[go: up one dir, main page]

JPH01247555A - Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production - Google Patents

Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production

Info

Publication number
JPH01247555A
JPH01247555A JP63077313A JP7731388A JPH01247555A JP H01247555 A JPH01247555 A JP H01247555A JP 63077313 A JP63077313 A JP 63077313A JP 7731388 A JP7731388 A JP 7731388A JP H01247555 A JPH01247555 A JP H01247555A
Authority
JP
Japan
Prior art keywords
alloy
corrosion resistance
based alloy
oxide layer
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63077313A
Other languages
Japanese (ja)
Other versions
JP2710948B2 (en
Inventor
Katsuto Yoshizawa
克仁 吉沢
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP63077313A priority Critical patent/JP2710948B2/en
Publication of JPH01247555A publication Critical patent/JPH01247555A/en
Application granted granted Critical
Publication of JP2710948B2 publication Critical patent/JP2710948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture a hyperfine-crystal Fe-base alloy excellent in corrosion resistance by forming an oxide layer of a specific thickness on the surface of a hyperfine-crystal Fe-base alloy having a specific composition and containing fine crystalline grains under specific conditions. CONSTITUTION:In a hyperfine-crystal Fe-base alloy having a composition represented by a general formula (Fe1-aMa)100-x-y-z-alpha-beta-gammaCuxSiyBzMalpha'Mbeta''Xgamma (atomic%) (where M means Co and Ni, M' means Nb, W, etc., M'' means V, Cr, etc., X means C, Ge, etc., the symbols (a), (x), (y), (z), alpha, beta and gamma stand for 0-0.5, 0.1-10, 0-30, 0-25, 0.1-30, <=10 and <=10, respectively, and y+z=5-30 is satisfied) and also having a structure in which fine crystalline grains comprise at least 50% and the average grain size measured by the maximum sizes of respective crystalline grains is regulated to <=1000Angstrom and the balance is composed of amorphous substance, an oxide layer of >=50Angstrom , preferably 50-5000Angstrom , thickness is formed on the surface. By this method, the hyperfine-crystal Fe-base alloy excellent in corrosion resistance can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐蝕性が要求される用途、例えば磁気ヘッド
、各種トランス等に用いられる耐蝕性に優れた超微細結
晶Fe基合金及びその製法の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides an ultrafine crystalline Fe-based alloy with excellent corrosion resistance for use in applications requiring corrosion resistance, such as magnetic heads, various transformers, etc., and a method for producing the same. This is related to the improvement of

[従来の技術] 従来から、磁気ヘッドや各種トランス等には珪素鋼、F
e −AI−8t合金、パーマロイ合金やアモルファス
合金等が用いられており、耐蝕性を改善するため、cr
、r+等を添加したり、表面コーティングを行い耐蝕性
を改善することが行われている。これらの例は特公昭6
0−39160号公報。
[Conventional technology] Silicon steel, F
e-AI-8t alloy, permalloy alloy, amorphous alloy, etc. are used, and to improve corrosion resistance, CR
, r+, etc., or surface coating is performed to improve the corrosion resistance. These examples are from the Tokuko Sho 6
Publication No. 0-39160.

特公昭60−41139号公報や特公昭60−4114
1号公報等に記載されている。しかしながら、これらの
合金は飽和磁束密度や軟磁性の点で一長一短があり、必
ずしも満足できる特性ではない。
Special Publication No. 60-41139 and Special Publication No. 60-4114
It is described in Publication No. 1, etc. However, these alloys have advantages and disadvantages in terms of saturation magnetic flux density and soft magnetism, and their properties are not necessarily satisfactory.

ところで我々は、先に特願昭62−183876号等に
おいて超微細結晶粒組織を有するFe基合金が侵れた軟
磁気特性を有し、更にCrやRU等を添加することによ
り耐蝕性が著しく改善されることを示した。
By the way, we have previously reported in Japanese Patent Application No. 183876/1983 that Fe-based alloys with ultrafine grain structures have soft magnetic properties, and that by adding Cr, RU, etc., corrosion resistance is significantly improved. showed that it could be improved.

[発明が解決しようとする問題点] しかしながら、前記超微細結晶Fe基合金は、耐蝕性を
改善する目的でcr等を添加すると飽和磁束密度が低下
してくるため高飽和磁束密度を維持し、耐蝕性を改善す
るのには必ずしも十分ではなく、同じ添加量で更に耐蝕
性を改善することが望まれていた。
[Problems to be Solved by the Invention] However, in the ultrafine crystal Fe-based alloy, when Cr or the like is added for the purpose of improving corrosion resistance, the saturation magnetic flux density decreases, so it is difficult to maintain a high saturation magnetic flux density. It is not necessarily sufficient to improve corrosion resistance, and it has been desired to further improve corrosion resistance with the same addition amount.

本発明の目的は、同一組成で耐蝕性を更に改善した超微
細結晶粒組織を有するFe基合金およびその製法を提供
することである。
An object of the present invention is to provide an Fe-based alloy having the same composition and an ultrafine grain structure with further improved corrosion resistance, and a method for producing the same.

[問題点を解決する手段] 上記目的に鑑み鋭意検討の結果、本発明者等はFe −
s+−8を基本成分とする合金にCuと、Nb、W、T
a、Zr、Hf、Ti及びMOからなる群から選ばれた
少なくとも1種の元素とを複合添加し、−目非晶質合金
とした棲で適当な熱処理をすることにより、組織の大半
が微細結晶粒からなり、かつ合金表面に酸化物層が形成
されたFe基合金が得られ、耐蝕性が改善されることを
発見し、本発明に想到した。
[Means for solving the problem] As a result of intensive studies in view of the above objectives, the present inventors have determined that Fe −
Cu, Nb, W, and T are added to the alloy whose basic component is s+-8.
By adding at least one element selected from the group consisting of a, Zr, Hf, Ti, and MO in a composite manner to form an amorphous alloy and subjecting it to appropriate heat treatment, most of the structure becomes fine. It was discovered that an Fe-based alloy consisting of crystal grains and an oxide layer formed on the surface of the alloy can be obtained, and corrosion resistance is improved, and the present invention was conceived.

