JPH01252875A - Vapor absorbing medium - Google Patents
Vapor absorbing mediumInfo
- Publication number
- JPH01252875A JPH01252875A JP63078392A JP7839288A JPH01252875A JP H01252875 A JPH01252875 A JP H01252875A JP 63078392 A JP63078392 A JP 63078392A JP 7839288 A JP7839288 A JP 7839288A JP H01252875 A JPH01252875 A JP H01252875A
- Authority
- JP
- Japan
- Prior art keywords
- nitrate
- aqueous solution
- water vapor
- nitrates
- alkaline earth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000010521 absorption reaction Methods 0.000 claims abstract description 29
- 239000007864 aqueous solution Substances 0.000 claims description 61
- 229910001963 alkali metal nitrate Inorganic materials 0.000 claims description 10
- 229910001964 alkaline earth metal nitrate Inorganic materials 0.000 claims description 10
- 229910002651 NO3 Inorganic materials 0.000 abstract description 35
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 abstract description 35
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 abstract description 15
- 239000007769 metal material Substances 0.000 abstract description 11
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 abstract description 9
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Inorganic materials [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- 150000002823 nitrates Chemical class 0.000 abstract description 6
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Inorganic materials [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 abstract description 5
- 235000010333 potassium nitrate Nutrition 0.000 abstract description 5
- 239000004323 potassium nitrate Substances 0.000 abstract description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 abstract description 4
- DHEQXMRUPNDRPG-UHFFFAOYSA-N strontium nitrate Chemical compound [Sr+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O DHEQXMRUPNDRPG-UHFFFAOYSA-N 0.000 abstract description 4
- 235000010344 sodium nitrate Nutrition 0.000 abstract description 3
- 239000004317 sodium nitrate Substances 0.000 abstract description 2
- 229910052783 alkali metal Inorganic materials 0.000 abstract 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 abstract 4
- 150000001340 alkali metals Chemical class 0.000 abstract 3
- 150000001342 alkaline earth metals Chemical class 0.000 abstract 3
- -1 alkali metal lithium nitrate Chemical class 0.000 abstract 2
- 238000009835 boiling Methods 0.000 description 16
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 10
- 239000000243 solution Substances 0.000 description 7
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Landscapes
- Drying Of Gases (AREA)
- Sorption Type Refrigeration Machines (AREA)
Abstract
Description
【発明の詳細な説明】 産業上の利用分野 本発明は新規な水蒸気吸収用媒体に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a novel water vapor absorption medium.
さらに詳しくいえば、本発明は、吸収式化学ヒートポン
プや同冷凍機などの作動媒体として好適に用いられる、
金属材料に対する腐食性が小さく、かつ良好な水蒸気吸
収能を有する水蒸気吸収用媒体に関するものである。More specifically, the present invention is suitable for use as a working medium in absorption chemical heat pumps, refrigerators, etc.
The present invention relates to a water vapor absorbing medium that is less corrosive to metal materials and has good water vapor absorption ability.
従来の技術
従来、吸収式化学ヒートポンプや同冷凍機などにおいて
は、水蒸気吸収のための作動媒体として、例えば臭化リ
チウム、塩化リチウム、硫酸、水酸化ナトリウムなどの
水溶液が用いられており、特に臭化リチウム水溶液が多
用されている。Conventional technology Conventionally, in absorption chemical heat pumps and refrigerators, aqueous solutions such as lithium bromide, lithium chloride, sulfuric acid, and sodium hydroxide have been used as working media for absorbing water vapor. Lithium chloride aqueous solution is often used.
