JPH01243594A - Negative low resistance element - Google Patents
Negative low resistance elementInfo
- Publication number
- JPH01243594A JPH01243594A JP63069681A JP6968188A JPH01243594A JP H01243594 A JPH01243594 A JP H01243594A JP 63069681 A JP63069681 A JP 63069681A JP 6968188 A JP6968188 A JP 6968188A JP H01243594 A JPH01243594 A JP H01243594A
- Authority
- JP
- Japan
- Prior art keywords
- film
- negative resistance
- layer
- resistance element
- organic film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、有機膜によって構成された絶縁体ないし半導
体層を有する負性抵抗素子(半導体デバイス)に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a negative resistance element (semiconductor device) having an insulator or semiconductor layer made of an organic film.
[従来の技術]
直流の電圧電流特性に於てN型の負性抵抗を示す(電圧
制御型負性抵抗)半導体素子としては、PM接合を有す
るトンネルダイオード(エサキダイオード)および金属
/酸化膜/金属の接合構造を有する旧に型素子が知られ
ており、発振、スイッチング、メモリなどへの応用が図
られている0、トンネルダイオードに関しては、その特
性向上(負性抵抗領域の拡大、高速化)の観点から接合
面でのより急峻な不純物の濃度変化が要求されている。[Prior Art] Semiconductor elements that exhibit N-type negative resistance in DC voltage-current characteristics (voltage-controlled negative resistance) include tunnel diodes (Esaki diodes) having PM junctions and metal/oxide film/ Tunnel diodes, which have long been known to have a metal junction structure and are being applied to oscillation, switching, memory, etc., have improved their characteristics (expanded negative resistance range, increased speed). ), a steeper change in impurity concentration at the junction surface is required.
トンネル電流が流れる程度に充分に薄い絶縁性ないし半
導性の領域(以下、トンネル領域と称する)によってP
層とN層を隔てることによって、上記目的を達成するこ
とができる。しかし、係る接合間に極めて薄くかつ欠陥
、空孔の無い絶縁ないし半導性の媒体を形成することは
難しく、これまで実現はされていない。The P
By separating the layer and the N layer, the above object can be achieved. However, it is difficult to form an extremely thin insulating or semiconducting medium without defects or holes between such junctions, and this has not been achieved to date.
一方、HIM型素子は構成も単純で、また高価な半導体
材料及び製造装置を必要とせず、極めてその工業的価値
は高い。On the other hand, HIM type elements have a simple structure and do not require expensive semiconductor materials or manufacturing equipment, and therefore have extremely high industrial value.
[発明が解決しようとする課題]
しかし、1層に酸化膜を用いた従来公知のMIM素子は
トンネルダイオードに比べ素子特性が劣り、また、特性
の再現性にも乏しく、特性の揃った素子を得難い、更に
、良質な酸化膜は限られた金属(たとえばアルミニウム
)の上にしか作製し難く、下地金属に用いられる材料の
自由度は低い。[Problems to be solved by the invention] However, conventionally known MIM devices using an oxide film in one layer have device characteristics inferior to tunnel diodes, and also have poor reproducibility of characteristics, making it difficult to create devices with uniform characteristics. Furthermore, it is difficult to obtain a high-quality oxide film, and it is difficult to produce it only on a limited number of metals (for example, aluminum), and the degree of freedom in selecting the material used for the underlying metal is low.
本発明は上記の点に鑑み、負性抵抗素子を構成する絶縁
性ないし半導性の領域に、薄く、かつ均一で欠陥のない
有機膜を用い、素子特性(負性抵抗領域の拡大、高速化
、再現性)の著しい向上を図ることを目的とするもので
ある。In view of the above points, the present invention uses a thin, uniform, defect-free organic film in the insulating or semiconducting region constituting the negative resistance element, The purpose of this is to significantly improve the performance (reproducibility and reproducibility).
[課題を解決しようとする手段]
本発明者らは、前述の如き問題点を解決し本発明の目的
を達成すべく、金属/有機膜/金属の接合構造を有する
負性抵抗素子に関し鋭意研究の結果、係る素子が極めて
良好な負性抵抗特性を示すこと、さらに、有機膜がトン
ネル領域として好適であることを知見し本発明に至った
。[Means for Solving the Problem] In order to solve the above-mentioned problems and achieve the object of the present invention, the present inventors have conducted extensive research on a negative resistance element having a metal/organic film/metal junction structure. As a result, it was discovered that such an element exhibits extremely good negative resistance characteristics, and that an organic film is suitable as a tunnel region, leading to the present invention.
すなわち本発明は、金属/有機膜/金属構造。That is, the present invention relates to a metal/organic film/metal structure.
あるいはP層/有機膜/N層構造などのように、負性抵
抗特性の発現に起因するトンネル領域に有機膜を用い、
特性の向上した素子を実現するものである。Alternatively, using an organic film in the tunnel region due to the development of negative resistance characteristics, such as a P layer/organic film/N layer structure,
This realizes an element with improved characteristics.