即ち、本発明のFe基合金は一般式: %式% (但し、MはCO及び/又はNiであり、M′はNb、
W、Ta、Zr、Hf、Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M IIf、tV、Cr
 、Mn 、△1.白金属元素、Sc 、Y。
That is, the Fe-based alloy of the present invention has the general formula: % formula % (where M is CO and/or Ni, M' is Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti and Mo, M IIf, tV, Cr
, Mn, △1. White metal element, Sc, Y.

希土類元素、Au、Zn、Sn、Reからなる群から選
ばれた少なくとも1種の元素、XはC1Gc、P、Ga
、Sb、’In、Be、Asからなる群から選ばれた少
なくとも1種の元素であり、a、x、y、z、α、β、
及びγはそれぞれ0≦a≦o、s、  o、i≦X≦1
0.0≦y≦30.0≦2≦25.5≦l/+Z ≦3
0. 0.1≦α≦30.  β≦10及びγ≦10を
満たす。)により表わされる組成を有し。
Rare earth elements, at least one element selected from the group consisting of Au, Zn, Sn, and Re, X is C1Gc, P, Ga
, Sb, 'In, Be, and As, at least one element selected from the group consisting of a, x, y, z, α, β,
and γ are 0≦a≦o, s, o, i≦X≦1, respectively.
0.0≦y≦30.0≦2≦25.5≦l/+Z≦3
0. 0.1≦α≦30. β≦10 and γ≦10 are satisfied. ) has the composition represented by

組織の少なくとも50%が微細な結晶粒からなり、合金
表面に酸化物層が形成されているものである。
At least 50% of the structure consists of fine crystal grains, and an oxide layer is formed on the alloy surface.

また、本発明のFe基合金の製造方法は前記非晶質合金
を急冷することにより得る工程と、これを酸素が存在す
る雰囲気で加熱し微細な結晶粒を形成する熱処理工程を
有することを特徴とする。
Furthermore, the method for producing an Fe-based alloy of the present invention is characterized by comprising a step of rapidly cooling the amorphous alloy, and a heat treatment step of heating it in an atmosphere containing oxygen to form fine crystal grains. shall be.

本発明のFe基合金において、Feは0〜0.5の範囲
でGO及び/又はNiで置換してもよい。
In the Fe-based alloy of the present invention, Fe may be substituted with GO and/or Ni in a range of 0 to 0.5.

本発明において、Cuは必須元素であり、その含有量×
は0.1〜10原子%の範囲である。
In the present invention, Cu is an essential element, and its content ×
is in the range of 0.1 to 10 at.%.

3i及びBは、合金組織の微細化に特に有用な元素であ
る。本発明のFe基合金は、好ましくは、−旦Si 、
B添加効果により非晶質合金とした後に熱処理により微
細結晶粒を形成することにより得られる。3iの含有m
y、Bの含有1zは、yが30原子%以下、lが25原
子%以下、y+zが5〜30原子%が望ましい。
3i and B are elements particularly useful for refining the alloy structure. The Fe-based alloy of the present invention preferably contains -DanSi,
It is obtained by forming an amorphous alloy due to the effect of B addition and then forming fine crystal grains by heat treatment. 3i content m
The content 1z of y and B is preferably 30 at % or less for y, 25 at % or less for l, and 5 to 30 at % for y+z.

本発明において、yの好ましい範囲は6〜25原子%で
あり、lの好ましい範囲は2〜25原子%であり、y+
zの好ましい範囲は14〜30原子%の範囲であるう 本発明においてはM−はC0との複合添加により析出す
る結晶粒を微細化する作用を有するものであり、Nb、
W、Ta、Zr、Hf、Ti及びMOからなる群から選
ばれた少なくとも1種の元素である。Nb等は合金の結
晶化温度を上昇さける作用を有するがクラスターを形成
し結晶化温度を低下させる作用を有するCuとの相互作
用により、結晶粒の成長を抑え、析出する結晶粒が微細
化するものと考えられる。
In the present invention, the preferred range of y is 6 to 25 at%, the preferred range of l is 2 to 25 at%, and y+
The preferred range of z is 14 to 30 atomic %. In the present invention, M- has the effect of refining the crystal grains that are precipitated by being added in combination with C0, and Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti, and MO. Nb and the like have the effect of avoiding an increase in the crystallization temperature of the alloy, but their interaction with Cu, which has the effect of forming clusters and lowering the crystallization temperature, suppresses the growth of crystal grains and makes the precipitated crystal grains finer. considered to be a thing.

M′の含有量αは0.1〜30原子%であり、0.1原
子%未満だと結晶粒微細化の効果が不十分であり、30
原子%を越えると飽和磁束密度の著しい低下を招く。好
ましいM′の含有量αは1〜10原子%である。より好
ましいαの範囲は2≦α≦8であり、この範囲で特に優
れた軟磁性が得られる。
The content α of M' is 0.1 to 30 at%, and if it is less than 0.1 at%, the effect of grain refinement is insufficient;
Exceeding atomic % causes a significant decrease in saturation magnetic flux density. The preferable M' content α is 1 to 10 atomic %. A more preferable range of α is 2≦α≦8, and particularly excellent soft magnetism can be obtained within this range.

なおM′としてNbが磁気特性の面で最も好ましい。ま
た、M′の添加によりCO基高透磁率材料と同等の高い
透磁率を有するようになる。
Note that Nb is most preferable as M' in terms of magnetic properties. Furthermore, by adding M', the material has a high magnetic permeability equivalent to that of a CO-based high magnetic permeability material.