しかしながら、これらの水溶液は、一般に金属材料に対
する腐食性が大きく、高温になると金属材料に応力腐食
割れをもたらすなどの欠点を有する上、特に多用されて
いる臭化リチウム水溶液においては、高温になると固相
を発生しゃすく、適用温度の制限を免れず、しかもリチ
ウムや臭素は比較的高価な元素であるため経済的に有利
とはいえない。However, these aqueous solutions generally have the disadvantage of being highly corrosive to metal materials, causing stress corrosion cracking in metal materials at high temperatures, and in particular, lithium bromide aqueous solutions, which are commonly used, solidify at high temperatures. It cannot be said to be economically advantageous because it easily generates a phase and is subject to restrictions on the applicable temperature.Moreover, lithium and bromine are relatively expensive elements.
さらに、従来の作動媒体は、通常単一成分の水溶液であ
るため、水蒸気圧−温度−濃度の関係が1種類に固定さ
れ、したがって機器設計上不便を免れなかった。Furthermore, since conventional working media are usually single-component aqueous solutions, the relationship between water vapor pressure, temperature, and concentration is fixed to one type, which is inconvenient in terms of equipment design.
このため、より高温、例えば150℃以上においても金
属材料に対する腐食性が小さく、かつ水蒸気吸収性能に
優れる上に、操作上安定に使用しうる比較的安価な作動
媒体の開発が強(要望されていた。 発明が解決しよう
とする課題本発明は、このような従来の水蒸気吸収用媒
体がもつ欠点を克服し、150’O以上の高温において
も金属材料に対する腐食性が小さく、かつ良好な水蒸気
吸収性能を有し、しかも操作上安定に使用することがで
きて、吸収式化学ヒートポンプや同冷凍機などの作動媒
体として好適に使用しうる比較的安価な水蒸気吸収用媒
体を提供することを目的としてなされたものである。Therefore, there is a strong need to develop a relatively inexpensive working fluid that is less corrosive to metal materials even at higher temperatures, such as 150°C or higher, has excellent water vapor absorption performance, and can be used stably in operation. Problems to be Solved by the Invention The present invention overcomes the drawbacks of such conventional water vapor absorption media, and provides a medium that is less corrosive to metal materials and has good water vapor absorption even at high temperatures of 150'O or higher. The purpose of the present invention is to provide a relatively inexpensive water vapor absorption medium that has high performance, is operationally stable, and can be suitably used as a working medium for absorption chemical heat pumps and refrigerators. It has been done.
課題を解決するための手段
本発明者らは、優れた性能を有する水蒸気吸収用媒体を
開発するために鋭意研究を重ねた結果、アルカリ金属硝
酸塩、アルカリ土類金属硝酸塩及びこれらの混合水溶液
が良好な水蒸気吸収性能を示し、しかも高温における金
属腐食性が小さいこと、また該混合水溶液は成分組成を
適宜選ぶことにより、水蒸気圧−温度−濃度の関係を幅
広く調節しうろことを見い出し、この知見に基づいて本
発明を完成するに至った。Means for Solving the Problems As a result of intensive research to develop a water vapor absorption medium with excellent performance, the inventors have found that alkali metal nitrates, alkaline earth metal nitrates, and mixed aqueous solutions thereof are good. Based on this knowledge, we discovered that the mixed aqueous solution exhibits excellent water vapor absorption performance and low metal corrosion at high temperatures, and that the relationship between water vapor pressure, temperature, and concentration can be adjusted over a wide range by appropriately selecting the component composition. Based on this, the present invention has been completed.
