JPH01257120A - Production of porous drying gel - Google Patents
Production of porous drying gelInfo
- Publication number
- JPH01257120A JPH01257120A JP63082981A JP8298188A JPH01257120A JP H01257120 A JPH01257120 A JP H01257120A JP 63082981 A JP63082981 A JP 63082981A JP 8298188 A JP8298188 A JP 8298188A JP H01257120 A JPH01257120 A JP H01257120A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- liq
- obtd
- sol
- gel body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 238000001035 drying Methods 0.000 title abstract description 4
- 239000000499 gel Substances 0.000 claims abstract description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000011240 wet gel Substances 0.000 claims abstract description 13
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 7
- 239000010703 silicon Substances 0.000 claims abstract description 7
- -1 silicon alkoxide Chemical class 0.000 claims abstract description 7
- 238000005406 washing Methods 0.000 claims abstract description 4
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims description 14
- 230000007062 hydrolysis Effects 0.000 claims description 3
- 238000006460 hydrolysis reaction Methods 0.000 claims description 3
- 239000010419 fine particle Substances 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 9
- 239000000377 silicon dioxide Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 6
- 239000000243 solution Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000000194 supercritical-fluid extraction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/14—Colloidal silica, e.g. dispersions, gels, sols
- C01B33/157—After-treatment of gels
- C01B33/158—Purification; Drying; Dehydrating
- C01B33/1585—Dehydration into aerogels
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、金属アルコキシド、特にシリコンアルコキシ
ドを出発原料として製造される多孔質乾燥ゲルの製造方
法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a porous dry gel produced using a metal alkoxide, particularly a silicon alkoxide, as a starting material.
従来のシリコンアルコキシドを原料とするゲル体は乾燥
、熱処理後ガラス化することを目的として製造されてき
た。Conventional gel bodies made from silicon alkoxide have been manufactured for the purpose of vitrification after drying and heat treatment.
従来技術では、最終的に熱処理後ゲル体を無孔化するこ
とを目的としており、製造工程中の多孔質ゲル体を利用
するものではなかった。In the conventional technology, the purpose is to finally make the gel body non-porous after heat treatment, and the porous gel body during the manufacturing process is not utilized.
このため、従来技術によってその工程中で得られる多孔
質ゲル体は、これを直接利用しようとした場合、次のよ
うな問題点がある。Therefore, when attempting to directly utilize the porous gel body obtained in the process according to the prior art, the following problems arise.
ゾル−ゲル法で得られる多孔質ゲル体は一般に強度が小
さいため、これを直接利用する場合、なんらかの剛性体
によって補強して使用する必要がある。Porous gel bodies obtained by the sol-gel method generally have low strength, so if they are used directly, they must be reinforced with some kind of rigid body.
しかしウェットゲルを利用する場合には、ゲル体が経時
的に体積収縮を生じ剛体との剥離、あるいはゲル体にク
ラックが生じるといった問題がある。However, when a wet gel is used, there is a problem that the gel body shrinks in volume over time, resulting in separation from the rigid body or cracks in the gel body.
また剛体中あるいは剛体上に形成されたウェットゲルを
乾燥(ドライ)ゲルにして利用しようすると場合、ウェ
ットゲルからドライゲルヘの過程において体積収縮が大
きく、この場合にも、剛体との剥離、ゲル体のクラック
発生等の問題がある。In addition, when trying to use a wet gel formed in or on a rigid body as a dry gel, volume shrinkage is large in the process from wet gel to dry gel, and in this case as well, separation from the rigid body and gel body There are problems such as crack formation.
以上のことから、ゾル−ゲル法によって得られる多孔質
ゲル体を直接利用することはこれまでできなかった。For these reasons, it has not been possible to directly utilize porous gel bodies obtained by the sol-gel method.
