[go: up one dir, main page]

JPH01245194A - At-reactor isolation cooler - Google Patents

At-reactor isolation cooler

Info

Publication number
JPH01245194A
JPH01245194A JP63071838A JP7183888A JPH01245194A JP H01245194 A JPH01245194 A JP H01245194A JP 63071838 A JP63071838 A JP 63071838A JP 7183888 A JP7183888 A JP 7183888A JP H01245194 A JPH01245194 A JP H01245194A
Authority
JP
Japan
Prior art keywords
cooling water
cooling
lubricating oil
reactor
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63071838A
Other languages
Japanese (ja)
Inventor
Takashi Matsunaga
隆志 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63071838A priority Critical patent/JPH01245194A/en
Publication of JPH01245194A publication Critical patent/JPH01245194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enhance the reliability of the at-reactor isolation cooler so that the stable operation is assured by cooling and supplying the branched cooling water which is branched from the discharge side of an at-reactor isolation cooling pump and cools the lubricating oil for apparatus at the time of reactor isolation. CONSTITUTION:This device has the at-reactor isolation cooling pump 2 which injects the cooling water stored in a condensate storage tank 4 or a pressure control pool 5 to a reactor pressure vessel 1 at the time of the reactor isolation to supply the branched cooling water branched from the discharge side of the pump 2 to a lubricating oil cooler 6, thereby cooling the lubricating oil for apparatus. The radioactive steam discharged from the apparatus is condensed by the branched cooling water in a condenser 7. The branched cooling water supplied to the lubricating oil cooler 6 and the condenser 7 is cooled by a branched cooling water cooler 18 to which a cooling medium is supplied from a cooling medium supply device 19. The branched cooling water supplied to the lubricating oil cooler 6 is sufficiently cooled by the branched cooling water cooler 18 and, therefore, the temp. of the lubricating oil is maintained at a low temp. even if the temp. of the stored cooling water rises at the time of the reactor isolation by a loss of coolant.

Description

【発明の詳細な説明】 (発明の目的〕 (産業上の利用分野) 本発明は、原子炉隔離時冷却装置に係り、特に事故発生
時に系内の冷Nj水潟度が上昇した場合においても、様
器用潤滑油の温度を低く抑制し、機器の運転を安全に続
行し1qる原子炉隔離時冷却装置に関する。
[Detailed Description of the Invention] (Objective of the Invention) (Industrial Application Field) The present invention relates to a nuclear reactor isolation cooling system, and in particular, even when the degree of cold Nj water lag in the system increases during an accident. This invention relates to a nuclear reactor isolation cooling system that suppresses the temperature of lubricating oil to a low level and safely continues equipment operation.

(従来の技術) 沸騰水形原子炉においては冷1Jl水喪失による原子炉
隔離時に、炉心の冷却および炉水位の維持を行うために
原子炉に冷却水を供給する原子炉隔離時冷却装置が装備
されている。
(Prior art) Boiling water reactors are equipped with a reactor isolation cooling system that supplies cooling water to the reactor in order to cool the reactor core and maintain the reactor water level when the reactor is isolated due to loss of 1 Jl of cold water. has been done.

従来の原子炉隔離時論IJ1装置は、一般に第2図の系
統図に示すように、原子炉隔離時に原子炉圧力容器1に
冷fJI水を供給する隔離時冷!Jl系ポンプ2と、隔
離性冷却系ポンプ2を駆動するタービン3と、冷却水と
なる復水またはプール水を貯留する復水貯蔵槽4および
圧力抑制ブール5と、隔離性冷却系ポンプ2の吐出側か
ら分岐された分岐冷却水によってタービン、ポンプ等の
機器用の潤滑油を冷WするF4滑油冷141器6と、上
記機器のグランド部等から排出された放射性蒸気を凝縮
させるバロメトリックコンデンサなどの凝縮器7と、上
記機器を接続する配管と、配管に介装された弁類と、図
示しない計測制御装置とから構成される。
Conventional reactor isolation IJ1 equipment generally supplies cold fJI water to the reactor pressure vessel 1 during reactor isolation, as shown in the system diagram in Figure 2. The Jl system pump 2, the turbine 3 that drives the isolated cooling system pump 2, the condensate storage tank 4 and pressure suppression boule 5 that store condensate or pool water that becomes cooling water, and the isolated cooling system pump 2. An F4 oil cooler 141 cools lubricating oil for equipment such as turbines and pumps using branched cooling water branched from the discharge side, and a barometric cooler that condenses radioactive steam discharged from the glands of the equipment. It is composed of a condenser 7 such as a condenser, piping connecting the above-mentioned devices, valves installed in the piping, and a measurement control device (not shown).

