JPH01253689A - Superconductive magnetism shielding apparatus - Google Patents
Superconductive magnetism shielding apparatusInfo
- Publication number
- JPH01253689A JPH01253689A JP63081841A JP8184188A JPH01253689A JP H01253689 A JPH01253689 A JP H01253689A JP 63081841 A JP63081841 A JP 63081841A JP 8184188 A JP8184188 A JP 8184188A JP H01253689 A JPH01253689 A JP H01253689A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- superconductor
- magnet
- magnetic
- hmr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005389 magnetism Effects 0.000 title 1
- 230000005291 magnetic effect Effects 0.000 claims abstract description 59
- 239000002887 superconductor Substances 0.000 claims abstract description 25
- 230000004907 flux Effects 0.000 abstract description 3
- 230000002265 prevention Effects 0.000 abstract 1
- 239000003302 ferromagnetic material Substances 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Landscapes
- Details Of Measuring And Other Instruments (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は超電導体を用いた磁気シールド装置に関し、特
に、強磁界を発生するマグネットの磁極(軸)方向への
磁界を減衰させずに、それに直交する(半径)方向への
放射磁界成分をシールドする装置に関する。[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a magnetic shielding device using a superconductor, and in particular, a magnetic shielding device that generates a strong magnetic field without attenuating the magnetic field in the direction of the magnetic pole (axis) of a magnet. The present invention relates to a device for shielding radiation magnetic field components in a (radial) direction perpendicular to the magnetic field.
〈従来の技術〉
マグネットを使用した機器等において、そのマグネット
の作る磁界を外部に対してシールドするには、従来、強
磁性体を用いるか、あるいは超電導体を用いるのが、一
般的である。<Prior Art> In order to shield the magnetic field generated by the magnet from the outside in devices using magnets, it is common to use a ferromagnetic material or a superconductor.
〈発明が解決しようとする課題〉
ところで、電磁石等による強磁界をシールドするために
は、シールド材料として強磁性体を使用する場合、多量
の強磁性体を必要とし、装置が大型化するとともに重く
なってしまうという問題があり、また、シールドすべき
磁界の強度分布に対応して厚さを変化させる等が必要で
あるが、強磁性体はその方■工性が悪いという問題もあ
る。<Problems to be Solved by the Invention> By the way, when a ferromagnetic material is used as a shielding material in order to shield a strong magnetic field from an electromagnet, etc., a large amount of ferromagnetic material is required, making the device large and heavy. Another problem is that the thickness of the shield must be changed in accordance with the intensity distribution of the magnetic field to be shielded, but ferromagnetic materials also have the problem of poor workability.
超電導体をシールド材料として使用する場合には、シー
ルドずべき強磁界ばレンツの法則により流れる電流によ
って発生ずるシールド磁界により有効にキャンセルされ
、大型化や重量の増大の問題はないものの、マグネット
の磁極方向に直交する方向(以下、マグネットの半径方
向と称する)へのシールドすべき放射磁界のみならず、
機器に必要なマグネソ1〜の磁極方向(以下、マグネソ
1〜の軸方向と称する)への磁界を減衰させてしまうと
いう欠点があった。When using a superconductor as a shielding material, the strong magnetic field that should be shielded is effectively canceled by the shielding magnetic field generated by the flowing current according to Barenz's law, and there is no problem of increase in size or weight, but the magnetic poles of the magnet In addition to the radiated magnetic field that should be shielded in the direction perpendicular to the direction (hereinafter referred to as the radial direction of the magnet),
There was a drawback that the magnetic field in the direction of the magnetic poles of the magnetometers 1- (hereinafter referred to as the axial direction of the magnetometers 1-) necessary for the device was attenuated.
本発明はこのような点に鑑みてなされたもので、超電導
体を用いて大型化、大重量化の問題を解消するとともに
、マグネットの軸方向への磁界を減衰させることなく、
半径方向に放射する磁界のみを有効にシールドすること
のできる装置の提供を目的としている。The present invention has been made in view of these points, and uses a superconductor to solve the problems of increasing size and weight, and without attenuating the magnetic field in the axial direction of the magnet.
