[go: up one dir, main page]

JPH01253590A - High-vacuum pump - Google Patents

High-vacuum pump

Info

Publication number
JPH01253590A
JPH01253590A JP8092588A JP8092588A JPH01253590A JP H01253590 A JPH01253590 A JP H01253590A JP 8092588 A JP8092588 A JP 8092588A JP 8092588 A JP8092588 A JP 8092588A JP H01253590 A JPH01253590 A JP H01253590A
Authority
JP
Japan
Prior art keywords
casing
cooling device
intake port
low
blades
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8092588A
Other languages
Japanese (ja)
Inventor
Kenji Nomura
憲司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8092588A priority Critical patent/JPH01253590A/en
Publication of JPH01253590A publication Critical patent/JPH01253590A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

PURPOSE:To improve the exhaust speed by arranging a low-temperature panel connected to a cooling device on the intake port side of a casing in a vacuum pump applying momentum to molecules of the gas sucked through the intake port and discharging them through an exhaust port via the rotation of blades. CONSTITUTION:An intake port 11 and an exhaust port 12 are formed on the upper section and the lower side section of a casing 10. A molecular pump M provided with blades 14 rotated by a motor 13 is arranged in this casing 10. Momentum is applied to molecules of the gas sucked into the casing 10, and they are discharged through the exhaust port 12. In this case, a cooling device 15 and a low-temperature panel 16 thermally integrally connected to it are arranged on the upstream side of the blades 14. The cooling device 15 cools the operating gas compressed by a compressor 21 with a radiator 20 then generates the cold by the expansion of the operating gas guided via the forward passage 19a of a heat exchanger 19. Steam and CO2 or the like are condensed and discharged in the low-temperature panel 16.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、高真空ポンプに関するものであり、特に、分
子ポンプの形態の高真空ポンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECTS OF THE INVENTION Field of Industrial Application The present invention relates to high vacuum pumps, and in particular to high vacuum pumps in the form of molecular pumps.

(従来の技術) 高真空を生成するために、例えば三菱電機株式会社から
発行されている「三菱ターボ分子真空ポンプ」のカタロ
グに開示されているように、従来から分子ポンプが採用
されている。この分子ポンプは、気体の分子に大きな運
動量を付与して排気作用を行わしめるものである。
(Prior Art) In order to generate high vacuum, molecular pumps have conventionally been employed, for example, as disclosed in the catalog of "Mitsubishi Turbo Molecular Vacuum Pump" published by Mitsubishi Electric Corporation. This molecular pump performs a pumping action by imparting large momentum to gas molecules.

(発明が解決しようとする課B) ところが、分子ポンプは、あらゆる気体を排気出来ると
いう長所があるも、排気速度が遅いという短所がある。
(Problem B to be solved by the invention) However, although molecular pumps have the advantage of being able to pump out all kinds of gases, they have the disadvantage of slow pumping speed.

従って、分子ポンプを真空装置に採用した場合、真空装
置で最も多量に排気する必要がある水蒸気の排気に時間
が掛かるという不具合があった。
Therefore, when a molecular pump is employed in a vacuum device, there is a problem in that it takes time to exhaust water vapor, which is the largest amount of water vapor that needs to be evacuated in the vacuum device.

それ故に、本発明は、高真空ポンプの排気速度を高める
ことを、その技術的課題とする。
Therefore, the technical objective of the present invention is to increase the pumping speed of a high vacuum pump.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記した技術的課題を解決するために本発明において講
じた技術的手段は、 [吸気口および排気口を備えたケーシング、ケーシング
内に配設された翼および翼を回転させるモータを有し、
翼がモータにより回転されたときに吸気口からケーシン
グ内に吸い込まれた気体の分子が翼により運動量を与え
られて排気口から排出される高真空ポンプにおいて、ケ
ーシングの吸気口側に冷却装置と熱的に連結されて低温
パネルを配設した高真空ポンプ」 を構成したことである。
(Means for Solving the Problems) The technical means taken in the present invention to solve the above-mentioned technical problems are as follows: [A casing with an intake port and an exhaust port, a wing disposed in the casing, and a wing] It has a motor that rotates the
In high vacuum pumps, gas molecules sucked into the casing from the intake port when the blades are rotated by the motor are given momentum by the blades and are discharged from the exhaust port. A high-vacuum pump with a low-temperature panel was constructed.

(作用) この構成においては、水蒸気・二酸化炭素等の凝縮温度
が比較的高い気体は低温パネルで凝縮・排気され、窒素
・酸素・水素・ネオン・ヘリウム等の凝縮温度が比較的
低い気体は分子ポンプで排気される。つまり分子ポンプ
では、凝縮温度が比較的高い気体の排気を担当しないの
で、全体として排気速度を高めることが出来る。
(Function) In this configuration, gases with a relatively high condensation temperature such as water vapor and carbon dioxide are condensed and exhausted by the low-temperature panel, while gases with a relatively low condensation temperature such as nitrogen, oxygen, hydrogen, neon, and helium are molecules. Exhausted by a pump. In other words, since the molecular pump is not in charge of exhausting gas with a relatively high condensation temperature, the overall pumping speed can be increased.