ラングミュア・プロジェット法(LB法)に代表される
ように、近年の有機膜の形成技術の進歩によって、多種
多様の有機分子を、単分子オーダーの膜厚制御を行い、
かつ均一で欠陥の無い状態で任意の基板上に形成するこ
とが可能になった。簡易な作製プロセスによって形成さ
れ、かつ無機の絶縁膜と比較しても同程度、あるいはそ
れ以上にち密で無欠陥な有機の超薄膜は、トンネル領域
を構成するものとして好適である。Recent advances in organic film formation technology, as typified by the Langmuir-Prodgett method (LB method), have enabled film thickness control of a wide variety of organic molecules to the single-molecule level.
Moreover, it has become possible to form it on any substrate in a uniform and defect-free state. An ultra-thin organic film that is formed by a simple manufacturing process and is as dense or defect-free as, or even more dense than, an inorganic insulating film is suitable for forming the tunnel region.
また、膜厚以外にトンネル電流の大きさを決定する主な
パラメータとして、電気的ポテンシャルにおける障壁の
高さが挙げられる。現在公知の有機分子のほとんどは絶
縁性ないし半絶縁性(半導電性)を示すことから、金属
あるいは半導体に対してポテンシャル障壁を成す材料と
しての必要条件を満足する。また、その種類は著しく多
岐にわたる、更に、有機分子は分子設計と化学合成によ
りその障壁高さを自由に制御し得る。膨大な種類を有し
、かつその電気的特性を制御し得るこの特徴は、トンネ
ル領域に従来用いられていた無機材料には無い、有機材
料特有のものである。In addition to film thickness, the main parameter that determines the magnitude of tunnel current is the height of the barrier in electrical potential. Since most of the currently known organic molecules exhibit insulating or semi-insulating (semi-conducting) properties, they satisfy the requirements for materials that form potential barriers to metals or semiconductors. Furthermore, the types of organic molecules are extremely diverse, and the barrier height of organic molecules can be freely controlled through molecular design and chemical synthesis. This feature, which has a huge variety and allows the electrical properties to be controlled, is unique to organic materials and is not found in inorganic materials conventionally used for tunnel regions.
本発明は、上記特徴を有する有機膜をトンネル領域とし
て用い、素子特性(負性抵抗領域の拡大、高速化、再現
性)の著しい向上を図った負性抵抗素子を提供するもの
である。その代表的な基本構成を第1図および第2図に
示す。The present invention provides a negative resistance element that uses an organic film having the above characteristics as a tunnel region and has significantly improved device characteristics (expansion of negative resistance region, increased speed, and reproducibility). Its typical basic configuration is shown in FIGS. 1 and 2.
第1図は、金属1.有機膜2.金属3によって形成され
たMID型の負性抵抗素子の構成概略図である0M層を
構成する材料としてはAu、 Ag、 AI。Figure 1 shows metal 1. Organic film 2. The materials constituting the 0M layer, which is a schematic diagram of the configuration of a MID type negative resistance element formed of metal 3, are Au, Ag, and AI.
旧、Ptなどの従来公知の金属や合金を用いることがで
きる。係る材料を支持基板ないし有機膜上に形成する方
法としては、やはり従来公知の薄膜作製技術で本発明の
目的を充分達成することができる。特に有機膜上に形成
する場合は、有機膜の耐熱性の観点から300℃以下の
条件で成膜可能な方法を採用することが望ましい0例え
ば、本発明で用い得る好適な金属層形成方法として真空
蒸着法やスパッタリング法を挙げることができる。尚、
M層には、例示した金属以外にも、原理的には、媒体中
の自由に動けるキャリア(電子ないし正孔)の密度が充
分に高く、また、仕事関数が有機膜の電子親和力より大
きい材料であれば適用することが可能である。グラファ
イトやSiをはじめとする各種半導体等が相当する。半
導体に関しては、常温でのキャリア密度から特に縮退半
導体が好ましい。また、無機材料に限らずテトラシアノ
キジメタン(TCNO)やテトラチアフルバレン(TT
F)で代表される電荷移動錯体などの有機導電体を適用
することも可能である。使用する材料並びに作製方法は
、本発明を何ら制限するものではない。Conventionally known metals and alloys such as Pt and Pt can be used. As a method for forming such a material on a supporting substrate or an organic film, the objects of the present invention can be sufficiently achieved by conventionally known thin film manufacturing techniques. In particular, when forming on an organic film, it is desirable to adopt a method that can form the film under conditions of 300°C or less from the viewpoint of the heat resistance of the organic film.For example, as a suitable method for forming a metal layer that can be used in the present invention, Examples include a vacuum evaporation method and a sputtering method. still,
In addition to the exemplified metals, the M layer can also be made of materials that, in principle, have a sufficiently high density of freely movable carriers (electrons or holes) in the medium, and whose work function is greater than the electron affinity of the organic film. If so, it can be applied. This includes various semiconductors such as graphite and Si. Regarding semiconductors, degenerate semiconductors are particularly preferred from the viewpoint of carrier density at room temperature. In addition to inorganic materials, we also use tetracyanoki dimethane (TCNO) and tetrathiafulvalene (TT).