すなわち、本発明は、アルカリ金属硝酸塩及びアルカリ
土類金属硝酸塩の中から選ばれた少なくとも1種を含有
する水蒸気吸収用媒体を提供するものである。That is, the present invention provides a water vapor absorption medium containing at least one selected from alkali metal nitrates and alkaline earth metal nitrates.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明の水蒸気吸収用媒体としては、アルカリ金属硝酸
塩水溶液、アルカリ土類金属硝酸塩水溶液、アルカリ金
属硝酸塩とアルカリ土類金属硝酸塩との混合水溶液が用
いられる。該アルカリ金属硝酸塩としては、例えば硝酸
リチウム、硝酸ナトリウム、硝酸カリウムなどが好まし
く挙げられ、これらはそれぞれ単独で用いてもよいし、
2種以上を組み合わせて用いてもよい。また、アルカリ
土類金属硝酸塩としては、例えば硝酸カルシウム、硝酸
マグネシウム、硝酸ストロンチウムなどが好ましく挙げ
られ、これらはそれぞれ単独で用いてもよいし、2種以
上を組み合わせて用いてもよい。As the water vapor absorption medium of the present invention, an aqueous alkali metal nitrate solution, an aqueous alkaline earth metal nitrate solution, and a mixed aqueous solution of an alkali metal nitrate and an alkaline earth metal nitrate are used. Preferred examples of the alkali metal nitrate include lithium nitrate, sodium nitrate, potassium nitrate, etc., and each of these may be used alone, or
You may use two or more types in combination. Preferable examples of alkaline earth metal nitrates include calcium nitrate, magnesium nitrate, and strontium nitrate, and each of these may be used alone or in combination of two or more.
さらに、本発明においては、1種以上のアルカリ金属硝
酸塩と1種以上のアルカリ土類金属硝酸塩とを混合して
用いることもできる。Furthermore, in the present invention, a mixture of one or more types of alkali metal nitrates and one or more types of alkaline earth metal nitrates can be used.
前記アルカリ金属硝酸塩及びアルカリ土類金属硝酸塩の
単一成分水溶液について、その水蒸気吸収性能を、同一
モル濃度、同一温度における水溶液の沸点上昇(水蒸気
圧降下)度でもって比較すると、K<Ha<Li<Ca
<Mtの順であり、硝酸マグネシウムなどは、従来多用
されている臭化リチウムより、むしろ大きな水蒸気吸収
性能を有している。When comparing the water vapor absorption performance of single component aqueous solutions of alkali metal nitrates and alkaline earth metal nitrates in terms of boiling point rise (water vapor pressure drop) of the aqueous solutions at the same molar concentration and the same temperature, K<Ha<Li <Ca
<Mt> Magnesium nitrate and the like have a higher water vapor absorption performance than lithium bromide, which has been widely used in the past.
前記のアルカリ金属硝酸塩やアルカリ土類金属硝酸塩の
単一成分水溶液でも医れた水蒸気吸収性能を有するが、
単一成分の場合、水蒸気圧−温度−濃度の関係が固定的
で、該作動媒体を用いた機器を設計する際の設計自由度
が小さい。これに対し、2種以上の硝酸塩を含む多成分
系水溶液においては、その成分組成を適宜選ぶことによ
り、水蒸気圧−温度−濃度の関係を幅広く調節しうるの
で、機器設計における自由度を大きくとることができる
上、無水塩となった場合に、その融点が低下するので、
高温、高濃度における作動媒体中の固相の発生が有効に
防止されるなどのメリットがある。Although single-component aqueous solutions of the alkali metal nitrates and alkaline earth metal nitrates mentioned above also have excellent water vapor absorption performance,
In the case of a single component, the relationship between water vapor pressure-temperature-concentration is fixed, and the degree of freedom in designing equipment using the working medium is small. On the other hand, in a multicomponent aqueous solution containing two or more types of nitrates, the relationship between water vapor pressure, temperature, and concentration can be adjusted over a wide range by appropriately selecting the component composition, allowing a greater degree of freedom in equipment design. In addition, when it becomes an anhydrous salt, its melting point decreases.
It has the advantage of effectively preventing the formation of a solid phase in the working medium at high temperatures and high concentrations.
このような多成分系水溶液の好適な例を以下に示す。Suitable examples of such multi-component aqueous solutions are shown below.
