold working, 1.5 mm
It has not been possible to produce superplastic material of thicker plates than this. The present invention provides superplastic deformation in an extremely high deformation rate range,
Moreover, there is little anisotropy in the rolling direction depending on the rolling direction, and 1.
A plate with a thickness of 5 mm or more is A I-Cu-L i -Mg
-Z Provides a method for manufacturing by controlled rolling of r-based alloy material.

[課題を解決するための手段] 本発明による異方性の少ない超塑性アルミニウム合金板
の製造方法は、前記目的を達成するため、下記のとおり
に構成される。
[Means for Solving the Problems] In order to achieve the above object, the method for manufacturing a superplastic aluminum alloy plate with low anisotropy according to the present invention is configured as follows.

(1) L i 1.7〜2.3%、Cu 1.8〜3
.0% 、M g 1.1−3.0%、Z r 0.0
5〜0.20%、T10、旧〜0.lO%を含有し、残
部Alおよび不可避不純物からなるアルミニウム合金を
、通常の鋳造法で溶解、鋳造後、450〜540℃の温
度において1〜50時間一段または多段の均質化処理を
行い、その後300〜450℃の温度で圧延し、該圧延
時に下式で示す相当ひずみ速度が10s−1以下となる
ように調整し、圧延することを特徴とする高強度Al−
Cu−Li−Mg−Zr系超塑性板の製造方法。
(1) Li 1.7-2.3%, Cu 1.8-3
.. 0%, Mg 1.1-3.0%, Zr 0.0
5-0.20%, T10, old-0. After melting and casting an aluminum alloy containing 10% and the remainder Al and unavoidable impurities by a normal casting method, a single or multi-stage homogenization treatment is performed at a temperature of 450 to 540°C for 1 to 50 hours, and then 300 High-strength Al- is rolled at a temperature of ~450°C, and adjusted so that the equivalent strain rate expressed by the following formula is 10 s-1 or less during the rolling.
A method for producing a Cu-Li-Mg-Zr superplastic plate.

たたし、Vll=ロール周速度(m/5)R−=偏平後
のロール半径(m) ho=圧延前の板厚(m) r =圧下率 (2) L i 1.7〜2.3%、Cu 1.8−3
.0%、Mg1.1〜3.0%、Z r O,05〜0
.20%、Ti0101〜0.10%を含有し、残部A
lおよび不可避不純物からなるアルミニウム合金を、通
常= 8− の鋳造法で溶解し、鋳造後、450〜540℃の温度に
おいて1〜50時間一段または多段の均質化処理と30
0〜450℃で1〜50時間の析出処理を行い、その後
300〜450℃の湿度で圧延し、該圧延時に前記式で
示す相当ひずみ速度か105−’以下となるように調整
し、圧延することを特徴とする高強度Al−Cu−Li
−Mg−Zr系超塑性板の製造方法。
However, Vll = roll circumferential speed (m/5) R- = roll radius after flattening (m) ho = plate thickness before rolling (m) r = rolling reduction ratio (2) Li 1.7 to 2. 3%, Cu 1.8-3
.. 0%, Mg1.1-3.0%, Z r O, 05-0
.. 20%, Ti0101~0.10%, balance A
An aluminum alloy consisting of l and unavoidable impurities is usually melted by a casting method of = 8-, and after casting, it is subjected to a single or multi-stage homogenization treatment for 1 to 50 hours at a temperature of 450 to 540 °C and 30 to 30 hours of homogenization.
Precipitation treatment is performed at 0 to 450°C for 1 to 50 hours, and then rolled at a humidity of 300 to 450°C, and during rolling, the equivalent strain rate shown in the above formula is adjusted to be 105-' or less, and rolled. High strength Al-Cu-Li characterized by
- A method for producing a Mg-Zr superplastic plate.