It is also possible to apply organic conductors such as charge transfer complexes represented by F). The materials used and the manufacturing method do not limit the invention in any way.
一方、1層を構成する有機膜の形態はトンネル電流が流
れる程度に充分に薄く、かつ均一であればよい、具体的
には膜厚は、少なくとも 100n■以下であることが
望まれる。更に好ましくは30n■以下、0.3ns以
上の膜厚であれば、電極間を短絡することなく、かつ充
分なトンネル電流を流すことができる。なお、材料ない
しその形成方法はなんら限定されない、しかし、本発明
の好適な態様においては、係る有機膜は親水性部位と疎
水性部位とを併有する有機分子からなる単分子膜または
単分子累積膜によって構成される。係る分子の疎水性部
位の構成要素として代表的なものを例示すれば、一般に
広く知られている飽和および不飽和炭化水素基、縮合多
環芳香族基、鎖状多環フェニル基等の各種疎水基が挙げ
られる。これらの基は各々単独ないしその複数が組み合
わされて疎水性部位を構成してよい、一方、親水性部位
の構成要素として代表的なものは、例えばカルボキシル
基、スルホン酸基あるいは四級アミノ基等の各種親木性
基が挙げられる。これら親水性部位と疎水性部位とを併
有する分子の単分子膜または単分子゛累積膜は、高度の
秩序性を有し、均一で欠陥の無い超薄膜を簡易に形成し
得る点で極めて好都合である。より具体的に示せば、ス
クアリリウム・ビス−6−オクチル・アズレン、アラキ
シン酸、ボリアミク酸、銅フタロシアニン等が特に好ま
しいものである。On the other hand, the form of the organic film constituting one layer only needs to be sufficiently thin and uniform to allow tunneling current to flow. Specifically, it is desirable that the film thickness be at least 100 nm or less. More preferably, if the film thickness is 30 ns or less and 0.3 ns or more, a sufficient tunnel current can flow without shorting between the electrodes. Note that the material and the method for forming the same are not limited in any way; however, in a preferred embodiment of the present invention, the organic film is a monomolecular film or a monomolecular cumulative film made of organic molecules having both hydrophilic sites and hydrophobic sites. Consisted of. Typical examples of components of the hydrophobic portion of such molecules include various hydrophobic groups such as generally widely known saturated and unsaturated hydrocarbon groups, fused polycyclic aromatic groups, and chain polycyclic phenyl groups. Examples include groups. Each of these groups may be used singly or in combination to form a hydrophobic site.On the other hand, typical constituent elements of a hydrophilic site include, for example, a carboxyl group, a sulfonic acid group, or a quaternary amino group. Examples include various wood-loving groups. These monomolecular films or monomolecular "cumulative films" of molecules having both hydrophilic and hydrophobic parts have a high degree of order, and are extremely advantageous in that they can be easily formed into uniform, defect-free ultra-thin films. It is. More specifically, squarylium bis-6-octyl azulene, araxic acid, polyamic acid, copper phthalocyanine, etc. are particularly preferred.
任意の基板表面に係る有機膜層を形成する好適な方法と
してはLB法を挙げることができる。トンネル電流の収
量を大きくするために時として膜厚が数1層以下で、か
つ均一であることが要求される場合があるが、LB法で
あれば係る形態を容易に実現し得る。A suitable method for forming an organic film layer on the surface of an arbitrary substrate is the LB method. In order to increase the yield of tunnel current, it is sometimes required that the film thickness be several layers or less and be uniform, but such a configuration can be easily realized using the LB method.
また1本発明において上記の如きM層及び1層の積層構
造体を支持するための基板は、金属、ガラス、セラミッ
クス、プラスチック材料等いずれの材料でもよく、更に
、耐熱性の著しく低い生体材料も使用できる。係る基板
は、任意の形状でよい、平板状であるのが好ましいが、
平板に何ら限定されない、すなわち前記LB法において
は、基板の表面がいかなる形状であってもその形状通り
に膜を形成し得る利点を有するからである。In addition, in the present invention, the substrate for supporting the above-mentioned M layer and one layer laminate structure may be made of any material such as metal, glass, ceramics, or plastic material, and may also be made of biomaterials with extremely low heat resistance. Can be used. Such a substrate may have any shape, preferably a flat plate, but
This is because the LB method is not limited to a flat plate, that is, the LB method has the advantage that a film can be formed in accordance with any shape of the surface of the substrate.