[0,5Li・0.5Mtl・硝酸塩水溶液[0,4L
i・0.3N*争0.31[]・硝酸塩水溶液[0,6
1i・0.2Nx俸0.2K] ・硝酸塩水溶液[(
0,5Li−0,1Cs)・0.2N1・0.[]・硝
酸塩水溶液(0,6Li−0,2Ni・(0,1に−6
,11)]・硝酸塩水溶液(数字はモル分率である)
なお、前記[0,5Li・0 、5 Mtl硝酸塩水溶
液の沸点上昇度は臭化リチウム水溶液のそれとほぼ同等
である。[0.5Li・0.5Mtl・Nitrate aqueous solution [0.4L
i・0.3N*content 0.31 []・Nitrate aqueous solution [0,6
1i・0.2Nx Salary 0.2K] ・Nitrate aqueous solution [(
0,5Li-0,1Cs)・0.2N1・0. []・Nitrate aqueous solution (0,6Li-0,2Ni・(0,1-6
, 11)]・Nitrate aqueous solution (numbers are mole fractions) The boiling point increase degree of the [0,5Li・0,5 Mtl nitrate aqueous solution is almost the same as that of the lithium bromide aqueous solution.
このような単一成分水溶液又は多成分系水溶液は、作動
媒体として吸収式化学ヒートポンプや同冷凍機内部の水
蒸気発生領域に存在させて、所要の水蒸気を効率よく吸
収させたのち、再生器に送られ加熱、濃縮される。この
ように、該媒体の使用に当っては、水蒸気の吸収と放出
(希釈と濃縮)が繰り返されるため、その濃度は常に変
動している。Such a single-component aqueous solution or a multi-component aqueous solution is made to exist as a working medium in the steam generation region inside an absorption chemical heat pump or refrigerator to efficiently absorb the required water vapor, and then is sent to a regenerator. It is then heated and concentrated. In this manner, when the medium is used, absorption and release (dilution and concentration) of water vapor are repeated, so its concentration is constantly changing.
また、該単一成分水溶液や多成分系水溶液は、従来の作
動媒体に比べて金属材料に対する腐食性が小さく、特に
高温における腐食性が小さいことから化学ヒートポンプ
などの水蒸気吸収用媒体として150℃以上の温度にも
適用できる。In addition, the single-component aqueous solution and multi-component aqueous solution are less corrosive to metal materials than conventional working media, and are particularly less corrosive at high temperatures, so they can be used as water vapor absorption media for chemical heat pumps and the like at temperatures above 150°C. It can also be applied to temperatures of
発明の効果
本発明の水蒸気吸収用媒体は、アルカリ金属硝酸塩及び
アルカリ土類金属硝酸塩の中から選ばれた1種を含む単
一成分水溶液又は2種以上を含む多成分系水溶液であっ
て、良好な水蒸気吸収能を有する上に、従来のものに比
べて、金属材料に対する腐食性が極めて小さく、吸収式
の化学ヒートポンプや同冷凍機などにおける水蒸気吸収
用作動媒体として好適に用いられる。また、該水蒸気吸
収用媒体は高温においても金属材料に対する腐食性が小
さいことから、従来不可能とされていた150℃以上の
加熱を要する各種用途にも安定に利用可能であり、熱エ
ネルギーの経済的利用の面からも価値の高いものである
。Effects of the Invention The water vapor absorption medium of the present invention is a single-component aqueous solution containing one selected from alkali metal nitrates and alkaline earth metal nitrates, or a multi-component aqueous solution containing two or more of them, and has good properties. In addition to having excellent water vapor absorption ability, it is extremely less corrosive to metal materials than conventional ones, and is suitably used as a working medium for water vapor absorption in absorption type chemical heat pumps and refrigerators. In addition, since the water vapor absorption medium has low corrosiveness to metal materials even at high temperatures, it can be stably used in various applications that require heating above 150°C, which was previously considered impossible, and is economical in thermal energy. It is also of high value from the standpoint of practical use.