本発明は上記のことにかんがみなされたもので、ウェッ
トゲルに対して体積収縮が起らず、クラックが発生しな
い乾燥ゲルを得ることができる多孔質乾燥ゲルの製造方
法を提供することを目的とするものである。The present invention has been made in view of the above, and an object of the present invention is to provide a method for producing a porous dry gel that can obtain a dry gel that does not undergo volume shrinkage or cracks compared to a wet gel. It is something to do.
〔課題を解決するための手段及び作用〕上記目的達成す
るために実験した結果本発明者は、ウェットゲルとして
、シリコンアルコキシドの一種であるテトラエトキシシ
ランの加水分解生成物(ゾル)に、シリカ微粒子(粒径
50nm)を添加し、液のPHを4.0以下、好ましく
は2.0〜3,0、温度5〜10℃に制御して合成され
たものを用い、これを液体CO2で洗浄してゲル体中の
揮発成分を液体CO2で置換した後、CO□の超臨界状
態を経て液体CO2を除去することにより、ウェットゲ
ルに対して体積収縮が起らず、クラックが発生しない乾
燥ゲルを得られることを発見した。[Means and effects for solving the problem] As a result of experiments to achieve the above object, the present inventors added silica fine particles to a hydrolysis product (sol) of tetraethoxysilane, which is a type of silicon alkoxide, as a wet gel. (particle size: 50 nm), the pH of the liquid is controlled to 4.0 or less, preferably 2.0 to 3.0, and the temperature is 5 to 10°C. This is then washed with liquid CO2. After replacing the volatile components in the gel body with liquid CO2, the liquid CO2 is removed through the supercritical state of CO□, thereby creating a dry gel that does not shrink in volume or generate cracks compared to wet gels. I discovered that you can get
上記テトラエトキシシランに替えてテトラメトキシシラ
ンでもよいが、加水分解、縮合反応の速さの点からテト
ラエトキシシランを用いるので望ましい。このテトラエ
トキシシラン(シリコンアルコキシド)を激しく撹拌し
ながらこれにHCI水溶液を添加する。30分間撹拌し
て反応させた後、シリカ微粒子を添加する。このシリカ
微粒子の添加量はゲル体の孔径を決定する要因の一つで
ある。得られたシリカ微粒子含有ゾルに20KHzの超
音波を30分間以上印加し、シリカ微粒子を分散させる
。このゾル液を遠心分離器にかけて巨大粒子を除く。得
られたゾル液のPHを4.0以下に調整し、ゲル化させ
る。この際、PHを4.0より大きくすると、ゲル体中
にシリカ粒子が分散した構成をとるのに対して、本発明
の条件では、添加シリカ微粒子はアルコキシドの反応物
によって粒成長が生じ、それと同時にシリカ粒子による
骨格構造が形成される。この構成の形成によって、ウェ
ットゲルをその多孔質構造を変化させることなくドライ
ゲルへ以下述べる方法によって変えることが可能となる
。Although tetramethoxysilane may be used instead of the above-mentioned tetraethoxysilane, it is preferable to use tetraethoxysilane from the viewpoint of speed of hydrolysis and condensation reactions. An aqueous HCI solution is added to the tetraethoxysilane (silicon alkoxide) while stirring vigorously. After stirring and reacting for 30 minutes, silica particles are added. The amount of silica fine particles added is one of the factors that determines the pore size of the gel body. Ultrasonic waves of 20 KHz are applied to the obtained silica fine particle-containing sol for 30 minutes or more to disperse the silica fine particles. This sol solution is centrifuged to remove large particles. The pH of the obtained sol solution is adjusted to 4.0 or less and gelatinized. At this time, when the pH is greater than 4.0, silica particles are dispersed in the gel body, whereas under the conditions of the present invention, the added silica fine particles undergo grain growth due to the alkoxide reactant, and At the same time, a skeleton structure of silica particles is formed. The formation of this configuration makes it possible to convert a wet gel into a dry gel without changing its porous structure by the method described below.