第2図は、P型半導体層4、有機膜層2、N型半導体層
5の積層構造体からなるPIN接合型の負性抵抗素子の
構成概略図である。P層並びにN層は不純物濃度が非常
に高い、例えば2 X 1019c+w−3以上である
SiやGe等の半導体を用いる。不純物の種類に関して
は、半導体中に偏析せずに高濃度で存在し、かつアクセ
プタないしドナーを効率(活性化率)良く生成するもの
でなくてはならない。FIG. 2 is a schematic diagram of the structure of a PIN junction type negative resistance element consisting of a laminated structure of a P-type semiconductor layer 4, an organic film layer 2, and an N-type semiconductor layer 5. The P layer and the N layer are made of a semiconductor such as Si or Ge that has a very high impurity concentration, for example, 2 x 1019c+w-3 or more. Regarding the type of impurity, it must be present in a high concentration without segregation in the semiconductor, and must be able to generate acceptors or donors with good efficiency (activation rate).
例えばSiに対しては、はう素(B)、燐(P)、ヒ素
(As)、アンチモン(sb)などが好ましい、尚、半
導体の形成方法、並びに不純物の注入方法に関しては従
来公知の薄膜成長法で充分本発明の目的を達成できる。For example, for Si, boron (B), phosphorus (P), arsenic (As), antimony (sb), etc. are preferable.For semiconductor formation methods and impurity implantation methods, conventionally known thin film The growth method is sufficient to achieve the purpose of the present invention.
また、有a膜、および支持基板等に関してはMIX型素
子の場合と全く同様に考えられる。実際、LB法により
形成した単分子ないし単分子累積膜によって良好な素子
特性を得ている。Further, the amorphous film, supporting substrate, etc. can be considered in exactly the same way as in the case of the MIX type element. In fact, good device characteristics have been obtained with monomolecular or monomolecular cumulative films formed by the LB method.
本発明による負性抵抗素子の示す特性、並びに本発明の
効果については、実施例と共に以下に詳細を記する。The characteristics exhibited by the negative resistance element according to the present invention and the effects of the present invention will be described in detail below along with Examples.
[実施例]
実施例1
ヘキサメチルジシラン(HMDS)の飽和蒸気中に一昼
夜放置して疎水処理したガラス基板6(コーニング社製
@7059)を支持体として、係る基板上に金属(下地
電極)7層単分子累積膜8/金属(上部電極)9構造の
素子を形成した。第3図に素子形状の概略を示す。[Example] Example 1 A glass substrate 6 (manufactured by Corning, Inc. @7059) that had been hydrophobically treated by being left in saturated vapor of hexamethyldisilane (HMDS) overnight was used as a support, and a metal (base electrode) 7 was placed on the substrate. An element having a structure of 8 layers of monomolecular cumulative film/9 metals (upper electrode) was formed. FIG. 3 shows an outline of the element shape.
直交する上下の電極はともに幅1+smのストライプ状
とし、その作製には従来公知の抵抗加熱法による真空蒸
着を用いた。下地電極7はCrを下引き層として5層層
堆積した上にAuを30nm蒸着したものを用いた。The upper and lower electrodes, which are perpendicular to each other, are both in the form of a stripe with a width of 1+sm, and vacuum evaporation using a conventionally known resistance heating method was used for fabrication. The base electrode 7 was made by depositing 5 layers of Cr as an undercoat layer and then depositing 30 nm of Au on top.
単分子累積膜8は上記電極上に、スクアリリウム°ビス
−6−オクチル・アズレン(SOAZ)をLH法により
積層することによって形成した。形成方法の詳細を以下
に記す。The monomolecular cumulative film 8 was formed by laminating squarylium bis-6-octyl azulene (SOAZ) on the above electrode by the LH method. Details of the formation method are described below.
5OAZを濃度0.2mg/slで溶かしたクロロホル
ム溶液を、水温20℃の水相上に展開し水面上に単分子
膜を形成した。溶媒の蒸発除去後、係る単分子膜の表面
圧を20mN/lIIまで高め、更にこれを一定に保っ
た状態下で下地電極が蒸着された前記基板を水面を横切
る方向に速度10mm/分で静かに浸漬し、続いて5
mm1分で静かに引き上げ2層のY型単分子膜を係る基
板上に累積した。更に以上の操作を5回繰り返すことに
よって10層の累積膜(M厚15nm)を形成した。A chloroform solution in which 5OAZ was dissolved at a concentration of 0.2 mg/sl was spread on an aqueous phase at a water temperature of 20°C to form a monomolecular film on the water surface. After the solvent has been removed by evaporation, the surface pressure of the monomolecular film is increased to 20 mN/lII, and while this is kept constant, the substrate on which the base electrode has been deposited is gently moved at a speed of 10 mm/min across the water surface. followed by 5
Two layers of Y-type monomolecular film were accumulated on the substrate by gently pulling up the Y-type monomolecular film in 1 minute. Furthermore, the above operation was repeated five times to form a cumulative film of 10 layers (M thickness: 15 nm).
上部電極材料としてはAi’、 Ag、 Au、 Pt
それぞれについて実験を行なった。すなわち前記金属の
いずれかを上部電極9とし、作製した素子の特性ないし
安定性について検討を行なった。結果を以下に記する。Upper electrode materials include Ai', Ag, Au, and Pt.
Experiments were conducted on each. That is, using one of the metals mentioned above as the upper electrode 9, the characteristics and stability of the fabricated device were investigated. The results are described below.
上部電極をAIとした場合の電流電圧特性を第4図に示
す、印加電圧の増加に対して2.5層程度から電流が明
らかに減少しており電圧制御型の負性抵抗特性を示して
いる。作製した試料によって多少のばらつきがあるが、
6層程度から電流は再び増加し始める。2層前後で示す
電流の最大値(ピーク値、P値)と再び電流が増加し始
める点で示す最小値(バレー値、V値)の比率(PV比
)は約2000という著しく大きな値であった。Figure 4 shows the current-voltage characteristics when the upper electrode is made of AI.As the applied voltage increases, the current clearly decreases from about 2.5 layers onwards, indicating voltage-controlled negative resistance characteristics. There is. Although there are some variations depending on the prepared sample,
The current starts to increase again from about the 6th layer. The ratio (PV ratio) between the maximum current value (peak value, P value) shown before and after the second layer and the minimum value (valley value, V value) shown at the point where the current starts to increase again is a significantly large value of about 2000. Ta.
一方、agを上部電極とした資料に関しても、同様の負
性抵抗特性を得た。但し、試料間のばらつきがAi)の
場合よりも大きく、ピーク値で1mAを中心にして1桁
近くばらついていた。また、PV比が最も大きかったも
のでも 500であった。更にAR主電極試料が数週間
程度放置してもその電気特性があまり変化しないのに対
して、Ag電極の場合は流れる電流値が】/2から17
5程度に減少してしまった。また、Au、 Ptを上部
電極として用いた試料の多くは、上下電極間が短絡(抵
抗値にして10Ω以下)してしまった、しかし、絶縁が
とれたものにおいては負性抵抗特性が観察された。また
、このときAi)電極より電流値が全体的に高く、PV
比も 100前後であった。 Au、 Ptの場合、蒸
着時に有機膜がダメージを受けている可能性がある。On the other hand, similar negative resistance characteristics were obtained for the material in which ag was used as the upper electrode. However, the variation between samples was larger than in the case of Ai), and the peak value varied by nearly one order of magnitude around 1 mA. Also, the one with the highest PV ratio was 500. Furthermore, while the electrical properties of the AR main electrode sample do not change much even if left for several weeks, in the case of the Ag electrode, the flowing current value varies from ]/2 to 17
It has decreased to about 5. In addition, many of the samples using Au or Pt as the upper electrode had a short circuit (resistance value of 10Ω or less) between the upper and lower electrodes, but negative resistance characteristics were observed in those with insulation. Ta. In addition, at this time, the current value is generally higher than that of the Ai) electrode, and the PV
The ratio was also around 100. In the case of Au and Pt, the organic film may be damaged during vapor deposition.
しかし、上記のいずれの素子においても2桁から3桁の
PV比を有する負性抵抗特性が得られており、係る素子
が極めて有望であることを示している。However, in all of the above elements, negative resistance characteristics with a PV ratio of two to three digits were obtained, indicating that such elements are extremely promising.
実施例2
上部電極材料はARとし、実施例1と同様にしてNIN
型負性抵抗素子を作製した。但し累積操作を適当回数繰
り返すことによって、5OAZの膜厚(層数)を2 、
4 、6 、10.20.30層(1,5層m/ 1層
)とした6種類の試料について検討を行なった。Example 2 The upper electrode material was AR, and NIN was prepared in the same manner as in Example 1.
A type negative resistance element was fabricated. However, by repeating the accumulation operation an appropriate number of times, the film thickness (number of layers) of 5OAZ can be reduced to 2,
Six types of samples with 4, 6, 10, 20, and 30 layers (1,5 layers m/1 layer) were investigated.
その結果、2および4層の試料については、上下電極間
で短絡していた。一方、30層の試料は電流がほとんど
流れず(IILA以下)負性抵抗が観察できなかった。As a result, for the 2-layer and 4-layer samples, there was a short circuit between the upper and lower electrodes. On the other hand, in the sample with 30 layers, almost no current flowed (less than IILA) and no negative resistance could be observed.
6,10.20層の試料に関しては明かな負性抵抗が観
察された(PV比が2桁から3桁)、また、ピーク電流
においても、約10mA。A clear negative resistance was observed for the 6, 10, and 20-layer sample (PV ratio of 2 to 3 digits), and the peak current was approximately 10 mA.
2mA、 0.1mAと膜厚との相関も見られた。電流
量を増やすには膜厚を薄くする必要がある。また、素子
の高速化を図る場合もキャリアの走行する距離をできる
だけ小さくする必要があり、この観点からも1層をでき
るだけ薄くすることが望ましい。ここでは、2層、4層
の試料に関して絶縁性が得られなかったが、将来、成膜
性が向上すれば、係る条件においても良好な負性抵抗特
性が得られると考える。A correlation between 2 mA, 0.1 mA and film thickness was also observed. To increase the amount of current, it is necessary to reduce the film thickness. Furthermore, when increasing the speed of the device, it is necessary to minimize the distance traveled by the carriers, and from this point of view as well, it is desirable to make one layer as thin as possible. Although insulating properties were not obtained for the two-layer and four-layer samples here, we believe that if film formability improves in the future, good negative resistance characteristics can be obtained even under such conditions.
実施例3
上部電極材料はAgとし、実施例1と同様にしてHIM
型負性抵抗素子を作製した。但し、1層に材料の異なる
単分子累積膜を積層したものについて実験を行なった。Example 3 The upper electrode material was Ag, and HIM was performed in the same manner as in Example 1.
A type negative resistance element was fabricated. However, the experiment was conducted using a stack of monomolecular stacked films made of different materials in one layer.
具体的には5OAZ (Sと略記)とアラキシン酸(A
と略記)の単分子累積膜を用い、5(8)/A(2)、
5(4)/A(2)/5t(4)、 A(2)/5(
8)の構成で積層した試料3種類について検討した((
)内は層数を表わす)。Specifically, 5OAZ (abbreviated as S) and araxic acid (A
5(8)/A(2),
5(4)/A(2)/5t(4), A(2)/5(
We investigated three types of samples laminated with the configuration shown in 8) ((
) indicates the number of layers).
S/A/S 、ならびにA/S構成の素子に関しては、
実施例1で示した素子と較べて素子に流れる電流値が2
.3倍大きいが、PV比は同程度(100から1000
)の値を示した。一方、S/A構成の試料に関しては、
電流値は若干小さいが(ピーク値0.1mAオーダー)
Pv比において、およそ3000という極めて大きな値
を得た。Regarding S/A/S and A/S configuration elements,
Compared to the element shown in Example 1, the current value flowing through the element is 2.
.. Although it is 3 times larger, the PV ratio is similar (100 to 1000
) values are shown. On the other hand, regarding the sample with S/A configuration,
Although the current value is slightly small (peak value 0.1mA order)
An extremely large value of approximately 3000 was obtained for the Pv ratio.
電流のバレー値は、有機膜層がつくるポテンシャルの障
壁を越えてキャリアが流れることに起因すると考えられ
る。 5OAZより高いアラキシン酸によるポテンシャ
ル障壁が存在することによってピーク値に較ベバレー値
が大きく減少することによってPv比の向上が生じたと
考える。尚、A/SおよびS/A/S構成の素子に関し
ては、アラキシン酸、あるいはアラキシン酸上に形成す
る5OAZの成膜性、膜質に問題があると考える。なぜ
なら、アラキシン酸単独で1層を形成したMIX型の素
子を作製したところ、 5OAZ膜厚換算で40層の厚
さで累積したにもかかわらず上下電極間が短絡した。少
なくとも係る状況下ではアラキシン酸が5OAZに較べ
て成膜性が低いといえる。The current valley value is considered to be caused by the flow of carriers over the potential barrier created by the organic film layer. It is considered that the existence of a potential barrier due to alaxic acid higher than that of 5OAZ causes a large decrease in the Bevarray value compared to the peak value, resulting in an improvement in the Pv ratio. Regarding devices with A/S and S/A/S configurations, it is believed that there are problems with the film formability and film quality of araxic acid or 5OAZ formed on araxic acid. This is because when a MIX type element was fabricated in which one layer was formed of alaxic acid alone, a short circuit occurred between the upper and lower electrodes even though the thickness was 40 layers in terms of 5 OAZ film thickness. At least under such circumstances, it can be said that araxic acid has lower film-forming properties than 5OAZ.
実施例4
上部電極材料はAPとし、更に支持体にポリカーボネイ
ト基板を用いた実施例1と同様の構成の旧X型負性抵抗
素子を作製した。尚、実施例1で示した疎水処理工程は
省略した。また、1層には真空蒸着(抵抗加熱)法によ
り形成した銅フタロシアニンを用い、蒸着ポート温度を
500℃一定に、基板温度は室温に保ち、ガス圧3 X
1O−5torr、蒸着速度0.O8nm/秒の条件
下で蒸着を行なった。このとき、蒸着時間を変えて膜厚
を5゜10、20.40層mとした4種類の試料を作製
し、その電流電圧特性を測定した。Example 4 An old X-type negative resistance element having the same structure as in Example 1 was fabricated using AP as the upper electrode material and using a polycarbonate substrate as the support. Note that the hydrophobic treatment step shown in Example 1 was omitted. In addition, copper phthalocyanine formed by vacuum evaporation (resistance heating) method was used for the first layer, the evaporation port temperature was kept constant at 500°C, the substrate temperature was kept at room temperature, and the gas pressure was 3X.
1O-5torr, deposition rate 0. Vapor deposition was performed under the condition of O8 nm/sec. At this time, four types of samples were prepared with film thicknesses of 5°10 and 20.40 m by changing the deposition time, and their current-voltage characteristics were measured.
40層mの試料についてのみ負性抵抗が観察され、20
層m以下の試料ではすべて上下電極間が短絡していた。Negative resistance was observed only for the sample with 40 layer m;
In all samples below layer m, there was a short circuit between the upper and lower electrodes.
また、40層mの試料に関してもピーク電流が0.5m
A程度も流れるのに反し、pv比はlθ以下であった。Also, for the sample with 40 layers m, the peak current was 0.5 m
Although the flow rate was about A, the pv ratio was less than lθ.
これらは、LB法に較べて蒸着で作製した場合、膜がち
密さ、均一さにおいての低下することに起因していると
考える。従って、電気特性に寄与している実効膜厚は4
0層膳より薄くなっているはずである。逆に、膜質等の
パラメータによって、負性抵抗を発現するのに最適な膜
厚が左右されるといえる。These problems are considered to be due to a decrease in film density and uniformity when fabricated by vapor deposition compared to the LB method. Therefore, the effective film thickness that contributes to electrical characteristics is 4
It should be thinner than the 0 layer meal. Conversely, it can be said that the optimal film thickness for developing negative resistance is influenced by parameters such as film quality.
実施例5
P・型の結晶シリコン・ウェハ(Bドープ、抵抗率0.
02ΩC麟以下)上に直接、ポリアミク酸単分子を実施
例1と同様にして1G、 20.4G、 60.100
層累積した0次に係る基板に対し真空中で熱処理(30
0℃、10分)を行いポリアミノ酸をイミド化した。環
化し耐熱性が300℃以上となった単分子累積H(0,
4層m / 1層)上に、更に、N゛型の非晶質シリコ
ンをグロー放電分解法(GD法)により形成し、PIN
接合を有する負性抵抗素子を作製した、非晶質Siの作
製条件は、導入ガス5iHn+ PH3C流量比20:
1)、ガス圧力0.5torr 、基板温度220℃、
高周波パワー10層W/c膳2、堆積速度4nm/分と
し、膜厚は200n腫とした。Example 5 P type crystalline silicon wafer (B doped, resistivity 0.
1G, 20.4G, 60.100 in the same manner as in Example 1, directly onto the polyamic acid single molecule
Heat treatment (30
0° C. for 10 minutes) to imidize the polyamino acid. Cumulative single molecule H(0,
Further, N゛-type amorphous silicon is formed on the 4 layers m / 1 layer by glow discharge decomposition method (GD method), and a PIN is formed.
The conditions for producing amorphous Si, which produced a negative resistance element having a junction, were as follows: introduced gas 5iHn+PH3C flow rate ratio 20:
1), gas pressure 0.5 torr, substrate temperature 220°C,
The high frequency power was 10 layers W/c 2, the deposition rate was 4 nm/min, and the film thickness was 200 nm.
上記工程によって作製した素子に対して、非晶質Si上
に直径2濡■のドツト状のAβ電極を形成し、係る電極
と基板Siの露出した部分の2箇所にそれぞれ金属プロ
ーブをおろし、両端子間の電気的特性を測定した。For the device fabricated by the above process, a dot-shaped Aβ electrode with a diameter of 2 mm was formed on the amorphous Si, and metal probes were placed at two locations on the electrode and the exposed portion of the substrate Si, and both ends were The electrical characteristics between the two were measured.
その結果、累積層数が20層以下の場合については上下
電極間が短絡していたが、40.80.100層の素子
に関しては負性抵抗が観察された。特に、80層におい
て最も高いPv比が得られたが、50倍程度であった。As a result, when the cumulative number of layers was 20 or less, there was a short circuit between the upper and lower electrodes, but negative resistance was observed for elements with 40, 80, and 100 layers. In particular, the highest Pv ratio was obtained in the 80th layer, which was about 50 times.
しかし、素子としての最適設計がなされていない状況に
もかかわらず、また、非晶質半導体を用いてるにもかか
わらず、PIN接合型素子においてもPv比の比較的大
きな負性抵抗が得られることが明らかになった。However, despite the fact that the device has not been optimally designed and despite the use of an amorphous semiconductor, it is possible to obtain a relatively large negative resistance with a relatively large Pv ratio even in a PIN junction type device. It became clear.
[発明の効果1
従来公知の負性抵抗素子と比べ、素子特性の大きな向上
が図れる。特に、負性抵抗の大きさを示すビークバレー
比が著しく高く、かつ室温でも安定に動作する素子が容
易に実現できた。[Effect of the Invention 1] Compared to conventionally known negative resistance elements, the device characteristics can be greatly improved. In particular, it was possible to easily realize a device that has a significantly high peak valley ratio, which indicates the magnitude of negative resistance, and that operates stably even at room temperature.
一方、安価な有機材料を用い、かつ製造プロセスが簡単
であることから経済的な面での効果も著しい。更に、有
機膜の特性が下地層の材質の影響を比較的受けないため
、素子形態の自由度も大きい。On the other hand, since it uses inexpensive organic materials and the manufacturing process is simple, it has a significant economic effect. Furthermore, since the characteristics of the organic film are relatively unaffected by the material of the underlying layer, there is a large degree of freedom in the device form.
第1図はMIX型の負性抵抗素子の構成概略図、第2図
はPIN接合型の負性抵抗素子の構成概略図、第3図は
実施例に係る素子形状の概略図、第4図は上部電極をA
I!とした場合の電流電圧特性を示すグラフを示す。Fig. 1 is a schematic diagram of the configuration of a MIX type negative resistance element, Fig. 2 is a schematic diagram of the configuration of a PIN junction type negative resistance element, Fig. 3 is a schematic diagram of the element shape according to the embodiment, and Fig. 4 is the upper electrode A
I! A graph showing the current-voltage characteristics when .
Claims (5)
の電極部からなる負性抵抗特性を示す半導体デバイスに
おいて、該媒体層が有機膜よりなることを特徴とする負
性抵抗素子。(1) A negative resistance element in a semiconductor device exhibiting negative resistance characteristics consisting of an insulator or semiconductor layer and a pair of electrode portions sandwiching the medium layer, wherein the medium layer is made of an organic film.
とを特徴とする請求項第1項に記載の負性抵抗素子。(2) The negative resistance element according to claim 1, wherein the organic film has a thickness of 100 nm or less.
膜厚を有することを特徴とする請求項第1項に記載の負
性抵抗素子。(3) The negative resistance element according to claim 1, wherein the organic film has a thickness of 30 nm or less and 0.3 nm or more.
位とを併有する有機化合物の単分子膜または単分子累積
膜によって構成されることを特徴とする請求項第1項に
記載の負性抵抗素子。(4) The negative property according to claim 1, wherein the organic film is constituted by a monomolecular film or a monomolecular cumulative film of an organic compound having at least a hydrophilic site and a hydrophobic site. Resistance element.
の電極部からなる負性抵抗特性を示す半導体デバイスに
おいて、該媒体層が有機膜と無機膜、或は材料の異なる
有機膜同士の積層構造体よりなることを特徴とする負性
抵抗素子。(5) In a semiconductor device exhibiting negative resistance characteristics consisting of an insulator or semiconductor layer and a pair of electrodes sandwiching the medium layer, the medium layer may be an organic film and an inorganic film, or a combination of organic films made of different materials. A negative resistance element comprising a laminated structure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069681A JPH01243594A (en) | 1988-03-25 | 1988-03-25 | Negative low resistance element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63069681A JPH01243594A (en) | 1988-03-25 | 1988-03-25 | Negative low resistance element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01243594A true JPH01243594A (en) | 1989-09-28 |
Family
ID=13409848
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63069681A Pending JPH01243594A (en) | 1988-03-25 | 1988-03-25 | Negative low resistance element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01243594A (en) |
-
1988
- 1988-03-25 JP JP63069681A patent/JPH01243594A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4939556A (en) | Conductor device | |
US6174780B1 (en) | Method of preparing integrated circuit devices containing isolated dielectric material | |
US8614437B2 (en) | Organic underlayers that improve the performance of organic semiconductors | |
US5359204A (en) | Switching device | |
EP0335630B1 (en) | Switching device and method of preparing it | |
JP3872246B2 (en) | Field effect transistor having organic / inorganic hybrid material as semiconductor channel and method of manufacturing the same | |
US5936831A (en) | Thin film tantalum oxide capacitors and resulting product | |
EP0272937B1 (en) | Switching device | |
Geddes et al. | The electrical properties of metal‐sandwiched Langmuir–Blodgett multilayers and monolayers of a redox‐active organic molecular compound | |
WO2003044838A1 (en) | Method of manufacturing high-mobility organic thin films using organic vapor phase deposition | |
JP2005272460A (en) | Polyacene compounds and organic semiconductor thin films | |
US7227178B2 (en) | Switching element | |
CN113594360B (en) | Memristor based on inorganic molecular crystal, preparation method and application thereof | |
JPWO2007094164A1 (en) | Organic thin film transistor and manufacturing method thereof | |
US20050275056A1 (en) | Organic heterojunction bipolar transistor | |
US4873556A (en) | Hetero-junction device | |
JP2005232136A (en) | Polyacene compound precursor and method for synthesizing polyacene compound | |
JP2004158709A (en) | Semiconductor device | |
JPH01243594A (en) | Negative low resistance element | |
JPH01209767A (en) | Electric/electronic device element | |
JPS6396956A (en) | Switching element | |
JPS63160389A (en) | Switching device | |
KR20230135524A (en) | Electronic switching device | |
JPS63146464A (en) | semiconductor element | |
Ray et al. | The use of organic materials including macromolecules in active electronic devices |