V、Cr、Mn、AI、白金属元素、Sc 、Y。V, Cr, Mn, AI, platinum metal element, Sc, Y.

希土類元素、Au 、Zn 、Sn 、Reからなる群
から選ばれた少なくとも1種の元素であるM″は耐蝕性
を改善したり、磁気特性を改善したり、磁歪を調整した
りする目的のために添加することができるものであるが
、その含有量はせいぜい10原子%以下である。それは
含有量が10原子%を越えると著しい飽和磁束密度の低
下を招くためであり、特に好ましい含有量は5原子%以
下である。
M'', which is at least one element selected from the group consisting of rare earth elements, Au, Zn, Sn, and Re, is used for the purpose of improving corrosion resistance, improving magnetic properties, and adjusting magnetostriction. However, the content is at most 10 atomic % or less. This is because if the content exceeds 10 atomic %, the saturation magnetic flux density will be significantly lowered, so the particularly preferable content is It is 5 atomic % or less.

これらの中t’Ru、Rh、Pd、Os、Ir。Among these, t'Ru, Rh, Pd, Os, and Ir.

Pr、Au、Cr、AI 、Vからなる群から選ばれる
少くとも1種の元素を添加した場合は特に表面に酸化物
層が形成した場合、耐蝕性が良くなるため磁気ヘッド材
として好適である。
When at least one element selected from the group consisting of Pr, Au, Cr, AI, and V is added, corrosion resistance improves, especially when an oxide layer is formed on the surface, making it suitable as a magnetic head material. .

本発明の合金において、C,Ge 、 P 、 Qa 
In the alloy of the present invention, C, Ge, P, Qa
.

3b、In、3e、ASからなる群から選ばれた少なく
とも1種の元素×を10原子%以下含み得る。
3b, In, 3e, and AS.

これらの元素は非晶質化に有効な元素であり、Si、B
と共に添加することにより合金の非晶質化を助けると共
に、磁歪やキュリー温度の調整に効果がある。
These elements are effective for amorphization, and Si, B
By adding it together, it helps to make the alloy amorphous and is effective in adjusting the magnetostriction and Curie temperature.

上記組成を有する本発明のFe基合金はまた組織の少な
くとも50%以上が微細な結晶粒からなる。
In the Fe-based alloy of the present invention having the above composition, at least 50% of the structure consists of fine crystal grains.

この結晶粒はbcc構造のα−Feを主体とするもので
SiやB等が固溶していると考えられる。
It is thought that these crystal grains are mainly composed of α-Fe with a bcc structure, and Si, B, etc. are dissolved therein.

この結晶粒は1000Å以下と著しく小さな結晶粒径を
有することを特徴とし、合金組織中に均一に分布してい
る。結晶粒の平均粒径とは、各粒子の最大寸法を平均し
たものである。平均粒径が1000人を越えると良好な
軟磁気特性が得られなくなる。
These crystal grains are characterized by having a significantly small crystal grain size of 1000 Å or less, and are uniformly distributed in the alloy structure. The average grain size of crystal grains is the average of the maximum dimensions of each grain. If the average particle size exceeds 1,000 particles, good soft magnetic properties cannot be obtained.

好ましい平均粒径は500Å以下であり、より好ましく
は200Å以下であり、特に50〜200人である。
The average particle size is preferably 500 Å or less, more preferably 200 Å or less, and especially 50 to 200 particles.

合金組成のうち微細結晶粒以外の部分は主に非晶質であ
る。なお、微細結晶粒の割合が実質的に100%になっ
ても良い。
The parts of the alloy composition other than the fine crystal grains are mainly amorphous. Note that the proportion of fine crystal grains may be substantially 100%.

なお、N、O,S等の不可避的不純物については所望の
特性が劣化しない程度に含有していても本発明の合金組
成と同一とみなすことができるのはもちろんである。
It goes without saying that even if unavoidable impurities such as N, O, and S are contained to the extent that desired characteristics are not deteriorated, the alloy composition can be considered to be the same as the alloy composition of the present invention.

酸化物層の圧差は通常50〜5000人の絶間が望まし
くこの範囲で強固の酸化物層が形成しやすい。
The pressure difference in the oxide layer is usually desirably in the range of 50 to 5,000, and a strong oxide layer is easily formed within this range.

次に本発明のFe基合金の製造方法について説明する。Next, the method for manufacturing the Fe-based alloy of the present invention will be explained.

まず上記所定の組成の溶湯から、片ロール法、双ロール
法等の公知の液体急冷法によりリボン状の非晶質合金を
形成する。通常、片ロール法等により製造される非晶質
合金リボンの板厚は5〜100μm程度である。
First, a ribbon-shaped amorphous alloy is formed from a molten metal having the above-mentioned predetermined composition by a known liquid quenching method such as a single roll method or a twin roll method. Usually, the thickness of an amorphous alloy ribbon produced by a single roll method or the like is about 5 to 100 μm.

この非晶質合金は結晶相を含んでいてもよいが、後の熱
処理により微細な結晶粒を均一に生成するためには非晶
質であるのが望ましい。液体急冷法により、熱処理を経
ずに本発明の合金を得ることb可能である。
Although this amorphous alloy may contain a crystalline phase, it is preferably amorphous in order to uniformly generate fine crystal grains during subsequent heat treatment. The liquid quenching method makes it possible to obtain the alloys of the invention without heat treatment.

非晶質リボンは熱処理の前に巻回、打抜、エツチング等
をして所定の形状に加工する。というのは、非晶質の段
階ではリボンは加工性が良いが、−旦、結晶化すると加
工性が著しく低下するからである。
The amorphous ribbon is processed into a predetermined shape by winding, punching, etching, etc. before heat treatment. This is because the ribbon has good workability in its amorphous state, but once it crystallizes, the workability deteriorates significantly.