すなわち、得られたウェットゲルを液体CO□によって
十分に洗浄し、ゲル体中の揮発成分と液体CO2とを置
換する。その後CO2の超臨界条件へゲル体を置き、ゲ
ル体中の液体CO2を速やかに除去する。That is, the obtained wet gel is sufficiently washed with liquid CO□ to replace volatile components in the gel body with liquid CO2. Thereafter, the gel body is placed under CO2 supercritical conditions, and liquid CO2 in the gel body is quickly removed.
以上の操作によってウェットゲルと同体積であり、クラ
ックの無い乾燥ゲルを得ることができる。By the above operations, it is possible to obtain a dry gel having the same volume as the wet gel and without cracks.
以下に本発明の実施例を示す。 Examples of the present invention are shown below.
実施例1
激しく撹拌したテトラエトキシシラン20g中に、0.
05NH(l水溶液14.1mlを添加した。30分間
撹拌した後、日本Aerusil製シリカ微粒子0X−
50を7.0g添加した。Example 1 Into 20 g of vigorously stirred tetraethoxysilane, 0.
05NH (14.1 ml aqueous solution) was added. After stirring for 30 minutes, silica fine particles 0X-
7.0g of 50 was added.
このゾル液を5℃に保持しながら20KHzの超音波を
30分印加し、100OGの遠心器で巨大粒子を除いた
。次に0.5NH3水溶液でPHを2.5に調整した後
、5℃、50時間保持してゲル化させた。得られたゲル
を、住友重機製5CE−500超臨界抽出装置内で5℃
、150kg/cj、液体CO2、流ffi 5 、0
kg / hr。While maintaining this sol solution at 5° C., 20 KHz ultrasonic waves were applied for 30 minutes, and giant particles were removed using a 100OG centrifuge. Next, the pH was adjusted to 2.5 with a 0.5NH3 aqueous solution, and then maintained at 5° C. for 50 hours to form a gel. The obtained gel was heated at 5°C in a 5CE-500 supercritical extraction device manufactured by Sumitomo Heavy Industries.
, 150 kg/cj, liquid CO2, flow ffi 5 , 0
kg/hr.
10時間洗浄後、同装置内において、40℃に昇温し、
その後、大気圧まで減圧し、液体cO2を除去した。得
られた乾燥ゲル体は孔径がおよそ1000〜700 t
vの多孔質体であった。得られたゲル体の破面の粒子構
造のSEM写真を第1図に示す。After washing for 10 hours, the temperature was raised to 40°C in the same equipment.
Thereafter, the pressure was reduced to atmospheric pressure to remove liquid cO2. The obtained dry gel body has a pore size of approximately 1000 to 700 t.
It was a porous body of v. A SEM photograph of the particle structure of the fractured surface of the obtained gel body is shown in FIG.
実施例2
激しく撹拌したテトラエトキシシラン20g中に、0.
05NHCfI水溶液14.1mlを添加した。30分
間撹拌した後、日本Aerusil製シリカ粒子0X−
50を7.0gfA加した。このゾル液を5℃に保持し
ながら20KHzの超音波を30分間印加し、100O
Gの遠心器で巨大粒子を除いた。0.5NNH3水溶液
でPHを4.6に調整した後、5℃、10時間保持して
ゲル化させた。得られたゲルを、住友重機製5CE−5
00超臨界抽出装置内で、5℃、150kg/c♂、液
体CO2、流m 5 、 Okg/ hr、10時間
洗浄後、同装置内において、40℃に昇温後、大気圧ま
で減圧し、液体CO2を除去した。得られた乾燥ゲル体
は、孔径がおよそ600 nm以下の多孔質体であった
。またこのときのゲル体は乾燥処理中に体積収縮が発生
した。Example 2 Into 20 g of vigorously stirred tetraethoxysilane, 0.
14.1 ml of 0.05N HCfI aqueous solution was added. After stirring for 30 minutes, silica particles 0X-
50 was added at 7.0 gfA. While maintaining this sol solution at 5°C, 20KHz ultrasonic waves were applied for 30 minutes, and 100O
Giant particles were removed using a G centrifuge. After adjusting the pH to 4.6 with a 0.5N NH3 aqueous solution, the mixture was maintained at 5°C for 10 hours to form a gel. The obtained gel was transferred to 5CE-5 manufactured by Sumitomo Heavy Industries.
