JPH01246178A - Production of refractory for molten steel - Google Patents
Production of refractory for molten steelInfo
- Publication number
- JPH01246178A JPH01246178A JP63071635A JP7163588A JPH01246178A JP H01246178 A JPH01246178 A JP H01246178A JP 63071635 A JP63071635 A JP 63071635A JP 7163588 A JP7163588 A JP 7163588A JP H01246178 A JPH01246178 A JP H01246178A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- refractory
- molten steel
- resistance
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 37
- 239000010959 steel Substances 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000843 powder Substances 0.000 claims abstract description 54
- 229910052582 BN Inorganic materials 0.000 claims abstract description 22
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims abstract description 22
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000012298 atmosphere Substances 0.000 claims abstract description 10
- 239000011812 mixed powder Substances 0.000 claims abstract description 8
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims abstract description 3
- 238000000465 moulding Methods 0.000 claims description 13
- 238000010304 firing Methods 0.000 claims description 9
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000035939 shock Effects 0.000 abstract description 15
- 239000002994 raw material Substances 0.000 abstract description 7
- 238000005452 bending Methods 0.000 abstract description 5
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 4
- 238000009749 continuous casting Methods 0.000 abstract description 4
- 238000002156 mixing Methods 0.000 abstract description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 239000012299 nitrogen atmosphere Substances 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract 2
- 230000008018 melting Effects 0.000 abstract 2
- 238000001354 calcination Methods 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 14
- 230000003628 erosive effect Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 239000011819 refractory material Substances 0.000 description 11
- 238000007654 immersion Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 239000002245 particle Substances 0.000 description 9
- 229910005091 Si3N Inorganic materials 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000006378 damage Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- MGGVALXERJRIRO-UHFFFAOYSA-N 4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-2-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-1H-pyrazol-5-one Chemical group C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C=1C(=NN(C=1)CC(=O)N1CC2=C(CC1)NN=N2)O MGGVALXERJRIRO-UHFFFAOYSA-N 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Ceramic Products (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
ズルにとして使用するのに特に望ましい耐溶損性と耐熱
衝撃性を有する溶鋼用耐火物の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a refractory for molten steel having erosion resistance and thermal shock resistance particularly desirable for use as a refractory.
従来、鉄鋼業関連で用いられる溶鋼用耐火物、例えば水
平連鋳用プレークリングやノズルには窒化ホウ素(BN
)焼結体や窒化ケイ素(Si3N4 )焼結体が用いら
れてきた。しかしながら、前者は耐熱衝撃性に優れるが
耐摩耗性に劣シ、一方、後者は耐摩耗性に優れるが耐熱
衝撃性に劣るという欠点があった。Conventionally, boron nitride (BN) has been used in refractories for molten steel used in the steel industry, such as plate rings and nozzles for horizontal continuous casting.
) sintered bodies and silicon nitride (Si3N4) sintered bodies have been used. However, the former has excellent thermal shock resistance but poor abrasion resistance, while the latter has excellent abrasion resistance but poor thermal shock resistance.
このため、BNと813N、 ’i複合化させて両者の
欠点をおぎなう努力がなされている。しかし、糧
Si3N、には、溶鋼に浸没されると溶鋼あるいは溶鋼
中に含まれる不純物成分と化学的に反応し溶損するとい
う溶鋼用耐火物にとって根本的な欠点がある。For this reason, efforts are being made to combine BN, 813N, and 'i to overcome the drawbacks of both. However, Si3N has a fundamental drawback as a refractory for molten steel: when it is immersed in molten steel, it chemically reacts with the molten steel or with impurity components contained in the molten steel and is destroyed.
そこで最近になって、溶鋼に対し化学的に安定な窒化ア
ルミユウム(AtN )や酸化アル−ミニラム(At2
0s )をさらに複合化し耐溶損性を改良した耐火物が
提案されている(例えば、特開昭56−129666号
公報、特開昭60−51669号公報)。しかしながら
、これらの耐火物においてもSi3N4を10重量−以
上含んでいるため、耐溶損性を充分に改良するまでには
至っていない。Recently, aluminum nitride (AtN) and aluminum oxide (At2), which are chemically stable against molten steel, have been developed.