(実施例) 第1図および第2図において、ケーシング10の上部お
よび下側側部には夫々吸気口11および排気口12が形
成される。ケーシング10内には、モータ13により回
転される翼14を備えた分子ポンプMが配設されている
。翼14が回転されると、吸気口11からケーシング1
0内に吸い込まれた気体の分子が翼14により運動量を
与えられて排気口12から排出されるようになっている
(Example) In FIGS. 1 and 2, an intake port 11 and an exhaust port 12 are formed in the upper and lower side parts of the casing 10, respectively. A molecular pump M equipped with blades 14 rotated by a motor 13 is disposed within the casing 10 . When the blade 14 is rotated, the casing 1 is removed from the intake port 11.
The gas molecules sucked into the air are given momentum by the blades 14 and are discharged from the exhaust port 12.

翼14の上流側、つまり吸気口11と翼14との間には
、冷却装置15および冷却装置15と熱的に一体の低温
パネル16が配設される。即ち、ターボ膨張機の形態を
なす冷却装置】5は、ブラケット17を介してケーシン
グ10に固定されている。冷却装置15のコールドヘッ
ド15cは、低温パネル16に固定されている。
A cooling device 15 and a low-temperature panel 16 that is thermally integrated with the cooling device 15 are disposed upstream of the blade 14, that is, between the intake port 11 and the blade 14. That is, the cooling device 5 in the form of a turbo expander is fixed to the casing 10 via a bracket 17. A cold head 15c of the cooling device 15 is fixed to a low temperature panel 16.

しかして冷却装置15のインレットボート15aは、配
管18、熱交換器19の往道路19aおよび放熱器20
を介して圧縮機21の吐出口に連結されている。また、
冷却装置15のアウトレットボー)15bは、配管22
および熱交換器19の復通路19bを介して圧縮機21
の吸入口に連結されている。
Therefore, the inlet boat 15a of the cooling device 15 includes the piping 18, the outgoing road 19a of the heat exchanger 19, and the radiator 20.
It is connected to the discharge port of the compressor 21 via. Also,
The outlet port (15b) of the cooling device 15 is connected to the pipe 22
and the compressor 21 via the return passage 19b of the heat exchanger 19.
connected to the inlet of the

圧縮機21で圧縮された作動ガスは、放熱器20で冷却
された後、熱交換器19の往道路19aおよび配管18
を経て冷却装置15に至る。そこで、作動ガスは膨張さ
れ、この膨張によりコールドヘッド15cに寒冷を発生
する0作動ガスは、その後、配管22および熱交換器1
9の復通路19bを介して圧縮機21に帰還する。作動
ガスは、熱交換器19の復通路19bを通過する際に、
熱交換器19の往道路19aを通過する作動ガスを冷却
する。つまり、逆ブライトンサイクルにより、寒冷が発
生されるようになっている。
The working gas compressed by the compressor 21 is cooled by the radiator 20 and then transferred to the outgoing road 19a of the heat exchanger 19 and the piping 18.
and then reaches the cooling device 15. There, the working gas is expanded, and this expansion causes the working gas to generate cold in the cold head 15c.
9 returns to the compressor 21 via the return path 19b. When the working gas passes through the return passage 19b of the heat exchanger 19,
The working gas passing through the outgoing road 19a of the heat exchanger 19 is cooled. In other words, cold is generated by the reverse Brighton cycle.

コールドヘッド15cと熱的に連結された低温パネル1
6は、水蒸気・二酸化炭素等の凝縮温度が比較的高い気
体を凝縮・排気し、窒素・酸素・水素・ネオン・ヘリウ
ム等の凝縮温度が比較的低い気体は分子ポンプMで排気
される。かくして、高真空を生成することが出来る。
Low temperature panel 1 thermally connected to cold head 15c
6 condenses and exhausts gases with a relatively high condensation temperature, such as water vapor and carbon dioxide, and exhausts gases with a relatively low condensation temperature, such as nitrogen, oxygen, hydrogen, neon, and helium, with a molecular pump M. Thus, a high vacuum can be generated.