After washing for 10 hours at 5° C., 150 kg/c♂, liquid CO2, flow m 5 , O kg/hr in a 00 supercritical extraction device, the temperature was raised to 40° C. in the same device, and the pressure was reduced to atmospheric pressure. Liquid CO2 was removed. The obtained dry gel body was a porous body with a pore diameter of approximately 600 nm or less. Further, the gel body at this time suffered volumetric shrinkage during the drying process.
得られたゲル体Q破面の粒子構造のSEM写真を第2図
に示す。A SEM photograph of the particle structure of the fractured surface of the gel body Q obtained is shown in FIG.
実施例3
実施例1の条件でシリカ微粒子0X−50を14g添加
した。得られた乾燥ゲル体は800〜400 niの孔
径を有していた。Example 3 Under the conditions of Example 1, 14 g of silica fine particles 0X-50 were added. The resulting dry gel body had a pore size of 800-400 ni.
本発明によって多孔質乾燥ゲルは、その処理工程中にお
いて、温度は最高40℃であり、強酸、強塩基または、
有毒な薬品を使用しない。According to the present invention, the porous dry gel can be prepared at a temperature of up to 40° C. during its treatment process, and at a temperature of up to 40° C., a strong acid, a strong base or
Do not use toxic chemicals.
従って、原料ゾル液に、さまざまの有機機能性分子やバ
クテリアなどを添加した後、本発明方法によって機能物
質をその活性を損なわないまま乾燥ゲル体中に担持する
ことが可能である。Therefore, after adding various organic functional molecules, bacteria, etc. to the raw sol solution, it is possible to support the functional substances in a dry gel body by the method of the present invention without impairing their activity.
このため、例えば、イオン感応有機物質を用いたイオン
センサや、バイオリアクタ中のバクテリアの担体などを
はじめとした極めて利用価値の高い高機能ゲル材料を得
ることができる。Therefore, it is possible to obtain highly functional gel materials that have extremely high utility value, such as ion sensors using ion-sensitive organic substances, carriers for bacteria in bioreactors, and the like.
第1図、第2図は異なる実施例によって得られたゲル体
の破面の粒子構造を示す写真である。
出願人 株式会社 小 松 製 作 所代理人 弁
理士 米 原 正 章FIG. 1 and FIG. 2 are photographs showing the particle structures of fractured surfaces of gel bodies obtained in different examples. Applicant Komatsu Manufacturing Co., Ltd. Representative Patent Attorney Masaaki Yonehara
Claims (1)
コンアルコキシドの加水分解生成物(ゾル)に、シリカ
微粒子を添加し、液のPHを4.0以下に設定してウェ
ットゲルを生成し、このウェットゲルを液体CO_2で
洗浄してゲル体中の揮発成分を液体CO_2で置換した
後CO_2の超臨界状態を経て液体CO_2をゲル体中
から除去するようにしたことを特徴とする多孔質乾燥ゲ
ルの製造方法。Fine silica particles are added to a hydrolysis product (sol) of silicon alkoxide such as tetraethoxysilane or tetramethoxysilane, and the pH of the liquid is set to 4.0 or less to produce a wet gel. A method for producing a porous dry gel, which comprises washing with CO_2 to replace volatile components in the gel body with liquid CO_2, and then removing liquid CO_2 from the gel body through the supercritical state of CO_2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63082981A JPH01257120A (en) | 1988-04-06 | 1988-04-06 | Production of porous drying gel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63082981A JPH01257120A (en) | 1988-04-06 | 1988-04-06 | Production of porous drying gel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01257120A true JPH01257120A (en) | 1989-10-13 |
Family
ID=13789395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63082981A Pending JPH01257120A (en) | 1988-04-06 | 1988-04-06 | Production of porous drying gel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01257120A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005042402A1 (en) * | 2003-10-31 | 2005-05-12 | Ngk Insulators, Ltd. | Inorganic porous material containing dispersed particles |
GB2452552A (en) * | 2007-09-08 | 2009-03-11 | Univ Sheffield Hallam | Corrosion-inhibiting sol-gel coating |
