[go: up one dir, main page]

JPH01250076A - Detector for overcurrent element - Google Patents

Detector for overcurrent element

Info

Publication number
JPH01250076A
JPH01250076A JP63076686A JP7668688A JPH01250076A JP H01250076 A JPH01250076 A JP H01250076A JP 63076686 A JP63076686 A JP 63076686A JP 7668688 A JP7668688 A JP 7668688A JP H01250076 A JPH01250076 A JP H01250076A
Authority
JP
Japan
Prior art keywords
current
points
terminal
wiring
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63076686A
Other languages
Japanese (ja)
Inventor
Satoshi Sekiya
関谷 聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP63076686A priority Critical patent/JPH01250076A/en
Publication of JPH01250076A publication Critical patent/JPH01250076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

PURPOSE:To eliminate a disconnection of the wiring for an electric power source by making the current between two points of a current wiring to be 0mA with the current supplied from outside so that a potential difference between the two points is made to be 0muV and detecting an overcurrent element in the manner of measuring a power source current in case the two points are electrically separated. CONSTITUTION:Voltage detecting terminals 1, 2 are connected respectively to the two points of the power source wiring for a measuring object, a current terminal 3 is connected to the same point as that of the terminal 2, a current 4 is connected to a ground of the measuring object and the potential difference between the two points of the power source wiring for the measuring object is made to be 0muV. The current is made to be 0mA and the two points are electrically separated. then plural points on the power source wiring are electrically separated in order, and the power source current at that time is measured. The overcurrent element is thereby detected and the disconnection of the power source wiring is eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、複数の素子を搭載した回路基板などの検査
、修正に関するもので同一の電源に接続される複数の素
子から電源電流の過大に流れる素子を検出する検出装置
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the inspection and repair of circuit boards, etc., on which multiple elements are mounted. The present invention relates to a detection device for detecting flowing elements.

〔発明の概要〕[Summary of the invention]

この発明は、過電流素子の検出装置において、電源配線
の2点間の電位差が0μ■になるように外部より電流を
供給して2点間の電流をOmAにし、2点間を電気的に
分離した場合の電源電流を測定することにより、過電流
素子を検出するようにしたものである。
In the overcurrent element detection device, this invention supplies a current from the outside so that the potential difference between the two points of the power supply wiring becomes 0μ■, the current between the two points becomes OmA, and electrically connects the two points. The overcurrent element is detected by measuring the power supply current when separated.

〔従来の技術〕[Conventional technology]

従来、同一の電源に接続される複数の素子の中から電源
電流の過大な素子を検出する方法として、電源電流が正
常になるまで素子を一つずつはずす。
Conventionally, as a method of detecting an element with an excessive power supply current among a plurality of elements connected to the same power supply, the elements are removed one by one until the power supply current returns to normal.

あるいは電源配線の複数個所を順次切断するなどの方法
が行われていた。
Alternatively, methods such as sequentially cutting the power supply wiring at multiple locations have been used.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の素子を一つずつはずす方法は、素子が集
積回路の場合は端子数が多く、はずすのに多くの時間を
要し、更にはずした素子が正常の場合、再び取付ける作
業を要する欠点があった。
However, the conventional method of removing elements one by one has the disadvantage that if the element is an integrated circuit, there are many terminals and it takes a lot of time to remove it, and furthermore, if the removed element is normal, it requires work to reinstall it. was there.

又、従来の電源配線の複数個所を順次切断する方法は、
配線基板を損傷し、後に修復しなければならない欠点が
あった。
In addition, the conventional method of sequentially cutting multiple locations of power supply wiring is as follows:
There was a drawback that the wiring board was damaged and had to be repaired later.