さらに、本発明の水蒸気吸収用媒体として、数種の硝酸
塩を含む多成分系水溶液を用いる場合、水蒸気圧−温度
−濃度の関係を従来のものより幅広く調節しうる上、極
端に濃縮された場合、無水塩の融点が低いことから、高
濃度でも固相が発生しにくいなどの利点がある。さらに
、高価な臭素は用いる必要がなく、また高価なリチウム
の使用量も相対的に減少しうるので、経済的にも有利で
ある。Furthermore, when a multi-component aqueous solution containing several types of nitrates is used as the water vapor absorption medium of the present invention, the relationship between water vapor pressure - temperature - concentration can be adjusted more widely than in conventional solutions, and even if extremely concentrated, Since the anhydrous salt has a low melting point, it has the advantage that it is difficult to form a solid phase even at high concentrations. Furthermore, there is no need to use expensive bromine, and the amount of expensive lithium used can be relatively reduced, so it is economically advantageous.
実施例 次に実施例により本発明をさらに詳細に説明する。Example Next, the present invention will be explained in more detail with reference to Examples.
実施例
硝酸塩水溶液の水蒸気吸収性能を調べるI;めに、次の
組成を有する各種の硝酸塩水溶液を調製し、その濃度と
沸点との関係を求め第1図〜第4図にグラフに示した。EXAMPLE In order to investigate the water vapor absorption performance of nitrate aqueous solutions, various nitrate aqueous solutions having the following compositions were prepared, and the relationship between their concentration and boiling point was determined and shown in graphs in FIGS. 1 to 4.
(1)K硝酸塩水溶液
(2)Na硝酸塩水溶液
(3)Li硝酸塩水溶液
(4)Na硝酸塩水溶液
(5)[0,6Li・0.2Kg・0.2K]硝酸塩水
溶液(6)[(0,5Li・o 、 t Ca)・0.
2Km・0.2K]硝酸塩水溶液
(7)[(0,5Li・0 、1 Mg)・0.2Km
・0.2K]硝酸塩水溶液
(8)[0,6Li・0.2Ns・(0,1K・O、l
Cり]硝酸塩水溶液
(9)[0,6Li・0.2Ns・(0,IK−0,1
Mり]硝酸塩水溶液
(10) [0,5Li・0.5Mg1硝酸塩水溶液
(If) [0,4Li・0.3C為・0.3Mg1
硝酸塩水溶液
(H) [0,4Li・0.3KM・0.3K]硝酸
塩水溶液(13) [0,4Ha・0.3C龜・0.
3M(]硝酸塩水溶液
(数字はモル分率である)
第1図は単一成分の硝酸塩を含む水溶液の場合であり、
図において横軸は溶液中のH,Oのモル分率、縦軸は各
濃度における沸点(’K)を示す。(1) K nitrate aqueous solution (2) Na nitrate aqueous solution (3) Li nitrate aqueous solution (4) Na nitrate aqueous solution (5) [0,6Li・0.2Kg・0.2K] nitrate aqueous solution (6) [(0,5Li・o, tCa)・0.
2Km・0.2K] Nitrate aqueous solution (7) [(0,5Li・0,1 Mg)・0.2Km
・0.2K] Nitrate aqueous solution (8) [0.6Li・0.2Ns・(0.1K・O, l
Nitrate aqueous solution (9) [0,6Li・0.2Ns・(0,IK-0,1
Nitrate aqueous solution (10) [0.5Li・0.5Mg1 Nitrate aqueous solution (If) [0.4Li・0.3C・0.3Mg1
Nitrate aqueous solution (H) [0,4Li, 0.3KM, 0.3K] Nitrate aqueous solution (13) [0,4Ha, 0.3C, 0.
3M (] Nitrate aqueous solution (numbers are mole fractions) Figure 1 shows the case of an aqueous solution containing a single component of nitrate,
In the figure, the horizontal axis shows the molar fraction of H and O in the solution, and the vertical axis shows the boiling point ('K) at each concentration.