JP2012056787A (en) * | 2010-09-08 | 2012-03-22 | Murata Mfg Co Ltd | Method for producing dry gel, and method for producing silica glass |
CN110553470A (en) * | 2019-09-20 | 2019-12-10 | 航天特种材料及工艺技术研究所 | Supercritical drying method for preparing ultra-low density aerogel and product prepared by same |
-
1988
- 1988-04-06 JP JP63082981A patent/JPH01257120A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005042402A1 (en) * | 2003-10-31 | 2005-05-12 | Ngk Insulators, Ltd. | Inorganic porous material containing dispersed particles |
GB2452552A (en) * | 2007-09-08 | 2009-03-11 | Univ Sheffield Hallam | Corrosion-inhibiting sol-gel coating |
JP2012056787A (en) * | 2010-09-08 | 2012-03-22 | Murata Mfg Co Ltd | Method for producing dry gel, and method for producing silica glass |
CN110553470A (en) * | 2019-09-20 | 2019-12-10 | 航天特种材料及工艺技术研究所 | Supercritical drying method for preparing ultra-low density aerogel and product prepared by same |
CN110553470B (en) * | 2019-09-20 | 2021-08-20 | 航天特种材料及工艺技术研究所 | A kind of supercritical drying method for preparing ultra-low density aerogel and products prepared by the method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0318236B1 (en) | Porous inorganic materials | |
WO1984002519A1 (en) | Process for producing quartz glass | |
JP2020504070A (en) | Method for producing micron-sized spherical silica airgel | |
CN106829976A (en) | A kind of preparation method of bigger serface, high oil absorption value precipitated silica | |
JPH0741374A (en) | Production of inorganic porous body | |
JPH04321512A (en) | Precipitated silicic acid paste, method of manufacturing same and method of making precipitated silic acid hydrophobic by using precipitated silicic acid paste | |
CN108658130B (en) | A method for simultaneously preparing iron oxide and silica aerogel from iron tailings | |
CN107983415A (en) | A kind of cellular TiO using micropore starch as template2Porous microsphere and preparation method thereof | |
JPH01257120A (en) | Production of porous drying gel | |
Kawachi et al. | Enzyme encapsulation in silica gel prepared by polylysine and its catalytic activity | |
JP2006290680A (en) | Nano-spherical porous material and synthesis method thereof | |
CN105969758B (en) | Immobilised enzymes, magnetic carbon material and preparation method thereof | |
CN104692398B (en) | A kind of preparation method of three-dimensional continuous silica nanotube | |
CN110642257B (en) | Method for preparing silicon dioxide aerogel by using silicon micropowder | |
George et al. | Synthesis and characterization of immobilized glucoamylase on mesocellular foams through spectroscopic techniques and catalytic activity of immobilized enzyme | |
CN115849389A (en) | Method for rapidly preparing silicon dioxide aerogel powder by mixed solvent system | |
CN117383572A (en) | Method for preparing mesoporous zeolite under normal pressure and mild condition and application thereof | |
Xu et al. | Adsorption and activity of papain on hierarchically nanoporous silica | |
JP2621153B2 (en) | Manufacturing method of spherical porous body | |
JPH10146174A (en) | Low strength agar-agar and its production | |
CN115140744B (en) | Preparation method of hierarchical pore A-type molecular sieve regulated and controlled by nanocellulose | |
CN104694528B (en) | A kind of preparation method of block large pore material immobilization laccase | |
JPH07184651A (en) | Carrier for enzyme immobilization and its production | |
TW412504B (en) | A process for preparation of silica | |
CN116003525A (en) | Polypeptide, nano silicon dioxide and method for catalytically synthesizing nano silicon dioxide |