〔課題を解決するための手段〕[Means to solve the problem]

上記問題点を解決する為に、この発明は、同一の電源に
接続される複数の素子の中から電源電流の過大な素子を
検出する電源電流異常素子検出装置において、一対の電
圧検出端子と、一対の電流端子と、抵抗器と、演算増幅
器と、2つのダイオードとで構成し、電圧検出端子の一
方は演算増幅器の非反転入力端子に接続し、他方の電圧
検出端子は抵抗器の一方に接続し、抵抗器の他方は演算
増幅器の反転入力端子に接続し、第1のダイオードのア
ノードは演算増幅器の反転入力端子に接続し、カソード
は演算増幅器の出力端子に接続し、第2のダイオードの
アノードは演算増幅器の出力端子に接続し、カソードは
一方の電流端子に接続し、他方の電流端子はグランドに
接続して、電圧検出端子間の電位差が0μ■になるよう
に電流端子に電流を供給するようにした。
In order to solve the above problems, the present invention provides a power supply current abnormal element detection device that detects an element with excessive power supply current from among a plurality of elements connected to the same power supply, which includes a pair of voltage detection terminals; It consists of a pair of current terminals, a resistor, an operational amplifier, and two diodes. One of the voltage detection terminals is connected to the non-inverting input terminal of the operational amplifier, and the other voltage detection terminal is connected to one of the resistors. the other of the resistors is connected to the inverting input terminal of the operational amplifier, the anode of the first diode is connected to the inverting input terminal of the operational amplifier, the cathode is connected to the output terminal of the operational amplifier, and the second diode is connected to the inverting input terminal of the operational amplifier; The anode of is connected to the output terminal of the operational amplifier, the cathode is connected to one current terminal, and the other current terminal is connected to the ground, and the current is applied to the current terminal so that the potential difference between the voltage detection terminals is 0μ■. We decided to supply the following.

〔作用〕[Effect]

上記のように構成された電源電流異常素子検出装置の一
対の電圧検出端子を、測定対象の電源配線の2点にそれ
ぞれ当接し、電流端子の一方を電圧測定端子の一方と同
じ点に当接し、他方の電流端子を測定対象のグランドに
接続し、電源配線の2点間の電位差が0μ■になるよう
に電流端子に電流を供給する。電源配線の2点間の電位
差はOμVになるので電流は流れずその間を電気的に分
離することができ、電源配線の複数個所を順次電気的に
分離してその時の電源電流を測定して電源電流の過大な
素子を検出できるのである。
A pair of voltage detection terminals of the power supply current abnormal element detection device configured as described above are brought into contact with two points of the power supply wiring to be measured, respectively, and one of the current terminals is brought into contact with the same point as one of the voltage measurement terminals. , the other current terminal is connected to the ground of the object to be measured, and a current is supplied to the current terminal so that the potential difference between the two points of the power supply wiring becomes 0 μ■. Since the potential difference between two points of the power supply wiring is OμV, no current flows and it is possible to electrically isolate them. By electrically separating multiple points of the power supply wiring one after another and measuring the power supply current at that time, the power supply is determined. This makes it possible to detect elements with excessive current.

〔実施例〕〔Example〕

以下に、この発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第1図はこの発明の過電流素子の検出装置の一例を示す
構成図である。第1図において、電圧検出端子1は演算
増幅器6の非反転入力端子に接続し、電圧検出端子2は
抵抗器5の一方に接続し、抵抗器5の他方は演算増幅器
6の反転入力端子に接続し、第1のダイオード7のアノ
ードは演算増幅器6の反転入力端子に接続し、カソード
は演算増幅器6の出力端子に接続し、第2のダイオード
8のアノードは演算増幅器6の出力端子に接続し、カソ
ードは電流端子3に接続し、電流端子4はグランドに接
続されている。
FIG. 1 is a block diagram showing an example of an overcurrent element detection device of the present invention. In FIG. 1, voltage detection terminal 1 is connected to the non-inverting input terminal of operational amplifier 6, voltage detection terminal 2 is connected to one side of resistor 5, and the other side of resistor 5 is connected to the inverting input terminal of operational amplifier 6. The anode of the first diode 7 is connected to the inverting input terminal of the operational amplifier 6, the cathode is connected to the output terminal of the operational amplifier 6, and the anode of the second diode 8 is connected to the output terminal of the operational amplifier 6. However, the cathode is connected to the current terminal 3, and the current terminal 4 is connected to the ground.

このような構成において、電圧検出端子1と2を測定対
象の電源配線の2点にそれぞれ当接し、電流端子3を電
圧検出端子2と同じ点に当接し、電流端子4を測定対象
のグランドに接続し、測定対象の電源配線の2点間の電
位差を0μ■にすることによって、電流はOmAになり
2点間を電気的に分離する。第2のダイオード8は電圧
検出端子1の電位が電圧検出端子2の電位より低い場合
に電流端子3より電流が流入するのを防止し、この時、
第1のダイオード7は演算増幅器6の出力が負に飽和す
るのを防止する。
In such a configuration, voltage detection terminals 1 and 2 are brought into contact with two points of the power supply wiring to be measured, current terminal 3 is brought into contact with the same point as voltage detection terminal 2, and current terminal 4 is connected to the ground of the measurement object. By connecting and setting the potential difference between the two points of the power supply wiring to be measured to 0μ, the current becomes OmA, electrically separating the two points. The second diode 8 prevents current from flowing into the current terminal 3 when the potential of the voltage detection terminal 1 is lower than the potential of the voltage detection terminal 2.
The first diode 7 prevents the output of the operational amplifier 6 from saturating negatively.

第2図は、本発明による検出例を示す説明のための構成
図である。第2図において、9は本発明による過電流素
子の検出装置、電源10の負極としてIC16〜18が
あり各グランド端子はグランドに接続し、正極は電流計
11の一方に接続し、電流計の他方はIC16〜18の
電流端子に配線12によって接続している、電圧検出端
子lは配線12上の点13に当接し、電圧検出端子2と
電流端子3は共に配線12上の点14に当接し、電流端
子4はグランドに接続されている。
FIG. 2 is an explanatory configuration diagram showing an example of detection according to the present invention. In FIG. 2, reference numeral 9 denotes an overcurrent element detection device according to the present invention, and ICs 16 to 18 are used as the negative terminal of a power supply 10, each ground terminal is connected to the ground, and the positive terminal is connected to one side of the ammeter 11. The other terminal is connected to the current terminals of ICs 16 to 18 by wiring 12. Voltage detection terminal 1 is in contact with point 13 on wiring 12, and both voltage detection terminal 2 and current terminal 3 are in contact with point 14 on wiring 12. The current terminal 4 is connected to ground.

このような構成において、配線12上の点13と14の
2点間は電位差がOμ■であるから電流は流れず、電流
計11は配線12上の点13からIC16のみに流れる
電流値を示すので配線12上の点13と14の間を電気
的に分離できる。同様に、第2図において電圧検出端子
1を配fi12上の点14に当接し、電圧検出端子2と
電流端子3を配線12上の点15に当接した場合は、電
流計11はIC16とIC17に流れる電流値を示し配
vA12上の点14と15の間を電気的に分離できる。
In such a configuration, since the potential difference between the two points 13 and 14 on the wiring 12 is Oμ■, no current flows, and the ammeter 11 indicates the value of the current flowing only from the point 13 on the wiring 12 to the IC 16. Therefore, points 13 and 14 on wiring 12 can be electrically isolated. Similarly, in FIG. 2, if voltage detection terminal 1 is brought into contact with point 14 on wiring fi 12, and voltage detection terminal 2 and current terminal 3 are brought into contact with point 15 on wiring 12, ammeter 11 will be connected to IC 16. It shows the current value flowing through the IC 17 and can electrically isolate points 14 and 15 on the wiring board A12.