(3) L i 1.7〜2.3%、Cu 1..8〜
3.0% 、M g L、1〜3.0%、Z r O,
05−0,20%、Ti0101〜0.10%を含有し
、残部Alおよび不可避不純物からなるアルミニウム合
金を、通常の鋳造法で溶解し、鋳造後、450〜540
℃の温度において1〜50時間保持後、300〜450
℃の温度まで冷却し、1〜50時間保持した後、該温度
範囲で圧延し、該圧延時に前記式で示した相当ひずみ速
度がLOs’以下となるように調整し、圧延することを
特徴とする 高強度A I−Cu−L i −Mg−Z
 r系超塑性板の製造方法。
(3) Li 1.7-2.3%, Cu 1. .. 8~
3.0%, MgL, 1-3.0%, ZrO,
An aluminum alloy containing 0.05-0.20%, Ti0101-0.10%, and the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it has a melting point of 450-540%.
After holding for 1-50 hours at a temperature of 300-450 °C
℃, held for 1 to 50 hours, rolled in the temperature range, and adjusted so that the equivalent strain rate expressed by the above formula is equal to or lower than LOs' during the rolling. High strength A I-Cu-L i-Mg-Z
A method for producing an r-based superplastic plate.

(4)  L  i  1.7 〜2.3  %、 C
u 1..8 −3.0  %  、Mg1.l  −
3,0%、 Z  r O,,05〜0.20%、 T
10.01〜0.10%を含有し、残部Alおよび不可
避不純物からなるアルミニウム合金を、通常の鋳造法で
溶解し、鋳造後、450〜540℃で1〜50時間一段
または多段の均質化処理を行い、その後再度460℃以
上に加熱し、溶体化処理した後、300〜450℃の温
度で圧延し、該圧延時に前記式で示す相当ひずみ速度が
10s−l以下となるように調整して圧延し、その圧延
の途中で300〜450℃で1〜50時間の析出処理し
、その後さらに300〜450℃で前記式で示した相当
歪速度がtos−’以下となるように調整して、圧延す
ることを特徴とする高強度A I−Cu−L i −M
g−Z r系超塑性板の製造方法。
(4) Li 1.7-2.3%, C
u1. .. 8-3.0%, Mg1. l −
3.0%, ZrO,, 05~0.20%, T
An aluminum alloy containing 10.01% to 0.10% and the remainder consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is subjected to single or multistage homogenization treatment at 450 to 540°C for 1 to 50 hours. After that, the material is heated to 460°C or higher again, subjected to solution treatment, and then rolled at a temperature of 300 to 450°C, and during the rolling, the equivalent strain rate shown by the above formula is adjusted to be 10 s-l or less. Rolling, precipitation treatment at 300 to 450°C for 1 to 50 hours during the rolling, and then further adjusting at 300 to 450°C so that the equivalent strain rate shown in the above formula is tos-' or less, High strength AI-Cu-L i-M characterized by rolling
Method for manufacturing g-Z r-based superplastic plate.

[作 用コ Al−Li系超塑性4イ料は、従来の7475合金系超
塑性祠料と材料り、動的再結晶により微細再結晶粒を形
成させ超塑性変形する性質をもつために、高温まで安定
な下部組織を有する飼料か得られるのである。
[Function] The Al-Li based superplastic abrasive material is similar to the conventional 7475 alloy based superplastic abrasive material, and has the property of forming fine recrystallized grains through dynamic recrystallization and superplastic deformation. This makes it possible to obtain feed that has a substructure that is stable up to high temperatures.

本発明はA 1−Cu−L i −Mg−Z r系の熱
間加工性を向上させて圧延し、超塑性月料を得るための
製造方法に関するものであり、以ド成分を限定した理由
について述べる。
The present invention relates to a manufacturing method for improving the hot workability of A1-Cu-Li-Mg-Zr system and rolling it to obtain a superplastic material, and the reason for limiting the following components: Let's talk about.

Ll、超塑性成形後の合金利の強度向上と軽量化に効果
がある。この効果は1.7%より少ないと強度が不十分
で、Li添加の軽量化効果も小さくなる。2.7%より
多いと鋳造時に制約をうけるので好ましくない。
Ll, it is effective in improving the strength and reducing the weight of the alloy after superplastic forming. If this effect is less than 1.7%, the strength will be insufficient and the weight reduction effect of adding Li will also be reduced. If it exceeds 2.7%, it is not preferable because it imposes restrictions during casting.