この図から、硝酸塩を含む水溶液の沸点は、純粋な水の
沸点(x−1,100℃)よりもはるかに上昇しており
、相当分だけその水蒸気圧が低下していることが分かる
。また、同一濃度で比較すると沸点上昇(水蒸気圧降下
)効果はK<Nx<Li<Mgの順で大きいことが分か
る。さらに、マグネシウム硝酸塩水溶液の沸点上昇は、
従来多用されている臭化リチウムのそれよりも大きいこ
とが確認された。From this figure, it can be seen that the boiling point of an aqueous solution containing nitrate is much higher than the boiling point of pure water (x-1,100°C), and its water vapor pressure is lowered by a considerable amount. Further, when comparing the same concentration, it can be seen that the effect of increasing the boiling point (decreasing the water vapor pressure) is larger in the order of K<Nx<Li<Mg. Furthermore, the boiling point increase of magnesium nitrate aqueous solution is
It was confirmed that it was larger than that of lithium bromide, which has been widely used in the past.
第2図は、リチウム、ナトリウム及びカリウム硝酸塩の
3種を含む多成分系水溶液、及びこの水溶液中のリチウ
ム硝酸塩の一部をカルシウムとマグネシウム硝酸塩に置
換した水溶液の場合を示し、第3図は該多成分系水溶液
におけるカリウム硝酸塩の一部をカルシウムとマグネシ
ウム硝酸塩で置換した水溶液の場合を示す。これらの図
における横軸及び縦軸は第1図と同様の意味をもつ。Figure 2 shows the case of a multi-component aqueous solution containing three types of lithium, sodium and potassium nitrates, and an aqueous solution in which a part of the lithium nitrate in this aqueous solution is replaced with calcium and magnesium nitrates. The case of an aqueous solution in which a part of potassium nitrate in a multi-component aqueous solution is replaced with calcium and magnesium nitrate is shown. The horizontal and vertical axes in these figures have the same meanings as in FIG.
第2図及び第3図から、リチウムやカリウム硝酸塩をカ
ルシウムやマグネシウム硝酸塩で置換することによって
、より大きな沸点上昇(水蒸気圧降下)効果がもたらさ
れることが分かる。From FIG. 2 and FIG. 3, it can be seen that by replacing lithium or potassium nitrate with calcium or magnesium nitrate, a greater effect of increasing the boiling point (reducing water vapor pressure) is brought about.
第4図は各種の多成分系水溶液における濃度と沸点との
関係を示す。この図における横軸及び疑軸は第1図と同
じ意味をもつ。この図から硝酸リチウムと硝酸マグネシ
ウムの当モル混合物を含む水溶液は、沸点上昇(水蒸気
圧降下)効果が大きいことが分かる。FIG. 4 shows the relationship between concentration and boiling point in various multicomponent aqueous solutions. The horizontal axis and pseudo-axis in this figure have the same meaning as in FIG. This figure shows that an aqueous solution containing an equimolar mixture of lithium nitrate and magnesium nitrate has a large effect of increasing the boiling point (decreasing water vapor pressure).
次に、硝酸塩水溶液の水蒸気圧降下を端的に示すために
、前記実験結果から、LOのモル分率と圧力比(p/P
)との関係を第5図にグラフに示す。Next, in order to clearly show the drop in water vapor pressure of a nitrate aqueous solution, we will use the mole fraction of LO and the pressure ratio (p/P
) is shown in a graph in Figure 5.
ここでpは各種溶液の沸点における水蒸気圧、Pは同温
度における純粋な水の水蒸気圧である。第5図において
(14)はラウール法則による直線を示すが、各溶液の
(p/P)はそれよりも大きく負に隔たっており、硝酸
塩水溶液の水蒸気吸収能がかなり大きいことが分かる。Here, p is the water vapor pressure at the boiling point of various solutions, and P is the water vapor pressure of pure water at the same temperature. In FIG. 5, (14) shows a straight line according to Raoult's law, but the (p/P) of each solution is much more negative than that, and it can be seen that the water vapor absorption ability of the nitrate aqueous solution is quite large.
