JPH01243099A - System and device for speech encoding - Google Patents
System and device for speech encodingInfo
- Publication number
- JPH01243099A JPH01243099A JP63071390A JP7139088A JPH01243099A JP H01243099 A JPH01243099 A JP H01243099A JP 63071390 A JP63071390 A JP 63071390A JP 7139088 A JP7139088 A JP 7139088A JP H01243099 A JPH01243099 A JP H01243099A
- Authority
- JP
- Japan
- Prior art keywords
- coefficient
- quantization error
- quantized
- coefficients
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013139 quantization Methods 0.000 claims abstract description 37
- 238000005314 correlation function Methods 0.000 claims abstract description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- 230000005236 sound signal Effects 0.000 claims description 12
- 238000012937 correction Methods 0.000 claims description 10
- 239000002131 composite material Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 abstract 1
- 238000004364 calculation method Methods 0.000 description 23
- 238000005311 autocorrelation function Methods 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 5
- 230000002596 correlated effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- TUBQDCKAWGHZPF-UHFFFAOYSA-N 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate Chemical compound C1=CC=C2SC(SCSC#N)=NC2=C1 TUBQDCKAWGHZPF-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は音声符号化方式とその装置に関し、特罠音声イ
ご号を複数の基底信号列、たとえばマルチパルス等の線
形結合で表す音声符号化方式とその装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a speech encoding method and an apparatus thereof, and relates to a speech encoding system that expresses a special trap speech Igo code by a linear combination of a plurality of base signal sequences, such as multipulses. Concerning the conversion method and its equipment.
五区間の音声信号x (n)を、互いに独立で相関をも
つ複数の音源パルスとしての基、底信号列(h 1(n
) )の線形和で近似する9声符号化法が卸られており
、特に低ビツトレイトでの有効性が知られている。The audio signal x (n) in five sections is expressed as a base signal sequence (h 1 (n
) A nine-voice encoding method that approximates the linear sum of ) is widely available, and is known to be particularly effective at low bit rates.
いま誤差信号をe (n)で表わすと、本符号化ではx
(n)を次の(1)式のように表現することができる
。Now, if the error signal is expressed as e (n), then in this encoding, x
(n) can be expressed as in the following equation (1).
0≦n≦N−1・・・(1)
ここで、gl(+=L・・・、K)は係数、Nは短区間
当υのサンプル数、Kは信号系列の数でおる。まだ(g
l)は次の(2)式で示すe (n)の平均二乗誤差を
最小化するものとして決定される。0≦n≦N-1 (1) where gl (+=L..., K) is a coefficient, N is the number of samples in the short interval, and K is the number of signal sequences. Still (g
l) is determined as minimizing the mean square error of e (n) shown by the following equation (2).
こうして求められた糸数(g+)は、符号化する為に量
子化される。第2図に従来例の原理を示す。The thread count (g+) thus obtained is quantized for encoding. FIG. 2 shows the principle of the conventional example.
入力端子10は音声信号x (n)を取り込んで係数抽
出器30へ供給する。係数抽出器3oは基底信号列メモ
リ20から(h、(n))を入力し、前記第(2)式の
Jを最小化するように係数(g+)を決定する。The input terminal 10 takes in the audio signal x (n) and supplies it to the coefficient extractor 30 . The coefficient extractor 3o inputs (h, (n)) from the base signal string memory 20 and determines the coefficient (g+) so as to minimize J in equation (2).
求まった(g、)は、世子化器40で量子化されたあと
出力端子50から外部へ出力される。The obtained (g,) is quantized by the successor generator 40 and then outputted from the output terminal 50 to the outside.
上述したこの種の従来の音声符号化方法において、被符
号化音声信号と再生信号との誤差Qは、各係数の量子化
された係数を(Ql)、を子化点差を(e、)で表すと
次の(3)式のように表わすことができる。In the above-mentioned conventional audio encoding method, the error Q between the encoded audio signal and the reproduced signal is expressed as: (Ql) is the quantized coefficient of each coefficient, and (e,) is the quantized coefficient of each coefficient. It can be expressed as the following equation (3).
従って、前記従来手法のように係数を求めた後に量子化
する構成では、第(2)式を最/」\化して求めた係数
が量子化後も第(2)式を最小化する最適な係数となる
という保圧はなく、−万前記のように互いに独立で相関
を持つように選ばれた基底関数間の相互相関関数が形成
する二次形式で表現さnる第(3)式は必ず正となるの
で、係数の量子化誤差は確実に再生誤差を増大させ、特
に基底1z号間の相互相関関数の大きさKよってはその
誤差を大幅に増大させる可能性があるという欠点がある
。Therefore, in the configuration in which the coefficients are determined and then quantized as in the conventional method, the coefficients determined by optimizing the equation (2) are the optimal ones that minimize the equation (2) even after quantization. There is no holding pressure that it becomes a coefficient, and the n-th equation (3) is expressed in a quadratic form formed by the cross-correlation function between the basis functions that are selected to be mutually independent and correlated as described above. Since it is always positive, the quantization error of the coefficients definitely increases the reproduction error, and there is a drawback that it may significantly increase the error depending on the size K of the cross-correlation function between the base 1z numbers. .