Cu、超塑性成形後の合金祠の強度向上例えば45kg
/mm’以上の引張り強さを得るために効果がある。こ
の効果は1.8%より少ないと得られず、3.0%より
多いと、Cuの効果の密度が高いために航空機などの軽
量化に寄与することができない。
Cu, strength improvement of alloy mill after superplastic forming e.g. 45kg
It is effective for obtaining a tensile strength of /mm' or more. This effect cannot be obtained if it is less than 1.8%, and if it is more than 3.0%, the density of the effect of Cu is high and it cannot contribute to weight reduction of aircraft etc.

M g ; 45kg/ mm2以上の引張り強さを得
るためには1.1%以上必要で、3,0%を越えるとA
lCuMg系の晶出物を形成し易くなり、再固溶しにく
い。
Mg; To obtain a tensile strength of 45 kg/mm2 or more, 1.1% or more is required, and if it exceeds 3.0%, A
It becomes easy to form lCuMg-based crystallized substances, and it is difficult to form a solid solution again.

Zr;合金祠の再結晶を抑制する効果がある。Zr: has the effect of suppressing recrystallization of alloy slag.

0.05%より少ないと最終焼鈍で再結晶か容易となり
、ド部組織を安定化させることか困難となる。このため
超塑性成形か得られにくい。また、0.20%を越える
と通常の鋳造法では巨大化合物を晶出しやすくなり、こ
れにより素材に圧延欠陥か生ずる。
If it is less than 0.05%, it will be easy to recrystallize in the final annealing, making it difficult to stabilize the dot structure. For this reason, it is difficult to obtain superplastic molding. Moreover, if it exceeds 0.20%, giant compounds tend to crystallize in normal casting methods, which causes rolling defects in the material.

Tl;素利合金に鋳造組織の微細化を与える効果かある
。この効果は0.旧%より少ないと得られず、010%
より多いと巨大化合物が晶出しやすくなる。
Tl: Has the effect of making the casting structure finer in the Sori alloy. This effect is 0. You cannot get it if it is less than the old %, 010%
When the amount is higher, giant compounds tend to crystallize.

次に製造条件について述べる。Next, the manufacturing conditions will be described.

均質化処理。Homogenization process.

均質化処理はCuXLi、Mgなどの溶質原子の粒界偏
析を少なくし、成分を均一化する効果がある。450℃
未11.lv4ではその効果か少なく、540℃を越え
るとZrなどの再結晶抑制元素か安定相として析出し、
それらの元素のもつ効果か少なくなる。また、1時間未
満では成分均一化の効果が少なく、50時間を越えると
その効果が飽和するため、経済的な点て意味がない。4
20℃程度で一旦ステップ加熱すると良い。
The homogenization treatment has the effect of reducing grain boundary segregation of solute atoms such as CuXLi and Mg and making the components uniform. 450℃
Not yet 11. At lv4, the effect is small, and when the temperature exceeds 540°C, recrystallization inhibiting elements such as Zr or precipitates as a stable phase.
The effects of those elements will be reduced. Furthermore, if the time is less than 1 hour, the effect of homogenizing the components will be small, and if it exceeds 50 hours, the effect will be saturated, so it is economically meaningless. 4
It is best to perform step heating once at about 20°C.

圧延温度; 圧延温度が300〜450℃であるのはこの温度域がδ
、T相(AlLiMg)などの安定相の析出領域であり
、この温度範囲で圧延すると安定な下部組織が形成され
る。
Rolling temperature: The reason why the rolling temperature is 300 to 450℃ is because this temperature range is δ
, T phase (AlLiMg) and other stable phases are precipitated, and when rolled in this temperature range, a stable substructure is formed.

析出処理。Precipitation treatment.