復水貯蔵槽4および圧力抑制プール5と、隔離性冷却系
ポンプ2とを接続する吸込配M8には、電動弁9a、9
bおよび逆止弁10a、10bが配設される。
The suction pipe M8 connecting the condensate storage tank 4 and the pressure suppression pool 5 with the isolated cooling system pump 2 includes electric valves 9a and 9.
b and check valves 10a, 10b are provided.

また隔離性冷却系ポンプ2の吐出側は、注入配管11に
よって原子炉圧力容器1に接続される。
Further, the discharge side of the isolated cooling system pump 2 is connected to the reactor pressure vessel 1 through an injection pipe 11.

また注入配管11から分岐して分岐冷却水配管12が設
けられ、この分岐冷却水配管12はr4滑油冷W器6a
、5bを経て凝縮器7に接続される。
Further, a branch cooling water pipe 12 is provided branching from the injection pipe 11, and this branch cooling water pipe 12 is connected to the r4 oil cooling W unit 6a.
, 5b to the condenser 7.

ざらにタービン3の入口側には駆動用蒸気を供給する主
蒸気供給配管13が接続される一方、出口側には、圧力
抑制ブール5に接続する排気配管14が設けられている
Roughly speaking, a main steam supply pipe 13 for supplying driving steam is connected to the inlet side of the turbine 3, while an exhaust pipe 14 connected to the pressure suppression boule 5 is provided to the outlet side.

原子炉隔離時には、炉水位低信号により主蒸気供給配管
13を介して蒸気がタービン3に供給され、隔離性冷却
系ポンプ2が自動起動する。吐出された冷却水は注入配
管11を通り、原子炉圧力容器1に供給される。
During reactor isolation, steam is supplied to the turbine 3 via the main steam supply pipe 13 in response to a reactor water level low signal, and the isolation cooling system pump 2 is automatically started. The discharged cooling water passes through the injection pipe 11 and is supplied to the reactor pressure vessel 1.

またタービン3等の機器の軸受、グランド部等から排出
された放射性蒸気は、漏洩蒸気配管15を通り、凝縮器
7に導入される。凝縮器7としては例えばバロメトリッ
クコンデンサなどが用いられる。放射性蒸気は、真空ポ
ンプ16により減圧された凝縮器7内に導入され、ここ
で分岐冷却水配管12から供給された低温度の分岐冷却
水と接触することにより凝縮される。凝縮した復水は、
復水ポンプ17によって隔離性冷却系ポンプ2の吸込側
に還流される。
Furthermore, radioactive steam discharged from the bearings, glands, etc. of equipment such as the turbine 3 passes through the leakage steam pipe 15 and is introduced into the condenser 7. As the condenser 7, for example, a barometric condenser is used. The radioactive steam is introduced into the condenser 7 whose pressure is reduced by the vacuum pump 16, where it is condensed by contacting the low temperature branch cooling water supplied from the branch cooling water pipe 12. The condensed water is
The water is returned to the suction side of the isolated cooling system pump 2 by the condensate pump 17 .