〔発明の効果〕〔Effect of the invention〕

本発明においては、水蒸気・二酸化炭素等の凝縮温度が
比較的高い気体は低温パネルで凝縮・排気され、窒素・
酸素・水素・ネオン・ヘリウム等の凝縮温度が比較的低
い気体は分子ポンプで排気される。つまり分子ポンプで
は、凝縮温度が比較的高い気体の排気を担当しないので
、全体として排気速度を高めることが出来る。
In the present invention, gases with relatively high condensation temperatures such as water vapor and carbon dioxide are condensed and exhausted by the low-temperature panel, and nitrogen and
Gases with relatively low condensation temperatures, such as oxygen, hydrogen, neon, and helium, are pumped out using molecular pumps. In other words, since the molecular pump is not in charge of exhausting gas with a relatively high condensation temperature, the overall pumping speed can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る高真空ポンプの一実施例の平面図
および第2図は第1図■−■線に沿う断面図である。 10:ケーシング、11:吸気口、12:排気口、13
:モータ、14:翼、15:冷却装置、16:低温パネ
ル。
FIG. 1 is a plan view of an embodiment of a high vacuum pump according to the present invention, and FIG. 2 is a sectional view taken along line 1--2 in FIG. 10: Casing, 11: Intake port, 12: Exhaust port, 13
: motor, 14: blade, 15: cooling device, 16: low temperature panel.

Claims (1)

【特許請求の範囲】[Claims] 吸気口および排気口を備えたケーシング、ケーシング内
に配設された翼および翼を回転させるモータを有し、翼
が前記モータにより回転されたときに吸気口から前記ケ
ーシング内に吸い込まれた気体の分子が翼により運動量
を与えられて排気口から排出される高真空ポンプにおい
て、ケーシングの吸気口側に冷却装置と熱的に連結され
て低温パネルを配設した高真空ポンプ。
It has a casing with an intake port and an exhaust port, a blade disposed in the casing, and a motor for rotating the blade, and when the blade is rotated by the motor, the gas sucked into the casing from the intake port. A high vacuum pump in which molecules are given momentum by blades and then discharged from the exhaust port.A high vacuum pump has a low-temperature panel that is thermally connected to a cooling device on the intake port side of the casing.
JP8092588A 1988-03-31 1988-03-31 High-vacuum pump Pending JPH01253590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8092588A JPH01253590A (en) 1988-03-31 1988-03-31 High-vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8092588A JPH01253590A (en) 1988-03-31 1988-03-31 High-vacuum pump

Publications (1)

Publication Number Publication Date
JPH01253590A true JPH01253590A (en) 1989-10-09

Family

ID=13732008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8092588A Pending JPH01253590A (en) 1988-03-31 1988-03-31 High-vacuum pump

Country Status (1)

Country Link
JP (1) JPH01253590A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133401U (en) * 1989-04-07 1990-11-06
EP0610666A1 (en) * 1993-01-11 1994-08-17 Applied Materials, Inc. Turbomolecular pump
CN113266550A (en) * 2021-06-02 2021-08-17 华能榆社发电有限责任公司 Vacuum pump inlet cooling device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990784A (en) * 1982-11-12 1984-05-25 Shimadzu Corp Vacuum exhausting apparatus
JPH0151795B2 (en) * 1982-01-18 1989-11-06 Hitachi Ltd

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0151795B2 (en) * 1982-01-18 1989-11-06 Hitachi Ltd
JPS5990784A (en) * 1982-11-12 1984-05-25 Shimadzu Corp Vacuum exhausting apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133401U (en) * 1989-04-07 1990-11-06
EP0610666A1 (en) * 1993-01-11 1994-08-17 Applied Materials, Inc. Turbomolecular pump
CN113266550A (en) * 2021-06-02 2021-08-17 华能榆社发电有限责任公司 Vacuum pump inlet cooling device
CN113266550B (en) * 2021-06-02 2022-09-06 华能榆社发电有限责任公司 Vacuum pump inlet cooling device

Similar Documents

Publication Publication Date Title
AU2007266263B2 (en) Improved compressor device
EP0397051B1 (en) Evacuation apparatus and evacuation method
KR0124416B1 (en) Turbomolecular pump and method of operating the same
US6397621B1 (en) Heating pumping installation, in particular with a refrigeration function
US5647221A (en) Pressure exchanging ejector and refrigeration apparatus and method
US5809768A (en) Hydrogen-oxygen combustion turbine plant
US20030230070A1 (en) Single rotor turbine
KR20220042368A (en) Cooling and/or liquefaction methods and systems
JPS57212395A (en) Molecular pump
JPH01253590A (en) High-vacuum pump
JP2763524B2 (en) Secondary pump device
JP2001032789A (en) Molecular pump
JPS62168994A (en) High vacuum exhaust device
JPH04116295A (en) axial flow molecular pump
KR101331770B1 (en) Vapor compression system and method using turbo fan
JP2503267B2 (en) Turbo molecular pump and its operating method
JPH1054356A (en) Deposit removing trap
RU2005222C1 (en) Vacuum pump unit
JP3377224B2 (en) Exhaust method of vacuum pump
Quack Cold compression of helium for refrigeration below 4 K
RU94032778A (en) Process of reduction of thickness of boundary layer of gas over streamlined surface and device for its realization
JPH0646483Y2 (en) Moisture trap for evacuation of turbo molecular pump
JP3309228B2 (en) Cryopump device with turbo molecular pump
JP2503267C (en)
KR970011411A (en) Air-cooled scroll compressor