300〜450℃の1〜50時間の析出処理を300〜
450℃での温度での圧延の前あるいは圧延の途中に行
うと、δ相とT相とが均一に析出し、この第2相近傍で
多重すべりか生じて、安定な下部組織か形成されやすい
。また、粒内に均一に析出するために粒内変形か容易に
なり、熱間圧延割れを生じることか少ない。
300~450℃ precipitation treatment for 1~50 hours
If rolling is carried out before or during rolling at a temperature of 450°C, the δ phase and T phase will precipitate uniformly, and multiple slips will occur near this second phase, resulting in the formation of a stable substructure. . In addition, because it precipitates uniformly within the grains, deformation within the grains becomes easy and hot rolling cracks are less likely to occur.

析出処理時間か1時間より短いと圧延前の析出状態によ
っては熱間圧延割れを生しることかある。また、50時
間以上であればその効果は変化しない。
If the precipitation treatment time is shorter than 1 hour, hot rolling cracks may occur depending on the state of precipitation before rolling. In addition, the effect does not change if it is for 50 hours or more.

圧延ひずみ速度。Rolling strain rate.

上記圧延において安定な下部組織を形成するためには、
温間加工時の加工のひずみ速度か重要で、圧延速度か早
いとひずみ速度か大きくなり、転位が集積して圧延割れ
が生じ易゛ くなる。また、ひずみ速度か遅いと析出物
か凝集化し過ぎて、転位の回復か早くなり、安定な下部
組織か形成されにくい。また、生産性が悪いなとの問題
かある。適正な圧延速度は相当ひずみ速度に換算して、
tos−’以下かよい。なお、下限はO,ls”程度と
する。
In order to form a stable substructure during the above rolling,
The strain rate during warm working is important; the faster the rolling speed, the higher the strain rate, which makes it easier for dislocations to accumulate and cause rolling cracks. Furthermore, if the strain rate is slow, precipitates will aggregate too much, dislocations will recover quickly, and a stable substructure will be difficult to form. There is also the problem of poor productivity. The appropriate rolling speed is converted to the equivalent strain rate,
It may be less than or equal tos-'. Note that the lower limit is approximately O,ls''.

[実施例] Al−2,2%Li−2,4%Cu −1,6%Mg−
0,11%Zr−11,05%Ti合金をアルゴンガス
雰囲気中で溶解鋳造した。鋳塊の均質化熱処理後、圧延
温度と圧延速度、圧下量を変えて制御圧延を行った。析
出処理は圧延前あるいは圧延途中に入れた。製造した板
の製造条件と超塑性伸びの関係を第1表に示す。超塑性
伸びは、異方性を91Jべるために、圧延方向と圧延直
角方向について測定した。圧延は1〜3パス毎に圧延開
始温度に14)加熱し圧延した。
[Example] Al-2,2%Li-2,4%Cu-1,6%Mg-
A 0.11% Zr-11.05% Ti alloy was melted and cast in an argon gas atmosphere. After the homogenization heat treatment of the ingot, controlled rolling was performed by changing the rolling temperature, rolling speed, and reduction amount. The precipitation treatment was performed before or during rolling. Table 1 shows the relationship between the manufacturing conditions and superplastic elongation of the manufactured plates. The superplastic elongation was measured in the rolling direction and the direction perpendicular to the rolling direction in order to measure the anisotropy by 91J. The rolling was carried out by heating to the rolling start temperature 14) every 1 to 3 passes.

表中の評価は、高温引張り試験は500℃て1、[i 
x 1O−3s−’の初期ひずみ速度で調べ、伸びか3
00%以」二を○、異方性は圧延方向の伸びの圧延直角
方向の伸びに対する比か2以内を○とした。
The evaluation in the table is 1 at 500°C for the high temperature tensile test, [i
x 1O-3s-', the elongation was 3
00% or more was rated as ○, and anisotropy was rated as ○ if the ratio of the elongation in the rolling direction to the elongation in the direction perpendicular to the rolling was within 2.