また、多成分系水溶液は、その無水物の融点が単一成分
の場合に比べて降T’しているため、高温、高濃度にな
っても固相が析出しにくい副次的効果が認められた。In addition, since the melting point of the anhydride in a multi-component aqueous solution is lower than that in the case of a single component, there is a side effect that makes it difficult for the solid phase to precipitate even at high temperatures and high concentrations. It was done.
さらに、硝酸塩水溶液の金属材料に対する腐食性につい
て検討するため、150〜170℃の沸点を有する各種
水溶液中に、炭素鋼の小片を沸点下に長時間浸せきし、
その重量減から年間の腐食量を求めたところ、0.04
履層/年であっt;。この値は、空気の存在しない実用
条件下では、さらに低くなるものと思われる。比較のた
めに、塩化リチウム水溶液について同様の測定を行っt
;ところ、年間腐食量は1.2+u+/年であった。Furthermore, in order to investigate the corrosivity of nitrate aqueous solutions to metal materials, small pieces of carbon steel were immersed for a long time below the boiling point in various aqueous solutions with boiling points of 150 to 170°C.
When the annual amount of corrosion was calculated from the weight loss, it was found to be 0.04
Track layer/year. This value is expected to be even lower under practical conditions in the absence of air. For comparison, similar measurements were performed on an aqueous lithium chloride solution.
However, the annual corrosion amount was 1.2+u+/year.
このことから、硝酸塩水溶液の金属材料に対する腐食性
は極めて小さく、150℃以上の高温でも長時間安定的
に使用しうろことが分かった。From this, it was found that the corrosiveness of the nitrate aqueous solution to metal materials is extremely low, and it can be used stably for a long time even at high temperatures of 150° C. or higher.
第1図、第2図、第3図及び第4図は、各種硝酸塩水溶
液における濃度(水のモル分率)と沸点との関係を示す
グラフ、第5図は各種硝酸塩水溶液における濃度(水の
モル分率)とp/Pとの関係を示すグラフである。
特許出願人 工業技術院長 飯 塚 幸 三指定代理人
工業技術院名古屋工業技術試験所長磯谷三男
第 1 図
0 0.2 0.4 0.5 0,81.O
I(2C)モル分ぢ4
第 2 図
0 0.2 0.4 0.6 0.8 1
.0H2()モル分桝者
9丁 3 図
I−(2C)モル分率
第 4 図
ビ20モル分率Figures 1, 2, 3, and 4 are graphs showing the relationship between the concentration (molar fraction of water) and boiling point in various nitrate aqueous solutions, and Figure 5 is a graph showing the relationship between the concentration (mole fraction of water) and boiling point in various nitrate aqueous solutions. It is a graph which shows the relationship between mole fraction) and p/P. Patent applicant: Director of the Agency of Industrial Science and Technology Kozo Iizuka Designated agent: Director of the Nagoya Institute of Industrial Science and Technology, Mitsuo Isoya 1 Figure 0 0.2 0.4 0.5 0,81. O
I(2C) mole fraction 4 Second figure 0 0.2 0.4 0.6 0.8 1
.. 0H2 () mole fraction 9 3 Figure I-(2C) mole fraction No. 4 Figure B 20 mole fraction
Claims (1)
中から選ばれた少なくとも1種を含有する水溶液から成
る水蒸気吸収用媒体。1. A water vapor absorption medium comprising an aqueous solution containing at least one selected from alkali metal nitrates and alkaline earth metal nitrates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63078392A JPH06100398B2 (en) | 1988-03-31 | 1988-03-31 | Water vapor absorbing medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63078392A JPH06100398B2 (en) | 1988-03-31 | 1988-03-31 | Water vapor absorbing medium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01252875A true JPH01252875A (en) | 1989-10-09 |
JPH06100398B2 JPH06100398B2 (en) | 1994-12-12 |
Family
ID=13660743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63078392A Expired - Lifetime JPH06100398B2 (en) | 1988-03-31 | 1988-03-31 | Water vapor absorbing medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06100398B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02292386A (en) * | 1989-05-01 | 1990-12-03 | C C I Kk | Coolant composition |