The object of the present invention is to provide a device that can effectively shield only magnetic fields radiated in the radial direction.
〈課題を解決するための手段〉
上記の目的を達成するための構成を、実施例に対応する
第1図を参照しつつ説明すると、本発明は、軸方向に沿
うスリット11が形成された筒状の超電導体1を、その
軸方向をマグネッl−Mの軸方向に沿わせて、内部にマ
グネソ)Mを包み込むよう配設したことによって、特徴
づけられる。<Means for Solving the Problems> A configuration for achieving the above object will be described with reference to FIG. 1 corresponding to an embodiment. It is characterized by the fact that the superconductor 1 is arranged so that its axial direction is along the axial direction of the magnet I-M, and the magnet I-M is wrapped therein.
〈作用〉
第2図に示すように、マクネットMから発生ずる磁界の
うち、半径方向への磁界H□は超電導体1を貫通しよう
とするが、レンツの法則に従って流れる渦状の電流■、
により発生ずるシールド磁界I−I Sによってキャン
セルされ、外部に漏れることがない。ここで、マグネソ
)Mの軸方向への磁界H□は、この磁界HF+Aに起因
するレンツの法則による電流+73がスリン1〜11の
存在によって流れないから、減衰することがない。<Function> As shown in Fig. 2, among the magnetic fields generated from the Macnet M, the magnetic field H□ in the radial direction tries to penetrate the superconductor 1, but the vortex-like current ■, which flows according to Lenz's law,
It is canceled by the shielding magnetic field I-IS generated by the magnetic field, and there is no leakage to the outside. Here, the magnetic field H□ in the axial direction of the magnetic field HF+A does not attenuate because the current +73 according to Lenz's law caused by the magnetic field HF+A does not flow due to the presence of Surins 1 to 11.
〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.
第1図は本発明実施例の構成を示す斜視図である。FIG. 1 is a perspective view showing the configuration of an embodiment of the present invention.
電磁石等のマグネッI−Mと同軸上に、軸方向にスリッ
ト11を備えた円筒状の超電導体1がマグネットMを内
包するように配設されている。A cylindrical superconductor 1 having a slit 11 in the axial direction is disposed coaxially with a magnet I-M such as an electromagnet so as to enclose the magnet M.
このような構成によると、第2図に示すように、マグネ
ソl−Mから発生ずる磁界のうち、その半径方向への磁
界H1,+++は超電導体1を貫通ずる方向に沿う。こ
の磁界1−Iイ8が超電導体1の下部臨界磁界を越える
強さを有しているとき、その磁束線が超電導体1の内部
に侵入してこれを貫き、その近傍が常電導状態となる。According to such a configuration, as shown in FIG. 2, among the magnetic fields generated from Magneso l-M, the magnetic field H1, +++ in the radial direction passes through the superconductor 1. When this magnetic field 1-I-8 has a strength that exceeds the lower critical magnetic field of the superconductor 1, the magnetic flux lines enter and penetrate the superconductor 1, and the vicinity becomes a normal conducting state. Become.
このとき、レンツの法則により、超電導体1には磁束線
の侵入部位のまわりの超電導状態の部分に誘導電流■3
が流れる。ごの電流■3によって、磁界■1□と逆向き
で等しい強さのシールド磁界Hsか発生し、ごれらは互
いにキャンセルし合うことになり、磁界HM Rば外部
に漏れない。At this time, according to Lenz's law, the superconductor 1 has an induced current ■3 in the superconducting state around the area where the magnetic flux lines enter.
flows. The current ■3 generates a shielding magnetic field Hs of equal strength and opposite direction to the magnetic field ■1□, and they cancel each other out, so that the magnetic field HMR does not leak to the outside.
マグネソhMからの軸方向への磁界I−1□については
、同様にレンツの法則によってこの磁界11□を打ち消
す方向への磁界を発生すべく電流ビ、か流れようとする
が、スリット11の存在によってこの方向への電流1/
3は流れず、従ってマクネソ1− Mが発生ずる軸方向
への磁界HMoは減衰されることなく、そのままの強さ
で存在することになる。Regarding the magnetic field I-1□ in the axial direction from the magneso hM, the current B tries to flow in order to generate a magnetic field in the direction that cancels this magnetic field 11□ according to Lenz's law, but the existence of the slit 11 The current in this direction is 1/
3 does not flow, and therefore the axial magnetic field HMo generated by Makneso 1-M remains as strong as it is without being attenuated.
このことば、交流磁場、静磁場を問わずいずれにも適応
できる。This word can be applied to both alternating magnetic fields and static magnetic fields.
なお、第1図に示す構成では、スリット11から半径方
向への磁界が漏れることになるが、その漏れば、必要に
応じて第3図もしくは第4図にその端面の正面図を示す
ように構成することによって、防止することができる。In the configuration shown in FIG. 1, the magnetic field leaks from the slit 11 in the radial direction. This can be prevented by configuring.
第3図に示す例は、第1図と同等のスリット11を備え
た円筒状の超電導体1に加えて、これと同軸上に、同様
なスリン1〜21を備えた円筒状のもう一つの超電導体
2を設けるとともに、スリット11と21の位置をくい
違わせた例である。これにより、スリット11から漏れ
る半径方向の磁界は、超電導体21によりシールドされ
る。ただし、超電導体1と2の間は、例えば絶縁体3や
空隙等を介在させる等によって絶縁しておく必要がある
。In the example shown in FIG. 3, in addition to a cylindrical superconductor 1 equipped with a slit 11 similar to that shown in FIG. This is an example in which the superconductor 2 is provided and the slits 11 and 21 are placed at different positions. Thereby, the radial magnetic field leaking from the slit 11 is shielded by the superconductor 21. However, it is necessary to insulate the superconductors 1 and 2 by, for example, interposing an insulator 3 or a gap.
なお、このような構造は第3図のように2層とは限らず
、必要に応じて3層以上の構造としてもよい。Incidentally, such a structure is not limited to two layers as shown in FIG. 3, but may be a structure of three or more layers as necessary.
第4図に示す例は、第1図と同等のスリット11を備え
た超電導体1の、そのスリット11に磁性体4を設けた
例で、スリット11からの漏洩磁界を磁性体4でシール
ドしようとするものである。The example shown in FIG. 4 is an example of a superconductor 1 having a slit 11 similar to that shown in FIG. That is.
〈発明の効果〉
以上説明したように、本発明によれば、マグネットの半
径方向外側を、軸方向へのスリン1−を有する超電導体
で覆うので、強磁性体を使用したシールド装置に比して
小型、軽量化されるとともに、マグネソ1〜の発生する
磁界の強度分布にシールド=6=
電流I5の大きさが対応するため、(分界の強度分布に
応じて厚さ等を変更する等の必要がなく、製造時の加工
が容易である。しかも、マグネッ1への軸方向への磁界
は全く減衰されないから、マグネットを高効率で使用す
ることができる。<Effects of the Invention> As explained above, according to the present invention, since the radially outer side of the magnet is covered with a superconductor having suline 1- in the axial direction, the shielding device is more effective than a shielding device using a ferromagnetic material. In addition to being smaller and lighter, the size of the shield = 6 = current I5 corresponds to the strength distribution of the magnetic field generated by Magneso 1~, so it is possible to This is not necessary and processing during manufacturing is easy.Furthermore, since the magnetic field in the axial direction to the magnet 1 is not attenuated at all, the magnet can be used with high efficiency.
第1図は本発明実施例の構成を示す斜視図、第2図はそ
の作用説明図、
第3図および第4図はそれぞれ本発明の他の実施例の端
面の正面図である。
1・・・・超電導体
11・・・・スリット
M・・・・マグネット
特許出願人 株式会社島津製作所代 理 人
弁理士 西1)新
−7=FIG. 1 is a perspective view showing the structure of an embodiment of the present invention, FIG. 2 is an explanatory diagram of its operation, and FIGS. 3 and 4 are end front views of other embodiments of the present invention. 1... Superconductor 11... Slit M... Magnet patent applicant Agent of Shimadzu Corporation
Patent Attorney Nishi 1) Shin-7=
Claims (1)
ルドするための装置であって、軸方向に沿うスリットが
形成された筒状の超電導体を、その軸方向を上記磁極方
向に沿わせて上記マグネットを内包するよう配設したこ
とを特徴とする、超電導磁気シールド装置。This is a device for shielding a radiated magnetic field in a direction other than the direction of the magnetic pole of a magnet, in which a cylindrical superconductor having a slit along the axial direction is attached to the magnet by aligning the axial direction of the superconductor with the direction of the magnetic pole. A superconducting magnetic shield device characterized in that it is arranged so as to enclose a superconducting magnetic shield device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63081841A JPH01253689A (en) | 1988-04-01 | 1988-04-01 | Superconductive magnetism shielding apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63081841A JPH01253689A (en) | 1988-04-01 | 1988-04-01 | Superconductive magnetism shielding apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01253689A true JPH01253689A (en) | 1989-10-09 |
Family
ID=13757694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63081841A Pending JPH01253689A (en) | 1988-04-01 | 1988-04-01 | Superconductive magnetism shielding apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01253689A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04225502A (en) * | 1990-12-27 | 1992-08-14 | Toshiba Corp | Superconducting magnet device |
GB2522068A (en) * | 2014-01-14 | 2015-07-15 | Thales Holdings Uk Plc | Electric field screening |
CN105555108A (en) * | 2014-10-28 | 2016-05-04 | 瑞昱半导体股份有限公司 | Electronic device and electromagnetic radiation suppression method |
-
1988
- 1988-04-01 JP JP63081841A patent/JPH01253689A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04225502A (en) * | 1990-12-27 | 1992-08-14 | Toshiba Corp | Superconducting magnet device |
GB2522068A (en) * | 2014-01-14 | 2015-07-15 | Thales Holdings Uk Plc | Electric field screening |
GB2522068B (en) * | 2014-01-14 | 2016-10-19 | Thales Holdings Uk Plc | Electric field screening |
CN105555108A (en) * | 2014-10-28 | 2016-05-04 | 瑞昱半导体股份有限公司 | Electronic device and electromagnetic radiation suppression method |
CN105555108B (en) * | 2014-10-28 | 2018-09-04 | 瑞昱半导体股份有限公司 | Electronic device and electromagnetic radiation suppression method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6454714A (en) | Active shield type superconducting magnet device | |
GB2232771A (en) | Actively and passively shielded MR magnet | |
US5644233A (en) | Quench protection for actively shielded magnets | |
JP2010274039A (en) | Superconductive magnet device | |
US20030107862A1 (en) | Superconducting fault current controller/current controller | |
US20040041673A1 (en) | Low-leakage magnetic-field magnet and shield coil assembly | |
US5216568A (en) | Superconducting magnet device | |
JPH01253689A (en) | Superconductive magnetism shielding apparatus | |
US5355275A (en) | Current limiting device for electromagnetic coil employing gap containing superconductive shield | |
JPH04105307A (en) | Superconducting magnet apparatus | |
US5075663A (en) | Noise-shielded transformer | |
Noguchi et al. | Optimal design method for MRI superconducting magnets with ferromagnetic shield | |
JPH01253690A (en) | Magnetic shielding apparatus | |
JPH08236983A (en) | Superconducting magnetic shield method | |
JPS63260116A (en) | Magnetic shield of magnetic resonance imaging apparatus | |
Takahata et al. | Magnetic shielding by a tubular superconducting winding in parallel and transverse fields | |
JPH03139328A (en) | Superconductive magnet for mri apparatus | |
JPH04112620A (en) | Current limiter | |
Noguchi et al. | An optimal design method for high-field superconducting magnets with ferromagnetic shields | |
JP2014099440A (en) | Permanent current switch, and superconducting magnet device with permanent current switch | |
Goleman et al. | Proposal and theoretical evaluation of the active shield with self-tunable loop current array | |
JPH06232589A (en) | Magnetic shielding substance | |
JPS6017883Y2 (en) | noise cut transformer | |
JPH0510335Y2 (en) | ||
JPH0832273A (en) | Magnetic shield |