一方、隔離性冷却系ポンプ2の吐出側から分岐された分
岐冷却水配管12を通り、分岐冷却水が潤滑油冷却器5
a、6bに送給される。潤滑油冷却器6a、6bはポン
プ、タービン等の機器から排出された高温度の潤滑油を
冷却することにより機器の安定した運転を可能にする。
On the other hand, the branched cooling water passes through the branched cooling water pipe 12 branched from the discharge side of the isolated cooling system pump 2, and the branched cooling water flows into the lubricating oil cooler 5.
a, 6b. The lubricating oil coolers 6a and 6b enable stable operation of the equipment by cooling high-temperature lubricating oil discharged from equipment such as pumps and turbines.

このような隔離時冷却モード運転の実行によって原子炉
の冷却が行なわれる。
The reactor is cooled by executing such isolation cooling mode operation.

(発明が解決しようとする課題) しかし最近では原子炉運転の安全性をさらに向上させる
ために、原子炉隔離時論N1装置は従来の隔M時冷却モ
ード運転を実行するのみでなく、非常用炉心冷却装置の
一構成装置として、冷却材喪失事故時に炉心を冷却する
事故時運−ド運転をも実行できる機能を併有することが
強く要請されている。
(Problem to be solved by the invention) However, recently, in order to further improve the safety of nuclear reactor operation, the reactor isolation N1 equipment not only performs the conventional cooling mode operation at every M hour, but also performs emergency As a component of a core cooling system, there is a strong demand for such a system to also have the ability to perform accident mode operation to cool the core in the event of a loss of coolant accident.

すなわち非常用炉心冷却装置を構成する他の高圧炉心ス
プレィ装置、低圧注水装置J3よび自動減圧装着と同時
に作動し、炉心を効率的に冷却する原子炉隔離時論W装
置が望まれている。
That is, there is a need for a reactor isolation time logic W device that operates simultaneously with the other high pressure core spray devices, low pressure water injection device J3, and automatic depressurization installation that make up the emergency core cooling system, and efficiently cools the core.

上記要請に対応するためには、隔離性冷却系ポンプの運
転温度が上昇した場合の対策を考慮する必要がある。す
なわち、冷部材喪失事故時にJ3ける圧力抑制プールの
水温の上昇を考慮する必要があり、その場合従来より運
転温度条件が厳格になる。
In order to meet the above requirements, it is necessary to consider countermeasures when the operating temperature of the isolated cooling system pump increases. That is, it is necessary to take into account the rise in water temperature in the pressure suppression pool in J3 in the event of a cold member loss accident, and in that case, the operating temperature conditions will be stricter than in the past.

その結果、事故時運転モードにおいてそのまま運転した
場合、隔離性冷却系ポンプおよびタービンの軸受等に循
環さけてぃた潤滑油が潤滑油冷却器において十分冷却さ
れず、潤滑油温度が従来の許容値を越え、ポンプ、ター
ビン等の構成機器の運転に支障をきたすおそれがある。
As a result, if the operation continues in the accident operation mode, the lubricating oil that had been prevented from circulating in the isolated cooling system pump and turbine bearings will not be sufficiently cooled in the lubricating oil cooler, and the lubricating oil temperature will drop to the conventional allowable value. There is a risk that the amount of water exceeds the amount of water and may interfere with the operation of component equipment such as pumps and turbines.

また、凝縮器内の凝縮水の蒸気圧が上拝し、放射性蒸気
の凝縮が困難となったり、復水ポンプの有効吸込水頭(
N P S H)が低下し、キセビテーションを生じて
復水ポンプを損傷したり、さらにタービンのグランドシ
ール装置全体の運転に支障をきたすおそれがある。
In addition, the vapor pressure of the condensed water in the condenser may rise, making it difficult to condense radioactive steam, or the effective suction head of the condensate pump (
N P S H) decreases, causing xevitation, which may damage the condensate pump and further impede the operation of the entire turbine gland seal system.