熱処理は所定の形状に加工した非晶質合金リボンを通常
酸素が存在する雰囲気中において一定時間保持し行う。
Heat treatment is performed by holding an amorphous alloy ribbon processed into a predetermined shape in an atmosphere containing oxygen for a certain period of time.

熱処理温度及び時間は非晶質合金リボンからなる磁心の
形状、サイズ、組成等により異なるが、−船釣に450
〜700℃で5分から24時時間型が望ましい。熱処理
温度が450℃未満であると結晶化が起りにくく、熱処
理に時間がかかりすぎる。また、700℃より高いと粗
大な結晶粒が生成するおそれがあり、微細な結晶粒を均
一に得ることができなくなる。また、熱処理時間につい
ては、5分未満では加工した合金全体を均一な温度とす
ることが困難であり、磁気特性がばらつきやすく、24
時間より長いと生産性が悪くなるだけでなく結晶粒の過
剰な成長が起こりやすい。好ましい熱処理条件は、実用
性及び均一な温度コントロール等を考慮して、500〜
650℃で5分〜6時間である。
The heat treatment temperature and time vary depending on the shape, size, composition, etc. of the magnetic core made of amorphous alloy ribbon.
A 5 minute to 24 hour type at ~700°C is preferable. When the heat treatment temperature is less than 450°C, crystallization is difficult to occur and the heat treatment takes too much time. On the other hand, if the temperature is higher than 700°C, coarse crystal grains may be formed, making it impossible to uniformly obtain fine crystal grains. In addition, if the heat treatment time is less than 5 minutes, it is difficult to bring the entire processed alloy to a uniform temperature, and the magnetic properties tend to vary.
If it is longer than that, not only will productivity deteriorate, but also excessive growth of crystal grains will likely occur. The preferable heat treatment conditions are 500~
The temperature is 650°C for 5 minutes to 6 hours.

熱処理雰囲気は大気中等の酸化性雰囲気が望ましいが、
不活性ガス中に酸素を含む雰囲気でも良い。冷却は空冷
や炉冷等により、適宜行うことができる。また、場合に
よっては多段の熱処理を行うこともできる。
The heat treatment atmosphere is preferably an oxidizing atmosphere such as air, but
An atmosphere containing oxygen in an inert gas may also be used. Cooling can be performed appropriately by air cooling, furnace cooling, or the like. In addition, multi-stage heat treatment can be performed depending on the case.

熱処理を磁場中で行うこともできる。磁場中熱処理によ
り本合金に磁気異方性を生じさせることができる。
Heat treatment can also be carried out in a magnetic field. Magnetic anisotropy can be produced in this alloy by heat treatment in a magnetic field.

磁場は熱処理の間中かける必要はなく、合金のキュリー
温11TCより低い温度のときに印加するだけで十分で
ある。磁場中熱処理の場合も熱処理を2段階以上で行う
こともできる。また、回転磁場中で熱処理を行うことも
できる。
It is not necessary to apply the magnetic field throughout the heat treatment; it is sufficient to apply it at a temperature below the Curie temperature of the alloy, 11TC. In the case of heat treatment in a magnetic field, the heat treatment can also be performed in two or more stages. Moreover, heat treatment can also be performed in a rotating magnetic field.

また、本発明のFe基合金はスパッター法等の薄膜化技
術を用いて製造することも可能であり、薄膜磁気ヘッド
等も作製できる。また、回転液中防糸法やガラス被覆防
糸法等により細線状のものも作製できる。
Further, the Fe-based alloy of the present invention can also be manufactured using a thin film forming technique such as a sputtering method, and thin film magnetic heads and the like can also be manufactured. Moreover, thin wire-like products can also be produced by the rotating liquid-in-rotation method, the glass coating method, etc.

また、キュビテーション法やアトマイズ法あるいは単に
ロール法等により作製した薄帯を粉砕づる等により粉末
状のものもTIJ造することが可能である。
Further, it is also possible to produce a powdered material by TIJ, for example, by crushing a ribbon produced by a cuvitation method, an atomization method, or simply a roll method.

また、本発明合金は酸化性の雰囲気で非晶質合金を製造
し表面に酸化物を形成した後不活性ガス中で熱処理して
も得られる。
The alloy of the present invention can also be obtained by manufacturing an amorphous alloy in an oxidizing atmosphere, forming an oxide on the surface, and then heat-treating the alloy in an inert gas.

[実施例1 以下、本発明を実施例に従)て説明するが本発明はこれ
らに限定されるしのeはない。
[Example 1] The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1 原子%rsi13.5%、89%、N’b3%、 CO
1%残部実質的にFeからなる組成の合金溶湯を単ロー
ル法によりArガス中で急冷し厚さ18μm。
Example 1 Atomic % rsi 13.5%, 89%, N'b 3%, CO
A molten alloy having a composition consisting essentially of Fe with the remainder being 1% was rapidly cooled in Ar gas by a single roll method to a thickness of 18 μm.

幅5II1mの非晶質合金薄帯を作製し、真空中550
℃に1時間保持する熱処理を行った。熱処理後の合金は
組織の大部分が粒径100人程度の超微illなりcc
Fe固溶体結晶粒からなっていた。次にこの合金表面を
オージェ電子分光装置により分析した。
An amorphous alloy ribbon with a width of 5II1 m was prepared and heated at 550 m in vacuum.
Heat treatment was carried out by holding at ℃ for 1 hour. After heat treatment, most of the structure of the alloy is ultra-fine with a grain size of about 100 mm.cc
It consisted of Fe solid solution crystal grains. Next, the surface of this alloy was analyzed using an Auger electron spectrometer.

得られた結果を第1図(a)、(b)に示す。自由凝固
面側は46人、ロール接触面側は42人酸素が含まれて
おり酸化物層は50人未満の厚さであった。
The results obtained are shown in FIGS. 1(a) and (b). The free solidification surface side contained 46 oxygen, and the roll contact surface side contained 42 oxygen, and the oxide layer was less than 50 oxide thick.