Refractories with improved erosion resistance by further compounding 0s) have been proposed (for example, JP-A-56-129666 and JP-A-60-51669). However, since these refractories also contain Si3N4 in an amount of 10% by weight or more, the erosion resistance has not been sufficiently improved.
一方、ALNに酸化イツトリウム(Y2O3)を添加し
た焼結体は、高熱伝導性基板や高温構造材として利用で
きることが知られているが、この焼結体は耐熱衝撃性が
劣るため、実際のところ溶鋼用耐火物としては利用でき
ない。On the other hand, it is known that a sintered body made by adding yttrium oxide (Y2O3) to ALN can be used as a highly thermally conductive substrate or a high-temperature structural material, but this sintered body has poor thermal shock resistance, so in practice It cannot be used as a refractory for molten steel.
一般に、溶鋼用耐火物は、l!8@中に浸漬されて静止
あるいは溶鋼中を移動する状態で用いられるか、又はブ
レークリングやノズルのように固定され、その内側を溶
鋼が流れる状態で用いられる。Generally, refractories for molten steel are l! It can be immersed in molten steel and used either stationary or moving in the molten steel, or it can be fixed like a break ring or nozzle and the molten steel flows inside it.
そのため、溶鋼用耐火物には、特に大きな機械的応力や
固体どうしの摺動のような摩耗力が加わるわけではない
ので、5i3N4− B N系、Si3N4− BN−
AtN系、813N4− B N −ktN −At2
03系で得られるような高い強度と高い硬度(耐摩耗性
)は必要でない。むしろ、ブレークリングやノズル等に
より得られる金属材料の寸法変化の防止、溶鋼用耐火物
の寿命延長、熱衝撃による耐火物の破壊防止の点から耐
溶損性と耐熱衝撃性に優れていることが重要である。Therefore, refractories for molten steel are not subject to particularly large mechanical stress or abrasive forces such as sliding between solids, so 5i3N4-BN series, Si3N4-BN-
AtN series, 813N4- B N -ktN -At2
The high strength and hardness (wear resistance) obtained with the 03 series are not required. Rather, it is said that it has excellent corrosion resistance and thermal shock resistance in terms of preventing dimensional changes in metal materials obtained by break rings and nozzles, etc., extending the life of refractories for molten steel, and preventing destruction of refractories due to thermal shock. is important.
このため、鉄鋼業界等ではさらに耐溶損性と耐熱衝撃性
に優れた溶鋼用耐火物の開発が強く望まれている。For this reason, there is a strong desire in the steel industry and the like to develop refractories for molten steel that have even better corrosion resistance and thermal shock resistance.
本発明者等は、連続鋳造用ブレークリングやノズル等の
用途として好適なSi3N、を含まない溶鋼用耐火物に
ついて種々検討した結果、出発原料にSi3N、粉末を
用いないかわシに、BN粉末とAtN粉末とY2O3粉
末とを特定割合にすると共にBN粉末の比表面積を30
m2/、!i/以上にすれば、優れた耐溶損性を持ち、
しかも溶鋼用耐火物としての使用に充分耐え得る強度、
耐摩耗性及び耐熱衝撃性を備え九溶鋼用耐火物を製造で
きることを見い出し、本発明を完成するに至った。As a result of various studies on refractories for molten steel that do not contain Si3N, which are suitable for applications such as break rings and nozzles for continuous casting, the present inventors found that Si3N is used as the starting material, and BN powder is used as a refractory that does not use powder. At the same time as AtN powder and Y2O3 powder in a specific ratio, the specific surface area of BN powder is 30.
m2/,! If it is more than i/, it has excellent erosion resistance,
Moreover, it has sufficient strength to withstand use as a refractory for molten steel.
The present inventors have discovered that it is possible to produce a refractory for molten steel that has wear resistance and thermal shock resistance, and has completed the present invention.
すなわち、本発明は、比表面積30m2/、!i’以上
のBN粉末20〜70重量部、AtN粉末60〜80重
量部及びY2O3粉末0.1〜8重量部を含んでなる混
合粉末を、1000kl!/12以上の圧力で成形した
後又は成形しながら非酸化性雰囲気中1600〜210
0°Cの温度で焼成することを特徴とする溶鋼用耐火物
の製造方法である。That is, the present invention has a specific surface area of 30 m2/! 1000 kl of mixed powder containing 20 to 70 parts by weight of BN powder of i' or more, 60 to 80 parts by weight of AtN powder, and 0.1 to 8 parts by weight of Y2O3 powder! /1600-210 in a non-oxidizing atmosphere after molding at a pressure of 12 or more or while molding
This is a method for producing a refractory for molten steel, which is characterized by firing at a temperature of 0°C.
以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.
まず、本発明で用いる原料粉末について説明すると、B
N粉末は市販のもので良いが、その比表面積は3(]7
F12/、S’以上であること要する。これは本発明の
大きな特徴の1つである。比表面積が30m”/&未満
では耐火物の粒子間の結合力が低下し、強度と耐溶損性
が低下するようになる。First, to explain the raw material powder used in the present invention, B
Commercially available N powder may be used, but its specific surface area is 3(]7
It needs to be F12/, S' or more. This is one of the major features of the present invention. When the specific surface area is less than 30 m''/&, the bonding force between particles of the refractory decreases, resulting in a decrease in strength and erosion resistance.
特に好ましいBN粉末は、結晶性の高い六方晶BN粉末
をアトライター、メールミル、振動ボールミル、ライカ
イ機等の通常の粉砕機を用い粉砕して得られた比表面積
60m2//i以上のBN粉末である。これは、結晶性
の高いBN粉末は予備成形時の可塑変形性に優れており
高密度の予備成形体が得られやすいことによる。A particularly preferable BN powder is a BN powder with a specific surface area of 60 m2//i or more obtained by pulverizing a highly crystalline hexagonal BN powder using an ordinary pulverizer such as an attritor, mail mill, vibrating ball mill, or Raikai machine. It is. This is because highly crystalline BN powder has excellent plastic deformability during preforming, and a high-density preform can be easily obtained.
AtN粉末とY2O3粉末は市販品で良いが、いずれも
純度98%以上、平均粒子径4μm以下のものが望まし
い。なおAtNの粒度がBN粉末と同等あるいは微細粒
であるほど焼結体の′i!!度が向上しその結果耐溶損
性が向上する。Commercially available AtN powder and Y2O3 powder may be used, but both preferably have a purity of 98% or more and an average particle size of 4 μm or less. Note that the smaller the particle size of AtN is or is equivalent to that of BN powder, the better the sintered body'i! ! As a result, corrosion resistance is improved.
本発明においては、前記原料粉末の配合割合が重要であ
る。In the present invention, the blending ratio of the raw material powder is important.
BN粉末は20〜70重量部である。20重量部未満で
は溶鋼用耐火物の耐熱衝撃性が低下し、一方、70重量
部を超えると溶鋼に対する#t#損性が低下すると共に
耐火物の強度と耐摩耗性が低下する。The amount of BN powder is 20 to 70 parts by weight. If it is less than 20 parts by weight, the thermal shock resistance of the refractory for molten steel decreases, while if it exceeds 70 parts by weight, the #t# damage resistance to molten steel decreases, and the strength and wear resistance of the refractory decrease.
AtN粉末は60〜80重量部である。60重量部未満
では溶鋼用耐火物の耐溶損性が低下し、−方、80重量
部を超えると耐熱i撃性が低下する。The amount of AtN powder is 60-80 parts by weight. If it is less than 60 parts by weight, the erosion resistance of the refractory for molten steel will decrease, and if it exceeds 80 parts by weight, the heat impact resistance will decrease.
Y2O3粉末は0.1〜8重量部である。0.1重1部
未満では溶鋼用耐火物の粒子間の結合力が弱くなり充分
な強度かえられない。また、密度も低下するので耐溶損
性が低下する。一方、8重量部を超えると焼結時に液相
が流出して耐溶損性が低下する。Y2O3 powder is 0.1-8 parts by weight. If it is less than 0.1 weight and 1 part, the bonding force between particles of the refractory for molten steel becomes weak and sufficient strength cannot be obtained. Furthermore, since the density also decreases, the erosion resistance decreases. On the other hand, if it exceeds 8 parts by weight, the liquid phase will flow out during sintering, resulting in a decrease in erosion resistance.
特にブレークリングやノズルの用途にこの溶鋼用耐火物
を用いる場合は、BNN粉末4御〜70〜4重量部が望
ましい。Particularly when this refractory for molten steel is used for break rings and nozzles, it is desirable to use 4 to 70 to 4 parts by weight of BNN powder.
次に、前記原料粉末を所定の割合で配合後、混合機を用
いて均一に混合し、この混合粉末をホットプレス法や常
圧焼結法等の常法によシ焼成する。Next, after blending the raw material powders in a predetermined ratio, they are mixed uniformly using a mixer, and the mixed powder is fired by a conventional method such as a hot press method or an atmospheric pressure sintering method.
成形圧力は1000 kll/ cm2以上であれば良
く好ましくは500 D K9/crn2以上である。The molding pressure may be at least 1000 kll/cm2, preferably at least 500 D K9/crn2.
1. OQ Okg/cm2未満の圧力であると成形体
の密度を充分上げることができず、強度が低下するため
成形体の精密加工が困難となるばかりでなくこの成形体
を焼成しても低密度の耐火物しか得られない。このよう
な耐火物を溶鋼に浸漬すると開気孔より溶鋼が耐火物中
に浸入しやすくなるため耐溶損性が低下する。なお粉末
を成形するにあたっては金型成形機、冷間等方圧成形機
が用いられる。1. If the pressure is less than OQ Okg/cm2, it will not be possible to sufficiently increase the density of the compact, and its strength will decrease, making precision processing of the compact difficult. Only refractories can be obtained. When such a refractory is immersed in molten steel, the molten steel easily enters the refractory through the open pores, resulting in a decrease in erosion resistance. Note that a mold molding machine and a cold isostatic press molding machine are used to mold the powder.
焼成は非酸化性雰囲気中1600〜2ioo′cの温度
で行う。焼成温度が1600℃未満では、BN粒子、A
tN粒子、Y2O3粒子の結合力が充分でなくなり耐火
物の強度が低下する。また、21DO’Cを超えるとA
tNが熱分′Sを起こしその本来の性質を失う。特に耐
溶損性に優れ高強度な焼結体を得るためには、焼成温度
を1750〜2050℃にすることが好ましい。Firing is carried out in a non-oxidizing atmosphere at a temperature of 1600 to 2 ioo'c. When the firing temperature is less than 1600°C, BN particles, A
The bonding force between the tN particles and the Y2O3 particles becomes insufficient, and the strength of the refractory decreases. Also, if it exceeds 21DO'C,
tN generates heat 'S and loses its original properties. In particular, in order to obtain a sintered body with excellent erosion resistance and high strength, it is preferable to set the firing temperature to 1750 to 2050°C.
焼成雰囲気としては、真空中、He、 Ar等の不活性
ガス中、あるいはN2、N2、NH3ガス中等から選ば
れた非酸化性雰囲気であれば良いが、特に、A2N、B
Nの分解を抑制する効果のあるN211−囲気が望まし
い。なお、酸化雰囲気中で焼成するとBNの酸化によυ
B2O3が耐火物中に生成するため、耐溶損性、耐熱衝
撃性、高温強度が低下してしまう。焼成装置としては、
タンマン炉、高周波炉、抵抗加熱炉が用いられる。The firing atmosphere may be a vacuum, an inert gas such as He or Ar, or a non-oxidizing atmosphere selected from N2, N2, NH3 gas, etc., but especially A2N, B
N211-air is desirable because it has the effect of suppressing the decomposition of N. Note that when fired in an oxidizing atmosphere, υ
Since B2O3 is generated in the refractory, the erosion resistance, thermal shock resistance, and high temperature strength deteriorate. As a baking device,
Tammann furnaces, high frequency furnaces, and resistance heating furnaces are used.
溶鋼用耐火物の密度については、相対密度として70%
以上であることが好ましい。相対密度が70%未満であ
ると溶鋼中に耐火物を浸漬した場合、開気孔より溶鋼が
耐火物中に侵入しやすくなるため耐溶損性、耐摩耗性及
び強度が低下する。Regarding the density of refractories for molten steel, the relative density is 70%.
It is preferable that it is above. If the relative density is less than 70%, when a refractory is immersed in molten steel, the molten steel will more easily penetrate into the refractory through open pores, resulting in decreased erosion resistance, wear resistance, and strength.
相対密度は例えば成形圧力によって変えることができる
。The relative density can be varied, for example, by molding pressure.
以下、本発明全実施例と比較例をあげてさらに具体的に
説明する。Hereinafter, the present invention will be explained in more detail by citing all the examples and comparative examples of the present invention.
実施例1
BN粉末(電気化学工業(株)製、グレード5p−1、
六方晶、純度96%、比表面積50 m”/、!i+)
50重量部にAtN @末(電気化学工業(株)m、グ
レードAP−13、純度99%、平均粒子%2μm)4
7重量部、Y2O3粉末(三傅金属工業(株)良、高純
度酸化イツトリウム純度99.9%、平均粒子径4μm
)3重量部を添加した後振動ボールミルにて混合し成形
用混合粉末を得た。次にこの混合粉末を1000 ’f
J&/c!rL′の圧力で冷間等方圧成形した。Example 1 BN powder (manufactured by Denki Kagaku Kogyo Co., Ltd., grade 5p-1,
Hexagonal crystal, purity 96%, specific surface area 50 m”/,!i+)
50 parts by weight of AtN@powder (Denki Kagaku Kogyo Co., Ltd. m, grade AP-13, purity 99%, average particle % 2 μm) 4
7 parts by weight, Y2O3 powder (Sanfu Metal Industry Co., Ltd., high purity yttrium oxide purity 99.9%, average particle size 4 μm)
) 3 parts by weight were added and mixed in a vibrating ball mill to obtain a mixed powder for molding. Next, add this mixed powder to 1000'f
J&/c! Cold isostatic pressing was carried out at a pressure of rL'.
得られた成形体をBN粉末の入った黒鉛容器中に埋め込
み、高周波炉にて2000℃で60分間N2雰囲気下で
焼成した。得られた焼結体の相対密度、曲げ強さ、ショ
ア硬度、耐熱衝撃性及び溶鋼に対するd損量を測定した
。その結果を表に示す。The obtained compact was embedded in a graphite container containing BN powder, and fired in a high frequency furnace at 2000° C. for 60 minutes in an N2 atmosphere. The relative density, bending strength, Shore hardness, thermal shock resistance, and d loss against molten steel of the obtained sintered body were measured. The results are shown in the table.
実施例2
成形圧力を5000 kg/am”としたこと以外は実
施例1と同様の方法にて実施した。Example 2 The same method as Example 1 was carried out except that the molding pressure was 5000 kg/am''.
実施例3〜5
実施例1で用いた原料粉末を用い表に示す配合組成に変
えたこと以外は実施例1と同様の方法にて実施した。Examples 3 to 5 Examples were carried out in the same manner as in Example 1, except that the raw material powder used in Example 1 was used and the composition was changed to the one shown in the table.
実施例6
BN粉末(′!!気化学工業(株)製、グレードG P
。Example 6 BN powder ('!! manufactured by Kikagaku Kogyo Co., Ltd., grade GP
.
六方晶、純度99%、比表面積6m2/、!i’)をア
トライターミルを用い比表面積が85m2/、!i’に
なるまで粉砕しBN倣粉末を得た。比表面積はBET法
にて測定した。この粉末50重量部に実施例1で用いた
AtN粉末47重量部とY2O3粉末6重量部を添刀口
混合し成形用原料粉末を得た。この成形用原料粉末を実
施例1と同様の方法にて成形した後々
2000°C温度で60分間、N2ガス雰囲気中で焼成
した。Hexagonal crystal, purity 99%, specific surface area 6m2/,! i') using an attritor mill with a specific surface area of 85 m2/,! It was ground to i' to obtain a BN imitation powder. The specific surface area was measured by the BET method. 47 parts by weight of AtN powder and 6 parts by weight of Y2O3 powder used in Example 1 were mixed into 50 parts by weight of this powder to obtain a raw material powder for molding. This raw material powder for molding was molded in the same manner as in Example 1, and then fired at a temperature of 2000°C for 60 minutes in an N2 gas atmosphere.
実施例7
焼成温度を1600℃としたこと以外は実施例6と同様
の方法にて実施した。Example 7 The same method as Example 6 was carried out except that the firing temperature was 1600°C.
実施例8
比表面積が35m2/、!i+になるまで粉砕したBN
粉末を用いたこと以外は実施例6と同様の方法にて実施
した。Example 8 Specific surface area is 35 m2/! BN crushed until i+
It was carried out in the same manner as in Example 6 except that powder was used.
比較例1
BN粉末を粉砕処理なしで用いたこと以外は実施例6と
同様の方法にて実施した。Comparative Example 1 Comparative example 1 was carried out in the same manner as in Example 6 except that BN powder was used without pulverization.
比較例2
成形圧力を500 kg/cm”としたこと以外は実施
例6と同様の方法にて実施した。Comparative Example 2 Comparative Example 2 was carried out in the same manner as in Example 6 except that the molding pressure was 500 kg/cm''.
比較例6〜6
BN粉末、ALN粉末及びY2O3粉末ft表に示す配
合組成に変えたこと以外は実施例6と同様の方法にて実
施した。Comparative Examples 6 to 6 Comparisons were carried out in the same manner as in Example 6 except that the compositions were changed to those shown in the ft table of BN powder, ALN powder, and Y2O3 powder.
比較例7
焼成温度を2200°Cとしたこと以外は実施例6と同
様の方法にて実施した。Comparative Example 7 The same method as in Example 6 was carried out except that the firing temperature was 2200°C.
比較例8
焼成温度を1500°Cとしたこと以外は実施例6と同
様の方法にて実施した。Comparative Example 8 The same method as Example 6 was carried out except that the firing temperature was 1500°C.
比較例2
比表面積が25 m2/、Sl’ Kなるまで粉砕し九
BN粉末を用いたこと以外は実施例6と同様の方法にて
実施した。Comparative Example 2 The same method as in Example 6 was carried out except that 9BN powder was used, which was ground to a specific surface area of 25 m2/Sl'K.
比較例10
実施例1で用いたBN@末20重量部に、AtN粉末5
0M量部、At203粉末(純度99%、比表面積8m
2/F)20重濾部、さらに結合剤としてSi3N、粉
末(を気化学工業(株)製、8N−9FW、純度97チ
、比表面積12m2/Ji’)30重f:部を添加し振
動ボールミルにて混合した後、この混合粉末を成形圧3
000 ’Q/an2の圧力で冷間等方圧成形した。得
られた成形体’kNzガス雰囲気下1800℃で2時間
焼成した。Comparative Example 10 5 parts by weight of AtN powder was added to 20 parts by weight of BN@ powder used in Example 1.
0M parts, At203 powder (purity 99%, specific surface area 8m
2/F) A 20-weight filter, 30 parts of Si3N and powder (manufactured by Kikagaku Kogyo Co., Ltd., 8N-9FW, purity 97%, specific surface area 12 m2/Ji') as a binder were added and vibrated. After mixing in a ball mill, this mixed powder was molded under a molding pressure of 3.
Cold isostatic pressing was carried out at a pressure of 000'Q/an2. The obtained molded body was fired at 1800° C. for 2 hours in a kNz gas atmosphere.
比較例11
BN粉末60重量部と8 i 3N4粉末70重を部の
混合粉末を用いたこと以外は比較例10と同様の方法に
て実施した。Comparative Example 11 The same method as Comparative Example 10 was carried out except that a mixed powder of 60 parts by weight of BN powder and 70 parts by weight of 8 i 3N4 powder was used.
表に記載した各物性の測定は次の方法によった。Each physical property listed in the table was measured by the following method.
(1)相対密度・・・焼結体の寸法よυ体積を求め、重
量から密度を求めた後、相対密度(%)=密度(11/
c1n3)/理論密度(9/cr!L3) X 100
の式で算出した。(1) Relative density...After determining the υ volume from the dimensions of the sintered body, and determining the density from the weight, relative density (%) = density (11/
c1n3)/theoretical density (9/cr!L3) x 100
Calculated using the formula.
(2)常温曲げ強さ・・・JISR1601に準拠した
。(2) Room temperature bending strength: Compliant with JISR1601.
(3) ショア硬さ・・・JIS Z 2246に準
拠した。(3) Shore hardness: Based on JIS Z 2246.
(4) 耐熱fIs性・・・焼結体よシ切出した試料
を一定@度に加熱保持した後、この試料を20℃の水中
に急冷投入して急衝撃を加え、急冷後の試料の曲げ強さ
を測定して急激な曲げ強さの低下がおき始める臨界温度
差へTを求め耐熱衝撃性とした。(4) Heat resistance fIs property: After heating and maintaining a sample cut from a sintered body at a constant temperature, the sample was rapidly cooled in water at 20°C to apply a sudden impact, and the sample was bent after being rapidly cooled. The strength was measured and T, the critical temperature difference at which a sudden decrease in bending strength begins, was determined and the thermal shock resistance was determined.
(5)浴損蓋・5IJS 304、S S 41 ’k
Mg、OルyrJ?中1550°Cの温度で融解し、そ
の融液に焼結体より切り出した7X20X40mの試料
を60分間浸漬し1g2漬後の試料の寸法全測定し次式
によシ算出し友。(5) Bath damage cover/5IJS 304, S S 41'k
Mg,OruyrJ? A sample of 7 x 20 x 40 m cut from the sintered body was immersed in the melt at a temperature of 1550°C for 60 minutes, and the dimensions of the 1 g sample after immersion were measured and calculated according to the following formula.
Wl:浸漬前試料の幅(1n)・・・20+mW2:浸
漬後試料の幅(ms+)・・・浸漬後測定Tx:浸漬前
試料の厚さ(龍)・・・7隨T2′:浸漬後試料の厚さ
(朋)・・・浸漬後測定
L :浸漬長さ (Im)・・・50ynxθ
:浸漬時間 CHr)・= 0.5 Hr〔発明
の効果〕
本発明の製造方法によって得られた溶鋼用耐火物は、耐
溶損性と耐熱衝撃性が著しく優れており、と
しかも適度な曲げ強さをショア硬さ(耐摩耗性)を備え
ているので連続鋳造用プレークリング・やノズル等の用
途として特に好適なものである。Wl: Width of sample before immersion (1n)...20+mW2: Width of sample after immersion (ms+)...Measurement after immersion Tx: Thickness of sample before immersion (dragon)...7 T2': After immersion Thickness of sample (to)...Measurement after immersion L: Immersion length (Im)...50ynxθ
: Immersion time CHr)・= 0.5 Hr [Effects of the invention] The refractory for molten steel obtained by the production method of the present invention has extremely excellent erosion resistance and thermal shock resistance, and also has moderate bending strength. Since it has a high shore hardness (wear resistance), it is particularly suitable for use in continuous casting plates, nozzles, etc.
特許出願人 電気化学工業株式会社Patent applicant Denki Kagaku Kogyo Co., Ltd.
Claims (1)
0〜70重量部、窒化アルミユウム粉末60〜80重量
部及び酸化イットリウム粉末0.1〜8重量部を含んで
なる混合粉末を、1000kg/cm^2以上の圧力で
成形した後又は成形しながら非酸化性雰囲気中1600
〜2100℃の温度で焼成することを特徴とする溶鋼用
耐火物の製造方法。(1) Boron nitride powder 2 with a specific surface area of 30m^2/g or more
A mixed powder containing 0 to 70 parts by weight, 60 to 80 parts by weight of aluminum nitride powder, and 0.1 to 8 parts by weight of yttrium oxide powder is molded at a pressure of 1000 kg/cm^2 or more or during molding. 1600 in oxidizing atmosphere
A method for producing a refractory for molten steel, characterized by firing at a temperature of ~2100°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63071635A JPH075379B2 (en) | 1988-03-25 | 1988-03-25 | Method for manufacturing refractory for molten steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63071635A JPH075379B2 (en) | 1988-03-25 | 1988-03-25 | Method for manufacturing refractory for molten steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01246178A true JPH01246178A (en) | 1989-10-02 |
JPH075379B2 JPH075379B2 (en) | 1995-01-25 |
Family
ID=13466306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63071635A Expired - Lifetime JPH075379B2 (en) | 1988-03-25 | 1988-03-25 | Method for manufacturing refractory for molten steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH075379B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002776A1 (en) * | 1998-11-19 | 2000-05-24 | Vesuvius Crucible Company | Composite material |
WO2000030996A3 (en) * | 1998-11-19 | 2000-08-10 | Vesuvius Crucible Co | Composite material |
JP2008001536A (en) * | 2006-06-20 | 2008-01-10 | Osaka Univ | Aluminum nitride / boron nitride composite powder and method for producing the same |
WO2017209063A1 (en) * | 2016-05-31 | 2017-12-07 | デンカ株式会社 | Boron nitride nozzle and boron nitride crucible for production of neodymium alloy, and neodymium alloy production method using nozzle or crucible |
CN117303910A (en) * | 2023-10-12 | 2023-12-29 | 中国科学院赣江创新研究院 | Hexagonal boron nitride ceramic and preparation method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465072A (en) * | 1987-05-12 | 1989-03-10 | Koransha Kk | Bn-based ceramics having superior erosion resistance |
-
1988
- 1988-03-25 JP JP63071635A patent/JPH075379B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465072A (en) * | 1987-05-12 | 1989-03-10 | Koransha Kk | Bn-based ceramics having superior erosion resistance |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1002776A1 (en) * | 1998-11-19 | 2000-05-24 | Vesuvius Crucible Company | Composite material |
WO2000030996A3 (en) * | 1998-11-19 | 2000-08-10 | Vesuvius Crucible Co | Composite material |
CZ300027B6 (en) * | 1998-11-19 | 2009-01-14 | Vesuvius Crucible Company | Composite material |
JP2008001536A (en) * | 2006-06-20 | 2008-01-10 | Osaka Univ | Aluminum nitride / boron nitride composite powder and method for producing the same |
WO2017209063A1 (en) * | 2016-05-31 | 2017-12-07 | デンカ株式会社 | Boron nitride nozzle and boron nitride crucible for production of neodymium alloy, and neodymium alloy production method using nozzle or crucible |
CN117303910A (en) * | 2023-10-12 | 2023-12-29 | 中国科学院赣江创新研究院 | Hexagonal boron nitride ceramic and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH075379B2 (en) | 1995-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0231031B2 (en) | ||
EP0780351B1 (en) | Aluminum nitride sintered body and method for manufacturing the same | |
JPH01246178A (en) | Production of refractory for molten steel | |
JPS6210954B2 (en) | ||
JP3076682B2 (en) | Alumina-based sintered body and method for producing the same | |
JP2766445B2 (en) | Sialon composite sintered body and method for producing the same | |
EP1044177A1 (en) | Dense refractories with improved thermal shock resistance | |
US5213731A (en) | Method for manufacture of a sintered body of Al2 O3 -Tic system useful as a cutting tool | |
JPS638069B2 (en) | ||
JPH01131069A (en) | Complex compact calcined under ordinary pressure | |
JPH0259471A (en) | High-temperature, high-strength silicon nitride sintered body and its manufacturing method | |
JPS6335593B2 (en) | ||
JPS6141872B2 (en) | ||
JPH01131062A (en) | Complex compact calcined under ordinary pressure | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JP2700786B2 (en) | High-temperature high-strength silicon nitride sintered body and method for producing the same | |
JP3719762B2 (en) | Refractories for firing ferrite | |
EP0241514A1 (en) | Dense ceramics containing a solid solution and method for making the same | |
JP2742620B2 (en) | Boride-aluminum oxide sintered body and method for producing the same | |
JPH0873269A (en) | Ceramic sintered compact and its production | |
JPH08157262A (en) | Aluminum nitride sintered compact and its production | |
JPH0559073B2 (en) | ||
KR20240131782A (en) | Composition for manufacturing silicon nitride substrate and silicon nitride substrate manufactured by the same | |
KR20240131783A (en) | Composition for manufacturing silicon nitride substrate and silicon nitride substrate manufactured by the same | |
JP2003073167A (en) | Manufacturing method of Si3N4-SiC composite sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080125 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 14 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090125 Year of fee payment: 14 |