本発明は上記の問題点を解決するためになされたもので
あり、冷却材喪失事故時においてもrII滑油冷却鼎お
よび凝縮器に供給する冷却水の温度上昇を抑制し、非常
用炉心冷却装置と共に作動することが可能であり、信頼
性が高く、安定した運転を可能とする原子炉隔離時冷却
装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and even in the event of a loss of coolant accident, it suppresses the temperature rise of the cooling water supplied to the rII oil cooling system and the condenser, and provides an emergency core cooling system. It is an object of the present invention to provide a reactor isolation cooling system that can operate together with the nuclear reactor, has high reliability, and enables stable operation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために本発明に係る原子炉隔離時論
却装買は、原子炉隔離時に復水貯蔵槽または圧力抑制プ
ールに貯留された冷却水を原子炉圧力容器に注入する隔
M時論lJj系ポンプと、隔離時論lJI系ポンプの吐
出側から分岐された分岐冷却水によって機器用潤滑油を
冷却する潤滑油冷却器と、機器から排出された放射性蒸
気を上記分岐冷7.1水によって凝縮させる凝縮器と、
上記潤滑油冷却器および凝縮器に送給する分岐冷fi1
水を冷却する分岐冷却水冷却器と、分岐冷却水冷w器に
冷2Jl媒体を供給する冷却媒体供給装置とを備えたこ
とを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the reactor isolation dumping device according to the present invention is designed to transfer cooling water stored in a condensate storage tank or a pressure suppression pool to nuclear reactors during reactor isolation. A lubricating oil cooler cools equipment lubricating oil using branched cooling water branched from the discharge side of the isolated JI system pump, which is injected into the reactor pressure vessel, and the discharge side of the isolated JI system pump. a condenser for condensing the radioactive vapor by the branch cooling 7.1 water;
Branch cooling fi1 supplied to the above lubricating oil cooler and condenser
It is characterized by comprising a branch cooling water cooler that cools water, and a cooling medium supply device that supplies cold 2Jl medium to the branch cooling water cooler.

また冷却媒体供給装置には分岐冷却水の温度を検出する
温度検出器と、冷却媒体を供給する管路を開閉する開開
弁を設けるとよい。
Further, the cooling medium supply device is preferably provided with a temperature detector that detects the temperature of the branched cooling water and an opening/opening valve that opens and closes the pipe line that supplies the cooling medium.

(作用) 上記構成の原子炉隔i!!II時論7i11 &置によ
れば、冷却水喪失による原子炉隔離時において、貯留さ
れていた冷却水の温度が上昇した場合においても、潤滑
油冷却器に供給される分岐冷II水は分岐冷却水冷却器
によって十分に冷IJJされるため、潤滑油の温度は常
に低温度に保持される。
(Function) Reactor separation i with the above configuration! ! According to II Jiron 7i11 &Oki, even if the temperature of the stored cooling water rises during reactor isolation due to loss of cooling water, the branch cooling II water supplied to the lubricating oil cooler will continue to be used for branch cooling. Since the lubricating oil is sufficiently cooled by the water cooler, the temperature of the lubricating oil is always maintained at a low temperature.

従って、装置の運転に必要な隔+m時論IJI系ポンプ
およびタービン等の機器の潤W1機能が保証され、原子
炉隔離時冷却装置を常に高い信頼性と安定した状態で運
転することができる。
Therefore, the function of IJI system pumps, turbines, and other devices is guaranteed at the interval + m required for the operation of the device, and the reactor isolation cooling device can always be operated with high reliability and in a stable state.

(実施例) 次に本発明の一実施例について添イ」図面を参照して説
明する。第1図は本発明に係る原子炉隔離時冷却装置の
一実施例を示す系統図である。なお第2図に示す従来例
と同一要素には同一符号を付してその詳細説明を省略す
る。
(Embodiment) Next, an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a system diagram showing an embodiment of the reactor isolation cooling system according to the present invention. Note that the same elements as those in the conventional example shown in FIG. 2 are given the same reference numerals, and detailed explanation thereof will be omitted.