次に前記非晶質合金薄帯を、酸素が5%、窒素が約95
%含まれたガス雰囲気中で550℃に一時間保持する熱
処理を行った。熱処理後の合金は組織の大部分が粒径1
00人程度の超微細なhccFa固溶体結晶粒からなっ
ていた。次にこの合金表面をオージェ電子分光装置によ
り分析した。
Next, the amorphous alloy ribbon was mixed with 5% oxygen and about 95% nitrogen.
Heat treatment was carried out by holding the temperature at 550° C. for one hour in a gas atmosphere containing 50%. Most of the structure of the alloy after heat treatment has a grain size of 1.
It consisted of ultra-fine hccFa solid solution crystal grains of about 0.000. Next, the surface of this alloy was analyzed using an Auger electron spectrometer.

得られた結果を第2図(a)、(b)に示す。The obtained results are shown in FIGS. 2(a) and (b).

自由凝固面側は230人、ロール接触面側は150人酸
素が含まれており表面の酸化物層の厚さは50Å以上あ
ることが確認された。
It was confirmed that 230 people on the free solidification surface side and 150 people on the roll contact side contained oxygen and the thickness of the oxide layer on the surface was 50 Å or more.

次にこの2つの熱処理を行った合金を水中に1日間入れ
耐蝕性を検討した。真空中で熱処理した合金は錆が発生
したのに対し、酸素Oが存在する雰囲気で熱処理し表面
に50Å以上厚さの酸化物層を形成した本発明合金はほ
とんど錆が発生しておらず良好な耐蝕性を示した。
Next, the alloys subjected to these two heat treatments were placed in water for one day to examine their corrosion resistance. While the alloy heat-treated in vacuum developed rust, the alloy of the present invention, which was heat-treated in an atmosphere containing oxygen to form an oxide layer with a thickness of 50 Å or more on the surface, showed almost no rust and was in good condition. It showed excellent corrosion resistance.

実施例2 原子%でCL11%、−1’Jb10%、[39%、残
部実質的にFeからなる組成の合金溶湯を単ロール法に
よりHeガス中で急冷し厚さ15μm9幅5Illlの
非晶質合金薄帯を作製した。
Example 2 A molten alloy having a composition consisting of 11% CL, 10% -1'Jb, 39% [39% atomic %], and the remainder substantially Fe was rapidly cooled in He gas by a single roll method to form an amorphous material with a thickness of 15 μm and a width of 5 Ill. An alloy ribbon was produced.

次にこの合金薄帯を窒素70%、酸素30%の混合ガス
中で590℃に1時間保持し、室温まで5℃/winの
冷却速度で冷却した。熱処理後の合金内部のミクロ組織
は50人前後の超微細な結晶が組織のほとんどを占めて
いた。次にこの合金薄帯の表面をオージェ電子分光装置
により分析した。得られた結果を第3図に示す。
Next, this alloy ribbon was held at 590° C. for 1 hour in a mixed gas of 70% nitrogen and 30% oxygen, and cooled to room temperature at a cooling rate of 5° C./win. After heat treatment, the microstructure inside the alloy consisted of approximately 50 ultrafine crystals. Next, the surface of this alloy ribbon was analyzed using an Auger electron spectrometer. The results obtained are shown in FIG.

自由凝固面側は880A 、ロール接触面側は1380
人の厚さまで酸素0が含存在しており、かなり厚い酸化
物層が形成されていることが確認された。
880A on the free solidification surface side, 1380A on the roll contact surface side
It was confirmed that 0 oxygen was present up to the thickness of a human being, and a fairly thick oxide layer was formed.

この酸化物はNb、3i、Fe等の酸化物であると考え
られる。
This oxide is thought to be an oxide of Nb, 3i, Fe, or the like.

次にこの合金を水中に3日間入れ耐蝕性を検討した。水
素中で熱処理した合金は錆が発生したのに対し、表面に
酸化物層を形成した本発明合金はほとんど錆が発生して
おらず良好な耐蝕性を示した。
Next, this alloy was placed in water for 3 days to examine its corrosion resistance. The alloy heat-treated in hydrogen developed rust, whereas the alloy of the present invention, which had an oxide layer formed on its surface, showed almost no rust and exhibited good corrosion resistance.

実施例3 原子%でCu1%、Nb10%、89%、残部実質的に
Feからなる組成の合金溶湯を単ロール法により、酸化
性雰囲気である大気中で急冷し、厚さ15μm1幅5I
I1mの非晶質合金薄帯を作製した。
Example 3 A molten alloy having a composition consisting of 1% Cu, 10% Nb, 89% Nb, and the remainder substantially Fe in atomic % was rapidly cooled in the atmosphere, which is an oxidizing atmosphere, by a single roll method, and was made into a molten alloy having a thickness of 15 μm and a width of 5 mm.
An amorphous alloy ribbon of I1m was produced.

次にこの合金薄帯をArガス雰囲気中で590℃に 1
時間保持し、室温まで5℃/minの冷却速度で冷却し
た。熱処理後の合金内部のミクロIg織は実施例2と同
様であった。次にこの合金表面をオージェ電子分光装置
により分析した。、1qられた結果を第4図に示す。
Next, this alloy ribbon was heated to 590°C in an Ar gas atmosphere.
The mixture was maintained for a period of time and cooled to room temperature at a cooling rate of 5° C./min. The micro Ig texture inside the alloy after heat treatment was the same as in Example 2. Next, the surface of this alloy was analyzed using an Auger electron spectrometer. , 1q are shown in Figure 4.

自由凝固面側は285A 、ロール接触面側は315人
の厚さまで酸素Oが存在しており、実施例2と同様かな
り厚い酸化物層が形成されていることが確認された。
Oxygen O was present up to a thickness of 285A on the free solidification surface side and 315A on the roll contact surface side, and it was confirmed that a considerably thick oxide layer was formed as in Example 2.

次にこの合金を水中に3日間入れ耐蝕性を検討した。本
発明合金はほとんど錆が発生しておらず良好な耐蝕性を
示した。
Next, this alloy was placed in water for 3 days to examine its corrosion resistance. The alloy of the present invention exhibited good corrosion resistance with almost no rust.

実施例4 原子%でCIJI%、Nb3%、3i8%、39%、残
部実質的にFeからなる組成の合金溶湯を単ロール法に
より、酸化性雰囲気である大気中で急冷し、厚さ15μ
m1幅5II11の非晶質合金薄帯を作製した。
Example 4 A molten alloy having a composition consisting of CIJI%, Nb 3%, 3i 8%, 39%, and the balance substantially Fe in atomic % was rapidly cooled in an oxidizing atmosphere in the air by a single roll method, and a thickness of 15 μm was obtained.
An amorphous alloy ribbon having a m1 width of 5II11 was produced.

次にこの合金薄帯をArガス雰囲気中及び窒素ガスと酸
素ガス(5%)を混合したガス雰囲気中で550℃に 
1時間熱処理し室温まで冷却し、オージェ電子分光装置
により表面分析を行った。
Next, this alloy ribbon was heated to 550°C in an Ar gas atmosphere and a mixed gas atmosphere of nitrogen gas and oxygen gas (5%).
After heat treatment for 1 hour and cooling to room temperature, surface analysis was performed using an Auger electron spectrometer.

Arガス雰囲気中で熱処理した場合を第5図、酸素ガス
が存在する雰囲気で熱処理した場合を第6図に示1゜ 酸素を混在させた雰囲気で熱処理した場合は箸しく酸化
物層が厚くなっていることがわかる。
Figure 5 shows the case of heat treatment in an Ar gas atmosphere, and Figure 6 shows the case of heat treatment in an atmosphere containing oxygen gas.1° When heat treatment was carried out in an atmosphere containing oxygen, the oxide layer became noticeably thicker. You can see that

高純度のArガス中で熱処理した場合、酸化物層が50
人未満であり、合金を水中に入れ耐蝕性を検討した結果
、錆が発生し、耐蝕性は酸化層を厚く形成したものより
劣っていた。
When heat-treated in high-purity Ar gas, the oxide layer becomes 50%
When the alloy was submerged in water and its corrosion resistance was examined, rust occurred and the corrosion resistance was inferior to that of a material with a thick oxide layer.

実施例5 第1表に示す組成の本発明合金薄帯を作製し、水道水に
入れ耐蝕性を検討した。得られた結果を第1表に示す。
Example 5 A ribbon of the alloy of the present invention having the composition shown in Table 1 was prepared and placed in tap water to examine its corrosion resistance. The results obtained are shown in Table 1.

(以下、余白) 本発明合金の耐蝕性は酸化物層の厚さが薄い合金より耐
蝕性に優れている。
(Hereinafter, blank spaces) The corrosion resistance of the alloy of the present invention is superior to that of an alloy with a thin oxide layer.

[発明の効果1 本発明によれば耐蝕性に優れた超微細結晶Fe基合金及
びその製法を提供できるためその効果は著しいものがあ
る。
[Advantageous Effects of the Invention 1] According to the present invention, it is possible to provide an ultrafine-crystalline Fe-based alloy with excellent corrosion resistance and a method for producing the same, so the effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第5図は比較のため示した酸化物層の薄い合
金のオージェ電子分光装置により分析した表面の厚さ方
向の分析結果を示した図、第2図。 第3図、第4図及び第6図は本発明合金のオージェ電子
分光装置により分析した表面の厚さ方向の分析結果を示
した図である。 rXI面のンン釘内容に変更なし) 表面からの深さ(A) 第3図 第6図 表面からの深さ(A) 手続補正書、ヵよ、
FIGS. 1 and 5 are diagrams showing the analysis results in the thickness direction of the surface of an alloy with a thin oxide layer, which is shown for comparison, analyzed using an Auger electron spectrometer. FIGS. 3, 4, and 6 are diagrams showing the results of analysis of the surface of the alloy of the present invention in the thickness direction using an Auger electron spectrometer. No change in the content of the nails on the r

Claims (7)

【特許請求の範囲】[Claims] (1)一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_−_α_−_β_−_Cu_xSi_y
B_zM′_αM″_βX_γ(原子%) (但し、MはCo及び/又はNiであり、M′はNb,
W,Ta,Zr,Hf,Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M″はV,Cr,Mn,
Al,白金属元素,Sc,Y,希土類元素,Au,Zn
,Sn,Reからなる群から選ばれた少なくとも1種の
元素、XはC,Ge,P,Ga,Sb,In,Be,A
sからなる群から選ばれた少なくとも1種の元素であり
、a,x,y,z,α,β,及びγはそれぞれ0≦a≦
0.5,0.1≦x≦10,0≦y≦30,0≦z≦2
5,5≦y+z≦30,0.1≦α≦30,β≦10及
びγ≦10を満たす。) により表わされる組成を有し、組織の少なくとも50%
が微細な結晶粒からなり、各結晶粒の最大寸法で測定し
た粒径の平均が1000Å以下である超微細結晶Fe基
合金において、合金表面に50Å以上の厚さの酸化物層
が形成されていることを特徴とする耐蝕性に優れた超微
細結晶Fe基合金。
(1) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_β_−_Cu_xSi_y
B_zM′_αM″_βX_γ (atomic %) (However, M is Co and/or Ni, M′ is Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti and Mo, M'' is V, Cr, Mn,
Al, platinum metal element, Sc, Y, rare earth element, Au, Zn
, Sn, Re, X is C, Ge, P, Ga, Sb, In, Be, A
at least one element selected from the group consisting of s, and a, x, y, z, α, β, and γ are each 0≦a≦
0.5, 0.1≦x≦10, 0≦y≦30, 0≦z≦2
5, 5≦y+z≦30, 0.1≦α≦30, β≦10, and γ≦10. ) and at least 50% of the tissue
In ultrafine crystalline Fe-based alloys that are composed of fine crystal grains and the average grain size measured at the maximum dimension of each crystal grain is 1000 Å or less, an oxide layer with a thickness of 50 Å or more is formed on the alloy surface. An ultrafine crystalline Fe-based alloy with excellent corrosion resistance.
(2)特許請求の範囲第1項に記載のFe基合金におい
て、前記結晶粒が500Å以下の平均粒径であることを
特徴とする耐蝕性に侵れた超微細結晶Fe基合金。
(2) The ultrafine crystalline Fe-based alloy according to claim 1, characterized in that the crystal grains have an average grain size of 500 Å or less.
(3)特許請求の範囲第1項又は第2項に記載のFe基
合金において、前記組織の残部が非晶質であることを特
徴とする耐蝕性に侵れた超微細結晶Fe基合金。
(3) An ultrafine-crystalline Fe-based alloy with corrosion resistance, characterized in that the remainder of the structure is amorphous in the Fe-based alloy according to claim 1 or 2.
(4)特許請求の範囲第1項又は第2項に記載のFe基
合金において、前記組織が実質的に微細な結晶粒からな
ることを特徴とする耐蝕性に優れた超微細結晶Fe基合
金。
(4) In the Fe-based alloy according to claim 1 or 2, the ultrafine-crystalline Fe-based alloy has excellent corrosion resistance, characterized in that the structure consists of substantially fine crystal grains. .
(5)酸化物層の厚さが50〜5000Åであることを
特徴とする特許請求の範囲第1項及至第4項のいずれか
1項に記載の耐蝕性に侵れた超微細結晶Fe基合金。
(5) Ultrafine crystalline Fe base with corrosion resistance according to any one of claims 1 to 4, wherein the oxide layer has a thickness of 50 to 5000 Å. alloy.
(6)一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_α_−_β_−_γCu_xSi_yB
_zM′_αM″_βX_γ(原子%) (但し、MはCo及び/又はNiであり、M′はNb,
W,Ta,Zr,Hf,Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M″はV,Cr,Mn,
Al,白金属元素,Sc,Y,希土類元素,Au,Zn
,Sn,Reからなる群から選ばれた少なくとも1種の
元素、XはC,Ge,P,Ga,Sb,In,Be,A
sからなる群から選ばれた少なくとも1種の元素であり
、a,x,y,z,α,β,及びγはそれぞれ0≦a≦
0.5,0.1≦x≦10,0≦y≦30,0≦z≦2
5,5≦y+z≦30,0.1≦α≦30,β≦10及
びγ≦10を満たす。) により表わされる組成の非晶質合金を、酸素が存在する
雰囲気で組織の少なくとも50%が微細な結晶粒となる
ように熱処理する工程を含むことを特徴とするFe基合
金の製法。
(6) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_α_−_β_−_γCu_xSi_yB
_zM′_αM″_βX_γ (atomic %) (However, M is Co and/or Ni, M′ is Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti and Mo, M'' is V, Cr, Mn,
Al, platinum metal element, Sc, Y, rare earth element, Au, Zn
, Sn, Re, X is C, Ge, P, Ga, Sb, In, Be, A
at least one element selected from the group consisting of s, and a, x, y, z, α, β, and γ are each 0≦a≦
0.5, 0.1≦x≦10, 0≦y≦30, 0≦z≦2
5, 5≦y+z≦30, 0.1≦α≦30, β≦10, and γ≦10. 1.) A method for producing an Fe-based alloy, comprising the step of heat treating an amorphous alloy having a composition represented by
(7)一般式: (Fe_1_−_aM_a)_1_0_0_−_x_−
_y_−_z_−_α_−_β_−_γCu_xSi_
yB_zM′_αM″_βX_γ(原子%) (但し、MはCo及び/又はNiであり、M′はNb,
W,Ta,Zr,Hf,Ti及びMoからなる群から選
ばれた少なくとも1種の元素、M″はV,Cr,Mn,
Al,白金属元素,Sc,Y,希土類元素,Au,Zn
,Sn,Reからなる群から選ばれた少なくとも1種の
元素、XはC,Ge,P,Ga,Sb,In,Be,A
sからなる群から選ばれた少なくとも1種の元素であり
、a,x,y,z,α,β,及びγはそれぞれ0≦a≦
0.5,0.1≦x≦10,0≦y≦30,0≦z≦2
5,5≦y+z≦30,0.1≦α≦30,β≦10及
びγ≦10を満たす。) により表わされる組成の非晶質合金を酸化性雰囲気で作
製し、表面に酸化物層を形成後、組織の少なくとも50
%が微細な結晶粒となるように熱処理する工程を含むこ
とを特徴とするFe基合金の製法。
(7) General formula: (Fe_1_-_aM_a)_1_0_0_-_x_-
_y_−_z_−_α_−_β_−_γCu_xSi_
yB_zM′_αM″_βX_γ (atomic %) (However, M is Co and/or Ni, M′ is Nb,
At least one element selected from the group consisting of W, Ta, Zr, Hf, Ti and Mo, M'' is V, Cr, Mn,
Al, platinum metal element, Sc, Y, rare earth element, Au, Zn
, Sn, Re, X is C, Ge, P, Ga, Sb, In, Be, A
at least one element selected from the group consisting of s, and a, x, y, z, α, β, and γ are each 0≦a≦
0.5, 0.1≦x≦10, 0≦y≦30, 0≦z≦2
5, 5≦y+z≦30, 0.1≦α≦30, β≦10, and γ≦10. ) is prepared in an oxidizing atmosphere, and after forming an oxide layer on the surface, at least 50% of the structure is
A method for producing an Fe-based alloy, comprising the step of heat treatment so that % becomes fine crystal grains.
JP63077313A 1988-03-30 1988-03-30 Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same Expired - Lifetime JP2710948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63077313A JP2710948B2 (en) 1988-03-30 1988-03-30 Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63077313A JP2710948B2 (en) 1988-03-30 1988-03-30 Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01247555A true JPH01247555A (en) 1989-10-03
JP2710948B2 JP2710948B2 (en) 1998-02-10

Family

ID=13630428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63077313A Expired - Lifetime JP2710948B2 (en) 1988-03-30 1988-03-30 Ultrafine crystalline Fe-based alloy with excellent corrosion resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP2710948B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435680A2 (en) * 1989-12-28 1991-07-03 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
JPH05243054A (en) * 1992-02-28 1993-09-21 Toshiba Corp Magnetic core
WO1994000259A1 (en) * 1992-06-26 1994-01-06 Sumitomo Special Metals Company Limited Powdery alloy for bonded magnet and bonded magnet
JP2002075718A (en) * 2000-08-28 2002-03-15 Hitachi Metals Ltd Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core
JP2010189761A (en) * 2009-01-20 2010-09-02 Hitachi Metals Ltd Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy
JP2018056363A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic equipment
CN109215919A (en) * 2017-07-05 2019-01-15 松下知识产权经营株式会社 Soft magnetic powder and its manufacturing method and the compressed-core for using it
JP2019024076A (en) * 2017-07-05 2019-02-14 パナソニックIpマネジメント株式会社 Soft magnetic powder, manufacturing method thereof, and dust core using the same
JP2020122184A (en) * 2019-01-30 2020-08-13 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2021080545A (en) * 2019-11-22 2021-05-27 Tdk株式会社 Soft magnetic alloy thin strip and magnetic component
JP2021080546A (en) * 2019-11-22 2021-05-27 Tdk株式会社 Soft magnetic alloy thin strip and magnetic component
CN113564497A (en) * 2021-07-23 2021-10-29 同济大学 A kind of Fe-based amorphous alloy and its preparation method and application

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0435680A2 (en) * 1989-12-28 1991-07-03 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of producing same and magnetic core made of same
JPH05243054A (en) * 1992-02-28 1993-09-21 Toshiba Corp Magnetic core
WO1994000259A1 (en) * 1992-06-26 1994-01-06 Sumitomo Special Metals Company Limited Powdery alloy for bonded magnet and bonded magnet
JP2002075718A (en) * 2000-08-28 2002-03-15 Hitachi Metals Ltd Soft magnet thin plate, iron core formed of the same, current transformer, and method of manufacturing iron core
JP2010189761A (en) * 2009-01-20 2010-09-02 Hitachi Metals Ltd Soft magnetic alloy thin strip, method for producing same, and magnetic component having soft magnetic alloy thin strip
JP2010229466A (en) * 2009-03-26 2010-10-14 Hitachi Metals Ltd Nano crystal soft magnetic alloy and magnetic core
JP2011149045A (en) * 2010-01-20 2011-08-04 Hitachi Metals Ltd Thin strip of soft magnetic alloy, method for manufacturing the same, and magnetic component having thin strip of soft magnetic alloy
JP2018056363A (en) * 2016-09-29 2018-04-05 セイコーエプソン株式会社 Soft magnetic powder, dust core, magnetic element and electronic equipment
CN109215919A (en) * 2017-07-05 2019-01-15 松下知识产权经营株式会社 Soft magnetic powder and its manufacturing method and the compressed-core for using it
JP2019024076A (en) * 2017-07-05 2019-02-14 パナソニックIpマネジメント株式会社 Soft magnetic powder, manufacturing method thereof, and dust core using the same
US11270821B2 (en) 2017-07-05 2022-03-08 Panasonic Intellectual Property Management Co., Ltd. Soft magnetic powder, method for producing same, and dust core using soft magnetic powder
JP2020122184A (en) * 2019-01-30 2020-08-13 セイコーエプソン株式会社 Soft magnetic powder, powder magnetic core, magnetic element, and electronic device
JP2021080545A (en) * 2019-11-22 2021-05-27 Tdk株式会社 Soft magnetic alloy thin strip and magnetic component
JP2021080546A (en) * 2019-11-22 2021-05-27 Tdk株式会社 Soft magnetic alloy thin strip and magnetic component
CN113564497A (en) * 2021-07-23 2021-10-29 同济大学 A kind of Fe-based amorphous alloy and its preparation method and application

Also Published As

Publication number Publication date
JP2710948B2 (en) 1998-02-10

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPH0774419B2 (en) Method for producing Fe-based soft magnetic alloy
JPH044393B2 (en)
JP3279399B2 (en) Method for producing Fe-based soft magnetic alloy
JPH01247555A (en) Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production
JPH01242755A (en) Fe-based magnetic alloy
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP3231149B2 (en) Noise filter
JP2584179B2 (en) High permeability Fe-based alloy
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
EP0575190B1 (en) Fe-base soft magnetic alloy and process for making same
JPH0711396A (en) Fe base soft magnetic alloy
JPH05335129A (en) Fe-based soft magnetic alloy powder and method for producing the same
JP3460763B2 (en) Manufacturing method of soft magnetic alloy
JPH02236259A (en) Alloy excellent in iso-permeability and its production
JPS58123848A (en) Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JP2713373B2 (en) Magnetic core
JPH01149940A (en) Fe-base magnetic alloy
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JPH07258728A (en) Method for producing Fe-based fine crystal soft magnetic alloy
JPH0610105A (en) Fe base soft magnetic alloy
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JP2812569B2 (en) Low frequency transformer
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH03271346A (en) Soft magnetic alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 11