CN102433104A (en) * | 2011-09-26 | 2012-05-02 | 上海交通大学 | Heat transfer fluid and preparation method and application thereof |
JP2018075526A (en) * | 2016-11-09 | 2018-05-17 | 富士電機株式会社 | Moisture adsorbent |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535933A (en) * | 1978-09-05 | 1980-03-13 | Kuraray Co Ltd | Fixed absorbent for use in absorption type refrigerator |
JPS5589662A (en) * | 1978-12-21 | 1980-07-07 | Alefeld Georg | Working substance system for heat absorption engine and absorption refrigerating engine |
-
1988
- 1988-03-31 JP JP63078392A patent/JPH06100398B2/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5535933A (en) * | 1978-09-05 | 1980-03-13 | Kuraray Co Ltd | Fixed absorbent for use in absorption type refrigerator |
JPS5589662A (en) * | 1978-12-21 | 1980-07-07 | Alefeld Georg | Working substance system for heat absorption engine and absorption refrigerating engine |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02292386A (en) * | 1989-05-01 | 1990-12-03 | C C I Kk | Coolant composition |
CN102433104A (en) * | 2011-09-26 | 2012-05-02 | 上海交通大学 | Heat transfer fluid and preparation method and application thereof |
JP2018075526A (en) * | 2016-11-09 | 2018-05-17 | 富士電機株式会社 | Moisture adsorbent |
JP2021045748A (en) * | 2020-11-30 | 2021-03-25 | 富士電機株式会社 | Moisture adsorbent |
Also Published As
Publication number | Publication date |
---|---|
JPH06100398B2 (en) | 1994-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7922931B1 (en) | Low-melting point heat transfer fluid | |
US3478530A (en) | Absorption refrigeration system | |
CA1074094A (en) | Corrosion inhibitors for absorption refrigeration systems | |
JPH02149686A (en) | Inhibitor for corrosion of steel | |
US4563295A (en) | High temperature absorbent for water vapor | |
JPH0455234B2 (en) | ||
JPH01252875A (en) | Vapor absorbing medium | |
US4801393A (en) | High-temperature non-oxidizing water vapor absorbent | |
Guo et al. | The performance of [Emim] Br/H2O as a working pair in the absorption refrigeration system | |
JPS60118785A (en) | Absorbing solution for absorption refrigerator | |
US3240707A (en) | Corrosion inhibitor compositions for aqueous liquids | |
Adegoke | Solubility of the water—lithium-bromide—zinc-bromide combination | |
Bhaduri et al. | P T X behaviour of refrigerant-absorbent pairs | |
RU2116326C1 (en) | Heat carrier as antifreeze | |
JPS5511015A (en) | Absorption liquid for absorption type refrigerating machine | |
JPS6356918B2 (en) | ||
JP3801784B2 (en) | Absorption-type heat pump aqueous solution composition | |
SU1339116A1 (en) | Brine for refrigerating units of fluoride productions | |
JPH03174487A (en) | Absorbent liquid for absorption refrigerating machine | |
SU1535877A1 (en) | Working fluid for absorption refrigerating machines and thermal transformers | |
KR0149284B1 (en) | Absorption liquid composition for absorption air conditioner | |
JPS63312387A (en) | Thermal energy storing material for freezing | |
JPS6050362A (en) | Chemical heat pump | |
JPH0323112B2 (en) | ||
JPH1088118A (en) | Absorbing liquid composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |