[go: up one dir, main page]

JPH0124798B2 - - Google Patents

Info

Publication number
JPH0124798B2
JPH0124798B2 JP53101631A JP10163178A JPH0124798B2 JP H0124798 B2 JPH0124798 B2 JP H0124798B2 JP 53101631 A JP53101631 A JP 53101631A JP 10163178 A JP10163178 A JP 10163178A JP H0124798 B2 JPH0124798 B2 JP H0124798B2
Authority
JP
Japan
Prior art keywords
acid
group
formula
tetrahydrofuran
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53101631A
Other languages
Japanese (ja)
Other versions
JPS5528932A (en
Inventor
Juichi Yamamura
Tetsuo Shiba
Ichiro Azuma
Shoichi Kusumoto
Osamu Nagase
Tsuneo Nichima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Pharmaceutical Co Ltd
Original Assignee
Daiichi Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Pharmaceutical Co Ltd filed Critical Daiichi Pharmaceutical Co Ltd
Priority to JP10163178A priority Critical patent/JPS5528932A/en
Publication of JPS5528932A publication Critical patent/JPS5528932A/en
Publication of JPH0124798B2 publication Critical patent/JPH0124798B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は一般式() で示される新規ムラミルジペプチド誘導体に関す
る。 上記式中Acylは炭素数2〜6のアシル基を、
XはL−アラニン残基を、Yは−NH(CH2o
O−A2又は
The present invention is based on the general formula () The present invention relates to a novel muramyl dipeptide derivative represented by: In the above formula, Acyl represents an acyl group having 2 to 6 carbon atoms,
X is L-alanine residue, Y is -NH(CH 2 ) o -
O-A 2 or

【式】基を 意味し、R1はカルボキシル基を、nは1〜6の
整数を、A1及びA2は同一又は異なる中級乃至高
級ミコロイル基を意味する。 本発明者等は免疫アジユバント物質として有用
な人型結核菌、BCG、その他のミコバクテリア
ならびに細胞寄生性細菌の細胞壁のアジユバント
活性発現の最小構造単位であるN−アセチルムラ
ミル−L−アラニル−D−イソグルタミン(以下
ムラミルジペプチド)に注目し、その細胞性免疫
が主として関与する腫瘍細胞傷害活性および抗腫
瘍活性について検討した。 しかしながら、このムラミルジペプチドは、抗
腫瘍活性に密接に関係するマウスのマストサイト
ーマP815−X2細胞に対する細胞傷害活性を示さ
なかつた。この理由について、本発明者等は更に
検討を加えた結果、細胞傷害活性および抗腫瘍活
性発現のためには、アジユバント物質が適度の親
水性および親油性を合せもつことが必要とされる
のではないかと考えた。 そこで、本発明者等はムラミルジペプチドの親
油性を高めるとともに抗腫瘍活性と密接な関係に
ある腫瘍細胞傷害活性を示し、将来、人の癌の免
疫療法剤として強く期待しうる化合物について鋭
意検討した結果、前記一般式()の化合物が燐
酸バツフアー−生理食塩水で均一な懸濁液の調整
が可能であり、親油性が高く、かつ優れた腫瘍細
胞傷害活性を示すことを見い出し本発明を完成し
た。 本発明化合物についての細胞傷害活性は下表に
示される。 Γ細胞傷害活性試験 試料は燐酸バツフアー−生理食塩水に懸濁し又
対照のムラミルジペプチドは溶解し、マストサイ
トーマP815−X2腫瘍細胞2×104個とともにC57
BL/6Jマウスの腹腔内に投与し、Brunner等の
方法(Immunology 18、501〜515、1970)によ
り測定した。
[Formula] means a group, R 1 is a carboxyl group, n is an integer of 1 to 6, and A 1 and A 2 are the same or different intermediate to higher mycoloyl groups. The present inventors have discovered that N-acetylmuramyl-L-alanyl-D is the smallest structural unit for expression of adjuvant activity in the cell walls of Mycobacterium tuberculosis, BCG, other mycobacteria, and cell-parasitic bacteria, which is useful as an immune adjuvant substance. - Focusing on isoglutamine (hereinafter referred to as muramyl dipeptide), we investigated its tumor cytotoxic activity and antitumor activity, which are mainly related to cell-mediated immunity. However, this muramyl dipeptide did not exhibit cytotoxic activity against mouse mastocytoma P815-X2 cells, which is closely related to antitumor activity. As a result of further investigation into the reason for this, the present inventors found that it is necessary for the adjuvant substance to have appropriate hydrophilicity and lipophilicity in order to express cytotoxic activity and antitumor activity. I thought about it. Therefore, the present inventors have conducted intensive studies on compounds that increase the lipophilicity of muramyl dipeptide and exhibit tumor cytotoxic activity, which is closely related to antitumor activity, and have strong promise as immunotherapeutic agents for human cancer in the future. As a result, it was discovered that the compound of the general formula () can be prepared into a uniform suspension in phosphate buffer-physiological saline, has high lipophilicity, and exhibits excellent tumor cytotoxic activity. completed. The cytotoxic activity for the compounds of this invention is shown in the table below. Γ Cytotoxic Activity Test Samples were suspended in phosphate buffer-physiological saline and control muramyl dipeptide was dissolved, along with 2 x 10 4 mastocytoma P815-X2 tumor cells and C57.
It was administered intraperitoneally to BL/6J mice and measured by the method of Brunner et al. (Immunology 18 , 501-515, 1970).

【表】 本発明化合物−1:6−O−ミコミコロイル−N
−アセチルムラミル−L−アラニル−D−イソ
グルタミン 2−ミコミコロイルオキシエチル
アミド 本発明化合物−2:N〓−(6−O−ミコミコロイ
ル−N−アセチルムラミル−L−アラニル−D
−イソグルタミニル)−N〓−ミコミコロイル−
L−リジン 本発明化合物は下記反応工程に従つて製するこ
とができる。 即ち、本発明化合物は式()で示される6−
O−アシルムラミルジペプチドに式()で示さ
れる化合物を縮合させることにより製される。こ
の縮合反応は一般にペプチド合成に使用される方
法、カルボジイミド法、アイントツプ法(蛋白
質、核酸、酵素 Vol 16No.1 P56、1971)、活
性エステル法および酸無水物法等が採用しうる。
例えば、式()で示される化合物をN,N−ジ
メチルホルムアミド又はテトラヒドロフラン或い
はこれ等の混合物に溶解し、これにN−ヒドロキ
シコハク酸イミド、1−ヒドロキシベンゾトリア
ゾール、N−ヒドロキシ−5−ノルボルネン−
2,3−ジカルボキシイミド、ペンタクロロフエ
ノール等の一種とカルボジイミド(ジシクロヘキ
シルカルボジイミド又は1−エチル−3−(3−
ジメチルアミノプロピル)−カルボジイミド
(WSCI)或はその塩酸塩)と通常室温〜約60℃
で約1〜2日間反応させ、その活性エステル体と
し、これに式()で示される化合物を縮合させ
ればよい。縮合反応は、通常のペプチド合成に用
いられる溶媒、例えばクロロホルム、ジメチルス
ルホキシド、水、テトラヒドロフラン、ジメチル
ホルムアミド等の単独又は混合溶媒中0〜60℃、
好ましくは約25〜40℃で約1〜2日間撹拌するこ
とにより達せられる。 なお、本発明化合物の製造に使用する原料化合
物、即ち、式()で示される化合物は下記の方
法に従つて製しうる。 即ち、式()で示される化合物を製するに
は、式 ZHN−(CH2o−OW () 又は式
[Table] Invention compound-1: 6-O-mycomycoloyl-N
-Acetylmuramyl-L-alanyl-D-isoglutamine 2-mycomycholoyloxyethylamide Compound of the present invention-2:N〓-(6-O-mycomycholoyl-N-acetylmuramyl-L-alanyl-D
−Isoglutaminyl)−N〓−Micomycoloyl−
L-Lysine The compound of the present invention can be produced according to the following reaction steps. That is, the compound of the present invention has 6-
It is produced by condensing O-acylmuramyl dipeptide with a compound represented by the formula (). For this condensation reaction, methods generally used for peptide synthesis, such as the carbodiimide method, the Eintop method (Proteins, Nucleic Acids, Enzymes Vol. 16 No. 1 P56, 1971), the active ester method, and the acid anhydride method, can be employed.
For example, a compound represented by the formula () is dissolved in N,N-dimethylformamide, tetrahydrofuran, or a mixture thereof, and N-hydroxysuccinimide, 1-hydroxybenzotriazole, N-hydroxy-5-norbornene-
2,3-dicarboximide, pentachlorophenol, etc. and carbodiimide (dicyclohexylcarbodiimide or 1-ethyl-3-(3-
(dimethylaminopropyl)-carbodiimide (WSCI) or its hydrochloride) and usually at room temperature to about 60℃
The active ester may be reacted for about 1 to 2 days, and the compound represented by the formula () may be condensed thereto. The condensation reaction is carried out at 0 to 60°C in a solvent commonly used for peptide synthesis, such as chloroform, dimethyl sulfoxide, water, tetrahydrofuran, dimethylformamide, etc. alone or in combination.
This is preferably achieved by stirring at about 25-40°C for about 1-2 days. Note that the raw material compound used for producing the compound of the present invention, that is, the compound represented by the formula (), can be produced according to the following method. That is, to produce a compound represented by the formula (), the formula ZHN−(CH 2 ) o −OW () or the formula

【式】 (式中R1はカルボキシル基を、nは1〜6の整
数を、Zはパラ位にハロゲン原子、ニトロ基、低
級アルコキシ基等の置換基を有することもあるベ
ンジルオキシカルボニル基、t−ブトキシカルボ
ニル基等のペプチド合成で繁用されるアミノ基の
保護基を、Wはメタンスルホニル基、p−トルエ
ンスルホニル基又はハロゲン原子等の活性体を意
味する。)とミコール酸又はその反応活性体とを
N,N−ジメチルホルムアミド(DMF)又はヘ
キサメチルホスホロアミド(HMPA)等の溶媒
中で室温〜150℃程度で15分間〜24時間反応させ
ることにより縮合させる。この縮合反応は反応溶
媒としてベンゼン等の極性の低い溶媒中で18−
Crown6の存在下1〜24時間還流させる方法も採
用しうる。次いで、適当な保護基の脱離条件を採
用し、保護基を脱離すれば式()の化合物が製
される。例えば、ベンジルオキシカルボニル基の
脱離には接触還元法又は臭化水素酸−酢酸処理法
が適しており、t−ブトキシカルボニル基やp−
メトキシベンジルオキシカルボニル基の除去には
トリフルオロ酢酸又は塩酸/テトラヒドロフラン
等で処理するのが望ましい。 本発明化合物の構成単位として重要な役割を果
すミコール酸は各種細菌の全菌体、細胞壁、結合
脂質等を加水分解し、次いで活性アルミナ、硅酸
等を用いるカラムクロマトグラフイーで精製する
ことにより製しうる。 ミコール酸とは本来アツセリーノによりα−炭
素に長鎖分枝状アルキル基を、β−炭素に水酸基
を有する高級脂肪酸と定義されているが
(Asselineau.J;The Bacterial Lipids、
Hermann Paris 1966)、上述の方法で製される
ミコール酸は一般に数種の混合物として取得され
るのが通常である。勿論、更に厳密な精製分離を
行なつて完全な単一化合物或は純粋な合成品を本
発明の目的化合物製造のために供することが可能
である。しかしながら、本発明の課題たる生物学
的活性の点からは完全なるミコール酸の純粋化を
要求するものでなく、数種の混合物状態での使用
で十分であると考えられる。 一般にミコール酸のうちで高級のものは、人型
結核菌、牛型結核菌、鳥型結核菌その他のミコバ
クテリア属(例えばMycobacterium phlei、
Mycobacterium smegmatis)から得られ、α炭
素に炭素数22〜24の分枝状アルキル基をβ炭素に
水酸基を有する総炭素数約70〜90の高級脂肪酸で
ある(これを以下ミコミコール酸と称する。)。 又、中級のミコール酸としてはノカルドミコー
ル酸、コリノミコール酸、アースロバクターミコ
ール酸等が挙げられ、これ等はα−炭素に炭素数
約8〜16個の分枝状アルキル基を、β炭素に水酸
基を有する総炭素数約28〜70の高級脂肪酸であ
る。 ノカルドミコール酸を得る菌としては、ノカル
デイア属の細菌(例えばNocardia asteroides、
Nocardia ruba、Nocardia polychromogens、
Nocardia brasiliensis等)が、コリノミコール
酸を得る菌としてはコリネバクテリウム属及びア
ースロバクター属の細菌、例えば
Corynebacterium diphteriae、
Corynebacterium pseudotuberculosis、C.
xerosis、C.renale、Arthrobacter simplex、A.
flavescens等が挙げられる。従つて、本明細書に
於て使用されるミコール酸という語はα−炭素に
炭素数8〜24個程度の分枝状アルキル基をβ−炭
素に水酸基を有する総炭素数28〜90程度の高級脂
肪酸の単一もしくは混合物等を意味するものとす
る。 本発明実施のために使用されるミコール酸の代
表例を示せば以下の通り。 Γノカルデイア・アステロイデス131菌 (Nocardia asteroides131)の全菌体をアル
カリ加水分解し、常法によりメチルエステルと
し、次いで硅酸、カラムクロマトグラフイーで精
製後加水分解し、遊離し、中級ミコール酸を得
た。得られた中級ミコール酸の平均分子式は酸滴
定及び元素分析よりC51H97O3.6であつた。 Γミコバクテリウムツベルクロシス菌 (Mycobacterium tuberculosis strain
Aoyama B)のロウ区分をアルカリ加水分解し、
次いで活性アルミナカラムクロマトグラフイーに
付して得た。得られたミコミコール酸の平均分子
式は酸滴定及び元素分析よりC80H158O3.5であつ
た。 以下実施例を挙げて本発明を説明する。 実施例 1 2−ブロムエチルアミン臭化水素酸塩10gを
1N水酸化ナトリウム溶液49mlに溶解、氷冷撹拌
下、塩化ベンジルオキシカルボニル6.90g及び
4N水酸化ナトリウム溶液10mlを約1時間を要し
て滴下する。反応液が白濁してきたらジオキサン
50mlを加える。さらに室温で約2時間撹拌した
後、反応液を減圧濃縮しジオキサンを留去する。
析出した油状物を酢酸エチルで抽出、次いで水洗
後、無水硫酸ナトリウムで乾燥する。酢酸エチル
を留去して得られたシロツプを氷冷するとベンジ
ルオキシカルボニルアミノエチルブロマイドの結
晶が9.22g得られる。融点45〜46℃。 ミコミコール酸カリウム1.03gとベンジルオキ
シカルボニルアミノエチルブロマイド0.43g及び
18−Crown6 0.10gを30mlのベンゼンに溶解し、
約3時間加熱還流を行なう。減圧濃縮し、残留物
にメタノールを加えて析出した結晶を濾取する。
得られた1gの粗晶をシリカゲルクロマトグラフ
イーに付し、ベンゼン−酢酸エチル(10:1)で
溶出する目的分画を集めて減圧濃縮する。残留物
をテトラヒドロフラン−メタノールから再結晶す
ることにより0.60gのベンジルオキシカルボニル
アミノエチルミコミコロイルエステルが得られ
る。融点40〜42℃。 上記化合物0.55gを20mlのテトラヒドロフラン
に溶解し、1N塩酸溶液0.45mlを加えた後、パラ
ジウム黒存在下に水素気流中で約5時間反応す
る。次いで触媒を濾去した後、テトラヒドロフラ
ンを留去する。残留物をベンゼン−アセトン−メ
タノールで再結晶することにより0.49gのミコミ
コール酸2−アミノエチルエステル塩酸塩(−
a)が得られる。融点61〜65℃。 ミコミコロイルムラミルペプチド()100mg
及び(−a)77mg、N−ヒドロキシコハク酸イ
ミド8mgをテトラヒドロフラン4mlに溶かし、氷
冷撹拌する。テトラヒドロフラン1mlに溶かした
ジシクロヘキシルカルボジイミド15mg及びN−メ
チルモルホリン0.01mlを加える。30分後、室温に
もどし一夜撹拌する。反応液を濃縮し、メタノー
ルを加えて粗晶を得る。次いでベンゼン−アセト
ン−メタノールで再結晶し、95mgの6−O−ミコ
ミコロイル−N−アセチルムラミル−L−アラニ
ル−D−イソグルタミン−2−ミコミコロイルオ
キシエチルアミド(−a)が得られる。融点65
〜77℃。 〔α〕25D+13.6゜(C=0.5、テトラヒドロフラン
−水=50:1、24時間後)。 元素分析値 C181H349O16N5 計算値(%)C 76.21、H 12.36、N 2.46 分析値(%)C 76.04、H 12.17、N 2.52 実施例 2 ミコミコール酸0.5g及びN−ヒドロキシサク
シイミド56mgをテトラヒドロフラン10mlに溶解
し、氷冷撹拌下、ジシクロヘキシルカルボジイミ
ド100mgを加える。30分後、室温にもどし一夜反
応する。析出したジシクロヘキシル尿素を濾去
後、濾液にメタノールを加えるとミコミコール酸
N−ヒドロキシサクシニルエステルが0.5g得ら
れる。この0.5gを10mlのテトラヒドロフランに
溶解し、氷冷撹拌下、4mlのN,N−ジメチルホ
ルムアミドに溶解したN〓−t−ブトキシカルボ
ニル−L−リジン塩酸塩180mg及びN−メチルモ
ルホリン0.1mlを加える。30分後、室温にもどし
5日間撹拌反応する。反応液を減圧濃縮し、残留
物をシリカゲルクロマトグラフイーに付す。クロ
ロホルム−メタノール(7:1)で溶出する目的
画分を集めて、減圧濃縮し、残留物をテトラヒド
ロフラン−メタノールから再結晶し、N〓−t−
ブトキシカルボニル−N〓−ミコミコロイル−L
−リジンを0.36g得る。融点50〜52℃。 元素分析値 C91H178O6.5N2・H2O 計算値(%)C 76.82、H 12.78、N 1.97 分析値(%)C 76.63、H 12.30、N 2.18 上記化合物0.32gを9mlのジクロルメタンに溶
解し、氷冷撹拌下、9mlのトリフルオロ酢酸を加
える。5分後、室温にもどして1時間撹拌反応す
る。反応後、減圧濃縮乾固し、N〓−ミコミコロ
イル−L−リジントリフルオロ酢酸塩(−b)
を0.27g得る。融点59〜61℃。 元素分析値C86H170O4.5N2・CF3COOH・1/2H2O 計算値(%)C 74.03、H 12.17、N 1.96 分析値(%)C 73.90、H 11.78、N 2.18 ミコミコロイルムラミルペプチド()198mg
及びN−ヒドロキシコハク酸イミド18.6mgを5ml
のテトラヒドロフランに溶解し、氷冷撹拌する。
次いで2mlのテトラヒドロフラン2mlに溶かし
た。ジシクロヘキシルカルボジイミド28mgを加え
る。30分後、室温にもどし一夜撹拌する。析出し
たジシクロヘキシル尿素を濾去し、濾液を氷冷撹
拌する。次いで(−b)126mg及びN−メチル
モルホリン0.02mlを加え、30分後、室温にもどし
一夜撹拌反応する。減圧濃縮し、残留物にメタノ
ールを加えて析出する結晶をシリカゲルクロマト
グラフイーに付す。クロロホルム:メタノール:
水=8:3:1混液の下層で溶出する目的画分を
集めて減圧濃縮乾固する。残留物を再びシリカゲ
ルクロマトグラフイーに付し、クロロホルム:メ
タノール:酢酸=95:5:3で溶出する。目的画
分を集めて減圧濃縮し、残留物にメタノールを加
えてN〓−(6−O−ミコミコロイル−N−アセチ
ルムラミル−L−アラニル−D−イソグルタミニ
ル)−N〓−ミコミコロイル−L−リジン(−
b)を48mg得る。融点135〜142℃。〔α〕25゜ D+
14.7゜(C=0.5、テトラヒドロフラン:水=50:
1、24時間後)。 元素分析値 C185H356O17N6・3H2O 計算値(%)C 74.27、H 12.22、N 2.81 分析値(%)C 74.03、H 11.77、N 3.47
[Formula] (In the formula, R 1 is a carboxyl group, n is an integer of 1 to 6, and Z is a benzyloxycarbonyl group that may have a substituent such as a halogen atom, a nitro group, or a lower alkoxy group at the para position, Reaction of a protecting group for an amino group frequently used in peptide synthesis such as t-butoxycarbonyl group (W means an activated form such as methanesulfonyl group, p-toluenesulfonyl group or halogen atom) and mycolic acid or its reaction The active substance is reacted with the active substance in a solvent such as N,N-dimethylformamide (DMF) or hexamethylphosphoramide (HMPA) at room temperature to about 150°C for 15 minutes to 24 hours to cause condensation. This condensation reaction is carried out in a less polar solvent such as benzene as a reaction solvent.
A method of refluxing for 1 to 24 hours in the presence of Crown 6 may also be adopted. Next, the compound of formula () is produced by removing the protecting group using appropriate removing conditions for the protecting group. For example, a catalytic reduction method or a hydrobromic acid-acetic acid treatment method is suitable for removing a benzyloxycarbonyl group, and a t-butoxycarbonyl group or a p-
In order to remove the methoxybenzyloxycarbonyl group, it is desirable to treat with trifluoroacetic acid or hydrochloric acid/tetrahydrofuran. Mycolic acid, which plays an important role as a structural unit of the compound of the present invention, can be obtained by hydrolyzing whole cells, cell walls, bound lipids, etc. of various bacteria, and then purifying it by column chromatography using activated alumina, silicic acid, etc. It can be manufactured. Mycolic acids are originally defined as higher fatty acids having a long-chain branched alkyl group on the α-carbon and a hydroxyl group on the β-carbon (Asselineau.J; The Bacterial Lipids,
Hermann Paris (1966), mycolic acids produced by the above-mentioned method are generally obtained as a mixture of several types. Of course, it is possible to perform more rigorous purification and separation to provide a complete single compound or a pure synthetic product for the production of the target compound of the present invention. However, from the viewpoint of biological activity, which is the objective of the present invention, it is not necessary to completely purify mycolic acid, and it is considered that it is sufficient to use a mixture of several types of mycolic acid. In general, high-grade mycolic acids are found in Mycobacterium tuberculosis, Mycobacterium bovis, Mycobacterium avium, and other mycobacterial genera (e.g., Mycobacterium phlei, Mycobacterium phlei,
Mycobacterium smegmatis) is a higher fatty acid with a total of about 70 to 90 carbon atoms, having a branched alkyl group with 22 to 24 carbon atoms on the α carbon and a hydroxyl group on the β carbon (hereinafter referred to as mycomycolic acid). . In addition, examples of intermediate mycolic acids include nocardomicolic acid, corinonomycolic acid, and Arthrobacter mycolic acid, which have a branched alkyl group having about 8 to 16 carbon atoms at the α-carbon, and a branched alkyl group having about 8 to 16 carbon atoms at the β-carbon. It is a higher fatty acid with a total number of carbon atoms of about 28 to 70 and has a hydroxyl group. Bacteria that obtain nocardidomycolic acid include bacteria of the genus Nocardia (e.g. Nocardia asteroides,
Nocardia ruba, Nocardia polychromogens,
Nocardia brasiliensis, etc.), but the bacteria that obtain corinomicolic acid include Corynebacterium and Arthrobacter, such as
Corynebacterium diphteriae,
Corynebacterium pseudotuberculosis, C.
xerosis, C.renale, Arthrobacter simplex, A.
flavescens etc. Therefore, the term mycolic acid used in this specification refers to a mycolic acid having a total of about 28 to 90 carbon atoms, which has a branched alkyl group with about 8 to 24 carbon atoms on the α-carbon and a hydroxyl group on the β-carbon. It means a single higher fatty acid or a mixture of higher fatty acids. Representative examples of mycolic acids used for carrying out the present invention are as follows. Whole cells of Nocardia asteroides 131 were subjected to alkaline hydrolysis to produce methyl ester using a conventional method, and then purified with silicic acid and column chromatography, followed by hydrolysis to release and obtain intermediate mycolic acid. Ta. The average molecular formula of the intermediate mycolic acid obtained was C 51 H 97 O 3.6 as determined by acid titration and elemental analysis. Mycobacterium tuberculosis strain
Aoyama B) wax fraction is alkaline hydrolyzed,
This was then subjected to activated alumina column chromatography. The average molecular formula of the obtained mycomycolic acid was C 80 H 158 O 3.5 as determined by acid titration and elemental analysis. The present invention will be explained below with reference to Examples. Example 1 10g of 2-bromoethylamine hydrobromide
6.90 g of benzyloxycarbonyl chloride and
Add 10 ml of 4N sodium hydroxide solution dropwise over about 1 hour. If the reaction solution becomes cloudy, add dioxane.
Add 50ml. After further stirring at room temperature for about 2 hours, the reaction solution was concentrated under reduced pressure to distill off dioxane.
The precipitated oil was extracted with ethyl acetate, washed with water, and dried over anhydrous sodium sulfate. When the syrup obtained by distilling off ethyl acetate is cooled on ice, 9.22 g of crystals of benzyloxycarbonylaminoethyl bromide are obtained. Melting point 45-46℃. Potassium mycomycolate 1.03g and benzyloxycarbonylaminoethyl bromide 0.43g and
18−Dissolve 0.10 g of Crown6 in 30 ml of benzene,
Heat and reflux for about 3 hours. Concentrate under reduced pressure, add methanol to the residue, and collect the precipitated crystals by filtration.
1 g of the obtained crude crystals was subjected to silica gel chromatography, and the desired fractions eluted with benzene-ethyl acetate (10:1) were collected and concentrated under reduced pressure. Recrystallization of the residue from tetrahydrofuran-methanol yields 0.60 g of benzyloxycarbonylaminoethyl micomycholoyl ester. Melting point 40-42℃. Dissolve 0.55 g of the above compound in 20 ml of tetrahydrofuran, add 0.45 ml of 1N hydrochloric acid solution, and react for about 5 hours in a hydrogen stream in the presence of palladium black. After the catalyst is then filtered off, the tetrahydrofuran is distilled off. The residue was recrystallized from benzene-acetone-methanol to give 0.49 g of mycomycolic acid 2-aminoethyl ester hydrochloride (-
a) is obtained. Melting point 61-65℃. Mycomycoloylmuramyl peptide () 100mg
77 mg of (-a) and 8 mg of N-hydroxysuccinimide were dissolved in 4 ml of tetrahydrofuran and stirred under ice cooling. Add 15 mg of dicyclohexylcarbodiimide and 0.01 ml of N-methylmorpholine dissolved in 1 ml of tetrahydrofuran. After 30 minutes, return to room temperature and stir overnight. The reaction solution is concentrated and methanol is added to obtain crude crystals. Then, it is recrystallized from benzene-acetone-methanol to obtain 95 mg of 6-O-mycomycholoyl-N-acetylmuramyl-L-alanyl-D-isoglutamine-2-mycomycholoyloxyethylamide (-a). melting point 65
~77℃. [α] 25 ° D +13.6° (C=0.5, tetrahydrofuran-water=50:1, after 24 hours). Elemental analysis value C 181 H 349 O 16 N 5 Calculated value (%) C 76.21, H 12.36, N 2.46 Analysis value (%) C 76.04, H 12.17, N 2.52 Example 2 Mycomycolic acid 0.5 g and N-hydroxysuccinimide Dissolve 56 mg in 10 ml of tetrahydrofuran, and add 100 mg of dicyclohexylcarbodiimide while stirring on ice. After 30 minutes, return to room temperature and react overnight. After removing the precipitated dicyclohexyl urea by filtration, methanol is added to the filtrate to obtain 0.5 g of mycomycolic acid N-hydroxysuccinyl ester. Dissolve 0.5 g of this in 10 ml of tetrahydrofuran, and add 180 mg of N-t-butoxycarbonyl-L-lysine hydrochloride dissolved in 4 ml of N,N-dimethylformamide and 0.1 ml of N-methylmorpholine while stirring on ice. . After 30 minutes, the mixture was returned to room temperature and reacted with stirring for 5 days. The reaction solution was concentrated under reduced pressure, and the residue was subjected to silica gel chromatography. The target fractions eluted with chloroform-methanol (7:1) were collected and concentrated under reduced pressure, and the residue was recrystallized from tetrahydrofuran-methanol.
Butoxycarbonyl-N〓-mycomycoloyl-L
- Obtain 0.36 g of lysine. Melting point 50-52℃. Elemental analysis value C 91 H 178 O 6.5 N 2・H 2 O Calculated value (%) C 76.82, H 12.78, N 1.97 Analysis value (%) C 76.63, H 12.30, N 2.18 Add 0.32 g of the above compound to 9 ml of dichloromethane. Dissolve and add 9 ml of trifluoroacetic acid while stirring on ice. After 5 minutes, the temperature was returned to room temperature and the reaction was stirred for 1 hour. After the reaction, it was concentrated to dryness under reduced pressure to obtain N-mycomycholoyl-L-lysine trifluoroacetate (-b).
Obtain 0.27g of. Melting point 59-61℃. Elemental analysis value C 86 H 170 O 4.5 N 2・CF 3 COOH・1/2H 2 O Calculated value (%) C 74.03, H 12.17, N 1.96 Analysis value (%) C 73.90, H 11.78, N 2.18 Micomicoil unevenness Milpeptide () 198mg
and 5 ml of 18.6 mg of N-hydroxysuccinimide
of tetrahydrofuran and stir while cooling on ice.
It was then dissolved in 2 ml of tetrahydrofuran. Add 28 mg of dicyclohexylcarbodiimide. After 30 minutes, return to room temperature and stir overnight. The precipitated dicyclohexylurea was filtered off, and the filtrate was stirred under ice cooling. Next, 126 mg of (-b) and 0.02 ml of N-methylmorpholine were added, and after 30 minutes, the mixture was returned to room temperature and reacted with stirring overnight. Concentrate under reduced pressure, add methanol to the residue, and subject the precipitated crystals to silica gel chromatography. Chloroform: Methanol:
The target fraction eluted in the lower layer of the 8:3:1 water mixture is collected and concentrated to dryness under reduced pressure. The residue was again subjected to silica gel chromatography and eluted with chloroform:methanol:acetic acid=95:5:3. The desired fractions were collected and concentrated under reduced pressure, and methanol was added to the residue to give N〓-(6-O-mycomycoloyl-N-acetylmuramyl-L-alanyl-D-isoglutaminyl)-N〓-mycomycoloyl-L-lysine. (−
Obtain 48 mg of b). Melting point 135-142℃. [α]25゜D+
14.7゜(C=0.5, tetrahydrofuran: water=50:
1, 24 hours later). Elemental analysis value C 185 H 356 O 17 N 6・3H 2 O Calculated value (%) C 74.27, H 12.22, N 2.81 Analysis value (%) C 74.03, H 11.77, N 3.47

Claims (1)

【特許請求の範囲】 1 一般式 で示されるムラミルジペプチド誘導体。 上記式中Acylは炭素数2〜6のアシル基を、
XはL−アラニン残基を、Yは−NH(CH2o
O−A2又は【式】を意味 し、R1はカルボキシル基を、nは1〜6の整数
を、A1及びA2は同一又は異なる中級乃至高級ミ
コロイル基を意味する。
[Claims] 1. General formula A muramyl dipeptide derivative represented by In the above formula, Acyl represents an acyl group having 2 to 6 carbon atoms,
X is L-alanine residue, Y is -NH(CH 2 ) o -
It means O-A 2 or [Formula], R 1 is a carboxyl group, n is an integer of 1 to 6, and A 1 and A 2 are the same or different intermediate to higher mycoloyl groups.
JP10163178A 1978-08-21 1978-08-21 Novel muramyldipeptide derivative Granted JPS5528932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10163178A JPS5528932A (en) 1978-08-21 1978-08-21 Novel muramyldipeptide derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10163178A JPS5528932A (en) 1978-08-21 1978-08-21 Novel muramyldipeptide derivative

Publications (2)

Publication Number Publication Date
JPS5528932A JPS5528932A (en) 1980-02-29
JPH0124798B2 true JPH0124798B2 (en) 1989-05-15

Family

ID=14305737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10163178A Granted JPS5528932A (en) 1978-08-21 1978-08-21 Novel muramyldipeptide derivative

Country Status (1)

Country Link
JP (1) JPS5528932A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59172497A (en) * 1983-03-22 1984-09-29 Dai Ichi Seiyaku Co Ltd Novel muramyl peptide derivative

Also Published As

Publication number Publication date
JPS5528932A (en) 1980-02-29

Similar Documents

Publication Publication Date Title
US4101536A (en) Muramyldipeptide derivatives and process for the preparation thereof
US4684719A (en) α,α-trehalose fatty acid diester derivative
EP0228612A2 (en) A derivative of alpha, alpha-trehalose and a process for preparing the same
JPH0124798B2 (en)
SU1346046A3 (en) Method of producing h-butyl ethers derivatives of n-acetylmuramylpeptides
KR900001076B1 (en) Method for preparing N- [4- (3-aminopropyl) aminobutyl] -2,2-dihydroxyethaneamide
JPS6225680B2 (en)
US5047430A (en) Amide compounds, their production and use
JPS6312879B2 (en)
JPH0692349B2 (en) A new method for producing optically active unsaturated amino alcohol derivatives.
JPS62138197A (en) Method for separating optical isomer of 2-aminobutanol by enzyme
JPH0414120B2 (en)
JPH0776199B2 (en) Method for synthesizing optically active amino acid
JPS6328429B2 (en)
JP2756135B2 (en) Method for producing muramyl tripeptide derivative
JPH07107033B2 (en) Optically active 3-amino-4-cyclohexyl-2-hydroxybutyric acid hydrochloride and method for producing the same
JPH1059994A (en) Method for producing sialic acid derivative
JPS58172399A (en) Muramyl tripeptide derivative
JP3272377B2 (en) Optical resolution of optically active glutaric acid ester derivatives
JPS6311359B2 (en)
AU655237B2 (en) Synthesis of intermediates in the preparation of ACAT inhibitors
JP2500799B2 (en) New Intermediates of Optically Active Unsaturated Amino Alcohol Derivatives
JP3145533B2 (en) New methotrexate derivatives
JP2825608B2 (en) Optically active threo-3-amino-2-hydroxypentanoic acid and process for producing the same
JPS6033120B2 (en) Novel muramyl dipeptide derivative