このように電源配線の任意の個所を分離してその時の電
源電流を電流計11で測定し、異常電流の流れている個
所を確認し、過電流素子を検出する。
In this way, any part of the power supply wiring is isolated and the power supply current at that time is measured with the ammeter 11, the part where abnormal current is flowing is confirmed, and an overcurrent element is detected.

例えば、第2図において配線12がプリント基板の配線
パターンで、厚みが35μm、幅が2寵璽の銅で、配線
12上の点13と14間の長さが201mの場合抵抗値
は銅の体積抵抗率が1.69X10−’Ω・mであるか
ら約4.8mΩであり、10mAで48μ■の電位差を
生じる。電圧検出端子1を配線12上の点13に当接し
、電圧検出端子2と電流端子3を配線12上の点14に
当接して、配線12上の点13と14の電位差を±1μ
v以下にすると電流は約±0.21mA以下に抑えるこ
とができる。電流計11は、IC16に流れる電流と配
線12上の点13と14間の電流の和を示すのでIC1
6の電流を誤差±0.21mA以下で測定でき、IC1
6の電流が異常かどうか検出できる。
For example, in Fig. 2, if the wiring 12 is a printed circuit board wiring pattern, is made of copper with a thickness of 35 μm and a width of 2 mm, and the length between points 13 and 14 on the wiring 12 is 201 m, the resistance value of the copper is Since the volume resistivity is 1.69×10 −'Ω·m, it is approximately 4.8 mΩ, and a potential difference of 48 μι is generated at 10 mA. Voltage detection terminal 1 is brought into contact with point 13 on wiring 12, voltage detection terminal 2 and current terminal 3 are brought into contact with point 14 on wiring 12, and the potential difference between points 13 and 14 on wiring 12 is set to ±1μ.
When the current is set to be less than or equal to v, the current can be suppressed to less than about ±0.21 mA. Ammeter 11 indicates the sum of the current flowing through IC 16 and the current between points 13 and 14 on wiring 12, so IC1
6 current can be measured with an error of ±0.21 mA or less, and IC1
It is possible to detect whether the current in No. 6 is abnormal.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上説明したように、電源配線の2点間の
電流をほぼOmAにして電気的に分離できるようにした
ものであるから、同一の電源に接続された複数の素子か
ら電a電流異常素子を検出する場合に、電源配線を切る
必要がない、素子を一つずつはずす必要がない、などの
効果がある。
As explained above, this invention makes it possible to electrically separate the current between two points of the power supply wiring by approximately 0mA, so that the current between two points of the power supply wiring can be electrically separated. When detecting an abnormal element, there is an advantage that there is no need to cut off the power supply wiring or remove the elements one by one.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の電源電流異常素子検出装置の一例を
示す構成図である。第2図は本発明による測定例を示す
説明のための構成図である。 1.2・・・電圧検出端子 3.4・・・電流端子 5・・・・・抵抗器 6・・・・・演算増幅器 7・・・・・第1のダイオード 8・・・・・第2のダイオード 9・・・・・過電流素子の検出装置 10・・・・・直流電源 11・・・・・電流計 12・・・・・配線 13〜15・・・配線12上の点 16〜18・ ・ ・ IC 出願人 セイコー電子工業株式会社 弔1図 [C 木発gF41でよる検出例乞ホT説明のための構成図第
2図
FIG. 1 is a configuration diagram showing an example of a power supply current abnormal element detection device of the present invention. FIG. 2 is an explanatory configuration diagram showing a measurement example according to the present invention. 1.2... Voltage detection terminal 3.4... Current terminal 5... Resistor 6... Operational amplifier 7... First diode 8... First Diode 9 of 2... Overcurrent element detection device 10... DC power supply 11... Ammeter 12... Wiring 13 to 15... Point 16 on wiring 12 ~18・ ・ ・ IC Applicant: Seiko Electronics Co., Ltd. Figure 1 [C Detection example using Kihachi gF41 Figure 2: Configuration diagram for explanation

Claims (1)

【特許請求の範囲】[Claims] 同一の電源に接続される複数の素子の中から、電源電流
の過大な素子を検出する過電流素子の検出装置において
、一対の電圧検出端子の一方は、演算増幅器の非反転入
力端子に接続し、他方は抵抗器の一方に接続し、前記抵
抗器の他方と第1のダイオードのアノードは前記演算増
幅器の反転入力端子に接続し、前記第1のダイオードの
カソードと第2のダイオードのアノードは前記演算増幅
器の出力端子に接続し、前記第2のダイオードのカソー
ドは一対の電流端子の一方に接続し、他方の電流端子は
グランドに接続し、前記一対の電圧検出端子間の電位差
が0μVになるように前記一対の電流端子に電流を供給
するよう構成したことを特徴とする過電流素子の検出装
置。
In an overcurrent element detection device that detects an element with excessive power supply current from among multiple elements connected to the same power supply, one of a pair of voltage detection terminals is connected to a non-inverting input terminal of an operational amplifier. , the other is connected to one of the resistors, the other of the resistor and the anode of the first diode are connected to the inverting input terminal of the operational amplifier, and the cathode of the first diode and the anode of the second diode are connected to the inverting input terminal of the operational amplifier. The second diode is connected to the output terminal of the operational amplifier, the cathode of the second diode is connected to one of the pair of current terminals, the other current terminal is connected to ground, and the potential difference between the pair of voltage detection terminals is 0 μV. A detection device for an overcurrent element, characterized in that the device is configured to supply a current to the pair of current terminals so that the current is supplied to the pair of current terminals.
JP63076686A 1988-03-30 1988-03-30 Detector for overcurrent element Pending JPH01250076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63076686A JPH01250076A (en) 1988-03-30 1988-03-30 Detector for overcurrent element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63076686A JPH01250076A (en) 1988-03-30 1988-03-30 Detector for overcurrent element

Publications (1)

Publication Number Publication Date
JPH01250076A true JPH01250076A (en) 1989-10-05

Family

ID=13612334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63076686A Pending JPH01250076A (en) 1988-03-30 1988-03-30 Detector for overcurrent element

Country Status (1)

Country Link
JP (1) JPH01250076A (en)

Similar Documents

Publication Publication Date Title
US4713607A (en) Current sensing circuit
US4056773A (en) Printed circuit board open circuit tester
US6833708B2 (en) Leak detecting circuit for power source device
US6498473B1 (en) Pin electronics having current measuring unit and testing apparatus having pin electronics thereof
KR20130096183A (en) Termination discriminant method and termination discriminant device of built-in substrate
US6500317B1 (en) Plating apparatus for detecting the conductivity between plating contacts on a substrate
JPH01250076A (en) Detector for overcurrent element
JPH02157915A (en) Fault detector for analog output circuit
JP2001035759A (en) Apparatus for measuring impedance of capacitor
JP3019783B2 (en) Printed circuit board temperature detector
JPH03195320A (en) Power feed unit
JP3549320B2 (en) DC ground fault detector
JPH05870Y2 (en)
JP2540713Y2 (en) IC test equipment
JPS62182677A (en) Detection of defective insertion of integrated circuit into socket
US5081412A (en) Current conduction probe circuit
JPH05312878A (en) Inspection jig for wiring condition of power socket with grounding pole
JPH0814590B2 (en) Circuit element measuring device terminal connection state detection circuit
JPH037966B2 (en)
JPH02106120A (en) Overcurrent detection device
JPH01260370A (en) Cable connection monitoring circuit
JPS59203969A (en) Diagnosing method of short-circuited position of wiring pattern of printed board
JPH08105935A (en) Semiconductor integrated circuit inspection device
JPH07218580A (en) Digital ic leg floatage, bridge solder detecting method by in-circuit tester
JP2002189050A (en) Method and device for inspection