実施例2 A I−L i−Cu−Mg−Z r系合金をアルゴン
ガス雰囲気で溶解鋳造した。500℃×24時間の均質
化熱処理後、表面の偏析層や酸化物、気孔や収縮孔を除
去するために面側を行う。この面削量の多いものは鋳造
性が悪いとして、その鋳造性を評価した。また、400
℃XIO時間の析出処理後、400℃で圧延開始して3
00℃で再加熱し、圧延の相当ひずみ速度を2.2s−
1として制御圧延を行い、最終2+nm厚の板とした。
Example 2 A I-L i-Cu-Mg-Zr alloy was melted and cast in an argon gas atmosphere. After homogenization heat treatment at 500° C. for 24 hours, surface side treatment is performed to remove surface segregation layers, oxides, pores, and shrinkage pores. Castings with a large amount of surface cutting were considered to have poor castability, and their castability was evaluated. Also, 400
After precipitation treatment for ℃XIO hours, rolling was started at 400℃ and 3
Reheat at 00℃ and reduce the equivalent strain rate of rolling to 2.2s-
Control rolling was performed as Step 1 to obtain a final plate with a thickness of 2+ nm.

この飼料の室温強度特性を調べるために、520℃×1
時間ソルトバスで溶体化処理後水冷し、1日後、190
℃で16時間調質した。Al−Li−Cu−Mg−Zr
系合金の成分と鋳造性、強度、高温伸びとそれらによる
総合評価を第2表に示す。本発明の対象とする合金成分
範囲をはすれる合金No、2.3.4ても、高温伸びに
対する発明の方法の効果がないわけてはない。
In order to investigate the room temperature strength characteristics of this feed, 520℃ x 1
After solution treatment in a salt bath and water cooling, 1 day later, 190
It was tempered at ℃ for 16 hours. Al-Li-Cu-Mg-Zr
Table 2 shows the composition, castability, strength, high-temperature elongation, and overall evaluation of the alloys. Even with alloy No. 2.3.4, which falls outside the range of alloy components targeted by the present invention, the method of the present invention is not without its effect on high-temperature elongation.

第2表 ’ ”  45kg/mm’以上が好ましい***  
500℃てt、ex IQ−1s−’のひずみ速度で圧
延力向と平行に引張試験した。
Table 2' 45kg/mm or more is preferable***
A tensile test was conducted at 500° C. and a strain rate of t, ex IQ-1s-' in parallel to the rolling force direction.

[発明の効果コ 本発明の製造方法によれば、以下のような効果が得られ
る。
[Effects of the Invention] According to the manufacturing method of the present invention, the following effects can be obtained.

(1)本発明の方法により製造されたAl−C。(1) Al-C produced by the method of the present invention.

−Ll−Zr合金板は、非再結晶組織を有しているので
、この組織状態がら変形速度を従来の超塑性アルミニウ
ム合金板(例えば7475合金なと)よりも1桁大きく
して、超塑性変形をさせることができる。
-Ll-Zr alloy plate has a non-recrystallized structure, so the deformation rate is made one order of magnitude higher than that of conventional superplastic aluminum alloy plate (for example, 7475 alloy) due to this structure. It can be transformed.

(2)本発明によれば制御圧延あるいは更に、急速加熱
による最終焼鈍を行うことで、鋳造時の組織をこわすと
ともに、鋳造時の粒界不純物を粒界から除去することが
できる。これによって、合金利の超塑性特性を向上させ
ることができ、航空機や車輌および自動車などの複雑な
形状の部品を容易に製造することができる。
(2) According to the present invention, by performing controlled rolling or further final annealing by rapid heating, the structure at the time of casting can be destroyed and grain boundary impurities at the time of casting can be removed from the grain boundaries. As a result, the superplastic properties of the alloy can be improved, and parts with complex shapes for aircraft, vehicles, automobiles, etc. can be easily manufactured.

特許出願人 住友軽金属]−業株式会社代理人 弁理士
 小 松 秀 岳 代理人 弁理士 旭     宏
Patent Applicant: Sumitomo Light Metal Co., Ltd. Agent: Hide Komatsu, Attorney: Hiroshi Asahi, Attorney: Hiroshi Asahi

Claims (4)

【特許請求の範囲】[Claims] (1)Li1.7〜2.3%、Cu1.8〜3.0%、
Mg1.1〜3.0%、Zr0.05〜0.20%、T
i0.01〜0.10%を含有し、残部Alおよび不可
避不純物からなるアルミニウム合金を、通常の鋳造法で
溶解、鋳造後、450〜540℃の温度において1〜5
0時間一段または多段の均質化処理を行い、その後30
0〜450℃の温度で圧延し、該圧延時に下式で示す相
当ひずみ速度が10s^−^1以下となるように調整し
、圧延することを特徴とする高強度Al−Cu−Li−
Mg−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(1) Li1.7-2.3%, Cu1.8-3.0%,
Mg1.1-3.0%, Zr0.05-0.20%, T
An aluminum alloy containing 0.01 to 0.10% i and the balance consisting of Al and unavoidable impurities is melted and cast by a normal casting method, and then cast at a temperature of 450 to 540 °C to 1 to 5
Single or multi-stage homogenization for 0 hours, then 30 hours
High-strength Al-Cu-Li-, which is characterized by rolling at a temperature of 0 to 450°C, and adjusting the equivalent strain rate shown by the following formula to be 10 s^-^1 or less at the time of rolling.
A method for producing a Mg-Zr superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
(2)Li1.7〜2.3%、Cu1.8〜3.0%、
Mg1.1〜3.0%、Zr0.05〜0.20%、T
i0.01〜0.10%を含有し、残部Alおよび不可
避不純物からなるアルミニウム合金を、通常の鋳造法で
溶解し、鋳造後、450〜540℃の温度において1〜
50時間一段または多段の均質化処理と300〜450
℃で1〜50時間の析出処理を行い、その後300〜4
50℃の温度で圧延し、該圧延時に下式に示す相当ひず
み速度が10s^−^1以下となるように調整し、圧延
することを特徴とする高強度Al−Cu−Li−Mg−
Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(2) Li1.7-2.3%, Cu1.8-3.0%,
Mg1.1-3.0%, Zr0.05-0.20%, T
An aluminum alloy containing 0.01 to 0.10% of i and the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is heated to 1 to 0.1% at a temperature of 450 to 540°C.
Single or multi-stage homogenization treatment for 50 hours and 300-450
℃ for 1 to 50 hours, then 300 to 4
High strength Al-Cu-Li-Mg-, characterized by rolling at a temperature of 50°C and adjusting the equivalent strain rate shown in the following formula to be 10s^-^1 or less during the rolling.
A method for manufacturing a Zr-based superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
(3)Li1.7〜2.3%、Cu1.8〜1.7%、
Mg1.1〜30%、Zr0.05〜0.20%、Ti
0.01〜0.10%を含有し、残部Alおよび不可避
不純物からなるアルミニウム合金を、通常の鋳造法で溶
解し、鋳造後、450〜540℃の温度において1〜5
0時間保持後、300〜450℃の温度まで冷却し、1
〜50時間保持した後、該温度範囲で圧延し、該圧延時
に下式で示した相当ひずみ速度が10s^−^1以下と
なるように調整し、圧延することを特徴とする高強度 Al−Cu−Li−Mg−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(3) Li1.7-2.3%, Cu1.8-1.7%,
Mg1.1-30%, Zr0.05-0.20%, Ti
An aluminum alloy containing 0.01 to 0.10% and the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is heated to 1 to 5% at a temperature of 450 to 540°C.
After holding for 0 hours, cool to a temperature of 300 to 450°C, and
After holding for ~50 hours, the high strength Al- A method for producing a Cu-Li-Mg-Zr superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
(4)Li1.7〜2.3%、Cu1.8〜3.0%、
Mg1.1〜3.0%、Zr0.05〜0.20%、T
i0.01〜0.10%を含有し、残部Alおよび不可
避不純物からなるアルミニウム合金を、通常の鋳造法で
溶解し、鋳造後、450〜540℃で1〜50時間一段
または多段の均質化処理を行い、その後再度460℃以
上に加熱し、溶体化処理した後、300〜450℃の温
度で圧延し、その圧延の途中てで300〜450℃で1
〜50時間の析出処理し、その後さらに300〜450
℃で下式で示す相当ひずみ速度が10s^−^1以下と
なるように調整し、圧延することを特徴とする高強度A
l−Cu−Li−Mg−Zr系超塑性板の製造方法。 式▲数式、化学式、表等があります▼ ただし、V_R=ロール周速度(m/s) R′=偏平後のロール半径(m) h_0=圧延前の板厚(m) r=圧下率
(4) Li1.7-2.3%, Cu1.8-3.0%,
Mg1.1-3.0%, Zr0.05-0.20%, T
An aluminum alloy containing 0.01 to 0.10% i with the balance consisting of Al and unavoidable impurities is melted by a normal casting method, and after casting, it is subjected to single or multi-stage homogenization treatment at 450 to 540°C for 1 to 50 hours. After that, it is heated again to 460°C or higher, subjected to solution treatment, and then rolled at a temperature of 300 to 450°C, and in the middle of the rolling, it is heated at 300 to 450°C.
~50 hours of precipitation treatment, then an additional 300~450 hours
High strength A characterized by adjusting and rolling so that the equivalent strain rate shown by the following formula at °C is 10 s^-^1 or less
A method for manufacturing a l-Cu-Li-Mg-Zr based superplastic plate. Formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ However, V_R = Roll circumferential speed (m/s) R' = Roll radius after flattening (m) h_0 = Plate thickness before rolling (m) r = Reduction rate
JP8740488A 1988-04-11 1988-04-11 Manufacture of high-strength al-cu-li-mg-zr superplastic sheet Pending JPH01259150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8740488A JPH01259150A (en) 1988-04-11 1988-04-11 Manufacture of high-strength al-cu-li-mg-zr superplastic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8740488A JPH01259150A (en) 1988-04-11 1988-04-11 Manufacture of high-strength al-cu-li-mg-zr superplastic sheet

Publications (1)

Publication Number Publication Date
JPH01259150A true JPH01259150A (en) 1989-10-16

Family

ID=13913935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8740488A Pending JPH01259150A (en) 1988-04-11 1988-04-11 Manufacture of high-strength al-cu-li-mg-zr superplastic sheet

Country Status (1)

Country Link
JP (1) JPH01259150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646994A (en) * 2020-12-16 2021-04-13 中南大学 High-specific-strength high-specific-modulus aluminum alloy and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS627836A (en) * 1985-07-04 1987-01-14 Showa Alum Corp Method for producing aluminum alloy with fine grain structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6156269A (en) * 1984-07-20 1986-03-20 Kobe Steel Ltd Manufacture of super plastic al-li alloy
JPS627836A (en) * 1985-07-04 1987-01-14 Showa Alum Corp Method for producing aluminum alloy with fine grain structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646994A (en) * 2020-12-16 2021-04-13 中南大学 High-specific-strength high-specific-modulus aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4308834B2 (en) Method for continuously producing cast aluminum sheets
JP3194742B2 (en) Improved lithium aluminum alloy system
US4618382A (en) Superplastic aluminium alloy sheets
JPS60221543A (en) Aluminum lithium alloy
JPS6296639A (en) Extrusion ingot of al-mg-si alloy and its production
EP0281076B1 (en) Aluminum lithium flat rolled product
JP2004522854A (en) Age hardening aluminum alloy
JPH05501588A (en) Method for producing plate or strip material with improved cold rolling properties
JPH01259147A (en) Manufacture of al-cu-li-zr super plastic plate
JPH0340104B2 (en)
JPH01259150A (en) Manufacture of high-strength al-cu-li-mg-zr superplastic sheet
CN110656268B (en) High-strength anti-fatigue aluminum alloy and preparation method thereof
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH01259149A (en) Manufacture of al-li-cu-mg-type superplastic sheet reduced in anisotropy
JPH039183B2 (en)
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH02104642A (en) Production of aluminum alloy sheet for superplastic working
JPH01259148A (en) Manufacture of al-cu-li-zr super plastic plate having less anisotropy
JPS6157385B2 (en)
JPS63169353A (en) Aluminum alloy for forming and its production
JPS62170462A (en) Manufacture of superplastic aluminum alloy material
JPH1068053A (en) Production of aluminum-lithium base alloy thin sheet material excellent in isotropy of toughness
JPS6157383B2 (en)
JPS6157384B2 (en)
JPS6318042A (en) Manufacture of superplastic aluminum alloy