本実施例に係る原子炉隔離時論FJ装置は、原子炉隔離
時に、復水貯蔵槽4または圧力抑制ブール5に貯留され
た冷部水を原子炉圧力容器1に注入する隔離時論11系
ポンプ2と、隔離時冷却系ポンプ2′)吐出側hゝら分
岐された分岐冷却水によって機器用、121滑油を冷却
する2基の潤滑油冷却器5a。
The reactor isolation system FJ device according to this embodiment is an isolation system 11 system that injects cold water stored in the condensate storage tank 4 or the pressure suppression boule 5 into the reactor pressure vessel 1 during reactor isolation. Pump 2 and isolation cooling system pump 2') Two lubricating oil coolers 5a for cooling equipment and 121 lubricating oil by branched cooling water branched from the discharge side h.

6bと、機器から排111された放射性蒸気を上記分岐
冷rn水によって凝縮させるバロメトリックコンデンサ
などの凝縮器7と、上記潤滑油冷NJ器6および凝縮器
7に送給する分岐冷却水を冷却する分岐冷却水;9却器
18と、分岐冷却水冷却器18に冷却媒体を供給する冷
却媒体供給装置19とを備えて構成される。
6b, a condenser 7 such as a barometric condenser that condenses the radioactive steam discharged from the equipment with the branch cold RN water, and a branch cooling water that is sent to the lubricating oil cooling NJ unit 6 and the condenser 7. The branch cooling water cooler 18 is configured to include a branch cooling water cooler 18 and a cooling medium supply device 19 that supplies cooling medium to the branch cooling water cooler 18.

また冷却媒体供給装置19は分岐冷却水の温度を検出す
る温度検出器20と、冷却媒体を供給する管路22を開
閉する電動式の開閉弁21とを備え、分岐冷却水の温度
が所定値を越えた場合に温度検出器20から開閉弁21
に開信号が出力されるように構成される。
The cooling medium supply device 19 also includes a temperature detector 20 that detects the temperature of the branch cooling water, and an electric on-off valve 21 that opens and closes the pipe line 22 that supplies the cooling medium, so that the temperature of the branch cooling water reaches a predetermined value. If the temperature exceeds the
The configuration is such that an open signal is output.

ここで冷却媒体供給装置19では、復水貯蔵槽4または
圧力抑制プール5に貯留した冷却水は使用せずに、例え
ば補機冷却装置から分取した冷却水等の別系統の冷却水
が冷却媒体として利用される。
Here, the cooling medium supply device 19 does not use the cooling water stored in the condensate storage tank 4 or the pressure suppression pool 5, but instead uses cooling water from another system, such as cooling water taken from the auxiliary equipment cooling device, for cooling. used as a medium.

冷却材喪失事故が発生し、原子炉水位低または原子炉格
納容器圧力高の異常信号が発令されると、タービン3が
自動的に起動する。タービン3により駆動された隔離時
冷却系ポンプ2によって、冷却水が原子炉圧力容器1へ
注入される。
When a loss of coolant accident occurs and an abnormal signal indicating low reactor water level or high reactor containment vessel pressure is issued, the turbine 3 is automatically started. Cooling water is injected into the reactor pressure vessel 1 by the isolation cooling system pump 2 driven by the turbine 3 .

原子炉圧力容器1への注入作業を進める間に、圧力抑制
ブール5に貯留した冷却水の温度が−L′f1−し、T
A滑油冷却器5a、5bにおける潤滑油の冷却機能が低
下した場合は、分岐冷却水の限W温度を検出した温度検
出器20から電動式開閉弁21に対して開信号が発信さ
れる。
While the injection work into the reactor pressure vessel 1 is proceeding, the temperature of the cooling water stored in the pressure suppression boule 5 becomes -L'f1-, and T
When the lubricating oil cooling function in the A lubricating oil coolers 5a and 5b deteriorates, an open signal is sent to the electric on-off valve 21 from the temperature detector 20 that has detected the limit W temperature of the branched cooling water.

開閉弁21の開動作により冷却媒体供給装置19として
の補機冷fill装置から冷却媒体が分岐冷114水冷
却器18に供給される。分岐冷却水冷却器18は分岐冷
却水を十分冷却した後に、潤滑油冷却器6a、5bに通
水する。冷241された分岐冷却水は、潤滑油冷却器5
a、6bにおいて、ポンプ、タービン軸受用の潤滑油を
冷1.Ilシた後に、凝縮器7に送給され、さらにター
ビン等からの/i5[射性蒸気と接触して放射性蒸気を
凝縮せしめる。
By opening the on-off valve 21, the cooling medium is supplied from the auxiliary cooling fill device as the cooling medium supply device 19 to the branch cooling 114 water cooler 18. After the branch cooling water cooler 18 sufficiently cools the branch cooling water, the water is passed to the lubricating oil coolers 6a and 5b. The cooled branch cooling water is sent to the lubricating oil cooler 5.
In a and 6b, the lubricating oil for the pump and turbine bearings is cooled 1. After irradiation, it is fed to the condenser 7, and is further brought into contact with radioactive steam from a turbine or the like to condense the radioactive steam.

本実施例に係る原子炉隔離時冷却装置は、系外から供給
される冷却媒体によって熱交換を行う分岐冷却水冷却器
18を従来装置に付加しているため、冷却材喪失事故時
に想定される分岐冷却水の温度が上昇した場合において
も、構成機器の潤滑機能が保持される。
The reactor isolation cooling system according to this embodiment has a branch cooling water cooler 18 that performs heat exchange using a cooling medium supplied from outside the system added to the conventional system, so that it is possible to avoid problems in the event of a loss of coolant accident. Even when the temperature of the branch cooling water increases, the lubrication function of the component equipment is maintained.

すなわち分岐冷却水冷却器18によって十分に冷却され
た分岐冷却水が潤滑油冷却器6a、6bに通水されるた
め潤滑油の温度が常に低く抑制され、ポンプ、タービン
等の構成機器を常に円滑に安定した状態で運転すること
ができる。
In other words, since the branch cooling water sufficiently cooled by the branch cooling water cooler 18 is passed through the lubricating oil coolers 6a and 6b, the temperature of the lubricating oil is always kept low, and the components such as pumps and turbines are always operated smoothly. can be operated in stable conditions.

また凝縮器7に対して低温度の分岐冷74+水が供給さ
れるため、凝縮器7における蒸気圧が上昇することがな
く、復水ポンプ17のキャビテーションによる損48が
防止され、さらにタービングランド部等から凝縮器7に
導入される放射性蒸気も効率的に凝縮され、系内金体が
安定した状態で運転を継続することができる。
In addition, since the low-temperature branch cooling 74 + water is supplied to the condenser 7, the steam pressure in the condenser 7 does not increase, and loss 48 due to cavitation of the condensate pump 17 is prevented. The radioactive vapor introduced into the condenser 7 from other sources is also efficiently condensed, and operation can be continued with the metal bodies in the system in a stable state.

なお従来の原子炉隔離時冷却装置の設計基準として、装
置の運転に要する電気機器の電源として直流電源とする
ことを原則としていたが、本実施例のように事故時モー
ド運転の実行機能を併有したことにより、冷却材喪失事
故時には、他の非常用炉心冷却装置用の交流電源と共用
することも可能となり、冷却設備全体の製造コストの低
減にも資する。
The design standard for conventional reactor isolation cooling systems was to use a DC power source as the power source for the electrical equipment required to operate the system. By having this power supply, in the event of a loss of coolant accident, it is possible to share the AC power supply for other emergency core cooling systems, which also contributes to reducing the manufacturing cost of the cooling equipment as a whole.

(発明の効果) 以上説明の通り本発明に係る原子炉隔離時冷却装置によ
れば、冷却水喪失による原子炉隔離時において、貯留さ
れていた冷却水の湿度が上界した場合においても、潤滑
油冷!Jl器に供給される分岐冷却水は分岐冷却水冷却
器において系外から供給される冷却媒体によって十分に
冷7J1されるため、潤滑油の温度は常に低温度に保持
される。
(Effects of the Invention) As explained above, according to the reactor isolation cooling system according to the present invention, even when the humidity of the stored cooling water reaches its upper limit during the reactor isolation due to loss of cooling water, the lubrication Oil cooling! Since the branch cooling water supplied to the Jl unit is sufficiently cooled by the cooling medium supplied from outside the system in the branch cooling water cooler, the temperature of the lubricating oil is always maintained at a low temperature.

従って、装置の運転に必要な隔離部冷却系ポンプおよび
タービン等の機器の潤滑機能が保証され、原子炉隔離時
論t!I装置を常に高い信頼性と安定した状態で運転す
ることが可能となり、原子カプラントの安全性を大幅に
向上させることができる。
Therefore, the lubrication function of equipment such as the isolation cooling system pump and turbine necessary for the operation of the equipment is guaranteed, and the reactor isolation time is guaranteed! It becomes possible to operate the I device in a highly reliable and stable state at all times, and the safety of the atomic coupler can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る原子炉隔離時冷却装置の一実施例
を示す系統図、第2図は従来の原子炉隔離時論/Jl装
置の構成例を示す系統図である・1・・・原子炉圧力容
器、2・・・原子炉隔離時論N1系ポンプ、3・・・タ
ービン、4・・・復水貯蔵槽、5・・・圧力抑制プール
、6,6a、6b・・・潤滑油冷却器、7°°°凝縮器
、8・・・吸込配管、9a、9b・・・電動弁、ioa
、10b・・・逆止弁、11・・・注入配管、12・・
・分岐冷却水配管、13・・・↑蒸気供給配管、14・
・・排気配管、15・・・渾洩蒸気配管、16・・・真
空ポンプ、17・・・復水ポンプ、18・・・分岐冷却
水冷却器、19・・・冷却媒体供給装置、2o・・・温
度検出器、21・・・開閉弁、22・・・管路。 代理人弁理士  則  近  憲  佑1ii1   
       第  子  丸       健第1図
Fig. 1 is a system diagram showing an embodiment of the reactor isolation cooling system according to the present invention, and Fig. 2 is a system diagram showing an example of the configuration of a conventional reactor isolation system/Jl device.1.・Reactor pressure vessel, 2... Reactor isolation N1 system pump, 3... Turbine, 4... Condensate storage tank, 5... Pressure suppression pool, 6, 6a, 6b... Lubricating oil cooler, 7°°° condenser, 8... Suction piping, 9a, 9b... Electric valve, ioa
, 10b... Check valve, 11... Injection piping, 12...
・Branch cooling water piping, 13...↑Steam supply piping, 14・
...Exhaust piping, 15...Leaking steam pipe, 16...Vacuum pump, 17...Condensate pump, 18...Branch cooling water cooler, 19...Cooling medium supply device, 2o... ...Temperature detector, 21...Opening/closing valve, 22...Pipe line. Representative Patent Attorney Noriyuki Chika1ii1
Takeshi Komaru Diagram 1

Claims (1)

【特許請求の範囲】 1、原子炉隔離時に復水貯蔵槽または圧力抑制プールに
貯留された冷却水を原子炉圧力容器に注入する隔離時冷
却系ポンプと、隔離時冷却系ポンプの吐出側から分岐さ
れた分岐冷却水によつて機器用潤滑油を冷却する潤滑油
冷却器と、機器から排出された放射性蒸気を上記分岐冷
却水によつて凝縮させる凝縮器と、上記潤滑油冷却器お
よび凝縮器に送給する分岐冷却水を冷却する分岐冷却水
冷却器と、分岐冷却水冷却器に冷却媒体を供給する冷却
媒体供給装置とを備えたことを特徴とする原子炉隔離時
冷却装置。 2、冷却媒体供給装置は分岐冷却水の温度を検出する温
度検出器と、冷却媒体を供給する管路を開閉する開閉弁
とを備え、分岐冷却水の温度が所定値を越えた場合に温
度検出器から開閉弁に開信号が出力されるように構成し
た請求項1記載の原子炉隔離時冷却装置。
[Claims] 1. An isolation cooling system pump that injects cooling water stored in a condensate storage tank or a pressure suppression pool into a reactor pressure vessel during reactor isolation, and from the discharge side of the isolation cooling system pump. A lubricating oil cooler that cools lubricating oil for equipment using branched cooling water; a condenser that condenses radioactive steam discharged from the equipment using the branched cooling water; and the lubricating oil cooler and condensation. What is claimed is: 1. A cooling system for reactor isolation, comprising: a branch cooling water cooler that cools branch cooling water supplied to the reactor; and a cooling medium supply device that supplies a cooling medium to the branch cooling water cooler. 2. The cooling medium supply device is equipped with a temperature detector that detects the temperature of the branch cooling water and an on-off valve that opens and closes the pipe that supplies the cooling medium, and when the temperature of the branch cooling water exceeds a predetermined value, the temperature 2. The reactor isolation cooling system according to claim 1, wherein the detector outputs an open signal to the on-off valve.
JP63071838A 1988-03-28 1988-03-28 At-reactor isolation cooler Pending JPH01245194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63071838A JPH01245194A (en) 1988-03-28 1988-03-28 At-reactor isolation cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63071838A JPH01245194A (en) 1988-03-28 1988-03-28 At-reactor isolation cooler

Publications (1)

Publication Number Publication Date
JPH01245194A true JPH01245194A (en) 1989-09-29

Family

ID=13472082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63071838A Pending JPH01245194A (en) 1988-03-28 1988-03-28 At-reactor isolation cooler

Country Status (1)

Country Link
JP (1) JPH01245194A (en)

Similar Documents

Publication Publication Date Title
US5106571A (en) Containment heat removal system
US20020101951A1 (en) Boiling water reactor nuclear power plant
JP5876320B2 (en) Nuclear power plant
JP2014527632A (en) Backup reactor auxiliary power supply using decay heat
CN204229849U (en) The non-active emergency feedwater supply system of a kind of nuclear power station
JP5904859B2 (en) Emergency core cooling device and nuclear reactor facility equipped with the same
US4138319A (en) Nuclear reactor installation with a light-water reactor
JPH0498198A (en) Core cooling facility for nuclear power plant
US5657360A (en) Reactor container
US4808369A (en) Emergency core cooling apparatus
JPH01245194A (en) At-reactor isolation cooler
KR20140040518A (en) Passive secondary condensation system for light water reactor equipped with water supplying system to steam generator in case of emergency against station blackout or defunctionalization of passive auxiliary feedwater system in nuclear power plant
JP2004198118A (en) Installation and method for cooling reactor containment vessel
KR900007745B1 (en) Cooling system for the primary circuit of a pressurized water nuclear reactor
RU2758159C1 (en) Passive heat removal system
RU2108630C1 (en) Power unit
RU2650504C2 (en) Emergency nuclear reactor cooling system
JPS5913719B2 (en) Residual heat removal system for fast breeder reactor
KR100448876B1 (en) Emergency feed water system in nuclear power plant
JPH08201561A (en) Safety system reactor container
CN215988120U (en) Containment cooling water cooling device and passive containment cooling system
KR102531725B1 (en) Liquid air energy storage system linked to Nuclear power plant
RU2789847C1 (en) System of long-term heat removal from the protective shell
JPS59184890A (en) Reactor cooling system facility
CN116313174A (en) Pressurized water reactor nuclear power plant waste heat discharging system and method