本発明の目的は、互いに相関をもつ基底信号の係数を量
子化する際に、前記係数を係数の量子化誤差と基底信号
間の相互相関関数で決まる量を補正することにより、再
生信号誤差を若しく軽減する音声符号化方式とその装置
を提供することにある。An object of the present invention is to reduce reproduced signal errors by correcting the coefficients by an amount determined by the quantization error of the coefficients and the cross-correlation function between the base signals when quantizing the coefficients of base signals that are correlated with each other. It is an object of the present invention to provide a speech encoding method and an apparatus for the same.
本発明の音声符号化方式は、一連の時間間隔に分割され
た音声信号を複薮の基底信号列の線形和からなる複合信
号で表す音声符号化方式において、前記基底信号列の複
数の係数を1ρ次甘子化する際に前記係数の内まだ量子
化されていない係数に過去に量子化された係数の量子化
誤差並びに前記過去に量子化された係数をもつ基底信号
列と前記量子化されていない係数をもつ基底信号列との
相互分割された音声信号を複数の基底信号列の線形和か
らなる複合信号で符号化する音声符号化41Cにおいて
、前記基底信号列間の相互相関関数を求める手段と、前
記基底信号列の一係数を量子化する手段と、前記量子化
で生じる量子化誤差を求める手段と、前記計算された相
互相関関数と前記量子化誤差とをから前記基底信号列の
内まだ量子化されていない係数の値を補正する手段とを
Ωえて構成される。The audio encoding method of the present invention is an audio encoding method in which an audio signal divided into a series of time intervals is expressed as a composite signal consisting of a linear sum of multiple base signal sequences. When performing 1ρ-order Amakoization, among the coefficients that have not yet been quantized, the quantization error of the previously quantized coefficients and the base signal sequence having the previously quantized coefficients and the quantized coefficients are added. In audio encoding 41C, which encodes a mutually divided audio signal with a base signal sequence having a coefficient that is not equal to a base signal sequence with a composite signal consisting of a linear sum of a plurality of base signal sequences, means for determining a cross-correlation function between the base signal sequences. a means for quantizing one coefficient of the base signal sequence; a means for determining a quantization error caused by the quantization; and means for correcting the values of coefficients that have not yet been quantized.
前記第(2)式のJを最小化する(g、)の関係を(h
、(n))間の相互相関関数で表してみる。第(2)式
の両辺をgl でγ微分して零とおくと次の(4)式が
得られる。The relationship between (g,) that minimizes J in equation (2) is expressed as (h
, (n)). By γ differentiating both sides of equation (2) with respect to gl and setting it to zero, the following equation (4) is obtained.
これは第(4)f:、の関係を満足する(g、)の組が
第(2)式のJを最小イとすることを示している。この
関係を第(2)式に代入すると再生信号誤差Qは、次の
(5)式で表わされる。This shows that the set (g,) that satisfies the relationship (4) f: , makes J in equation (2) the minimum i. Substituting this relationship into equation (2), the reproduced signal error Q is expressed by the following equation (5).
(−こf、(gl)をi = 1から順番にに迄量子化
していく構成を考える。いま、k番目までの係数が量子
化されたとすると、
g+=gI+el ・・
・(6)と書けるため第(5)式は次のようになる。(-) Consider a configuration in which f, (gl) is quantized in order from i = 1. Now, if coefficients up to the kth are quantized, g+=gI+el ・・
・Since it can be written as (6), equation (5) becomes as follows.
Q=σ2−(g十e)’F(g十e) −
(7)ここで、gとeはベクトル、Fは行列である。Q=σ2-(g1e)'F(g0e)-
(7) Here, g and e are vectors, and F is a matrix.
g=〔g11g2.・・・1gK〕
e ”” (e 1 * 82 + ” ” * e
y r Or ” ” ’ + O〕F、j=φ(i、
D
また、
ここで、各ベクトルと行列にだいし次のような部分ベク
トル並びに部分行列を考える。g=[g11g2. ...1gK] e ”” (e 1 * 82 + ” ” * e
y r Or ” ” ' + O]F, j=φ(i,
D Also, consider the following subvectors and submatrices for each vector and matrix.
g=(ga、gb)
e=〔ealeb〕
ga ” G IQ2 +”’+Gk 〕+ gb==
CQk+ r 、 ・・・、鈴〕F1−φ(1+J)
’+J”1+・・・、kj−
F2−ψ(1+J) l”L・・・、kj−
j=に+1.・・・、K
(F3 = F2 t )
F4ij=φ(i+j) i、j=に+1.・・・
、にすると、第(7)式は次の(8)式のように書ける
。g=(ga, gb) e=[ealeb] ga ” G IQ2 +”’+Gk ]+ gb==
CQk+ r, ..., bell]F1-φ(1+J)
'+J"1+..., kj- F2-ψ(1+J) l"L..., kj- +1 to j=. ..., K (F3 = F2 t) F4ij=φ(i+j) +1 to i, j=. ...
, then equation (7) can be written as the following equation (8).
・・・(8)
上記第(8)式の両辺をgbで微分して零とおくと、次
の(9)式のような関係を得る。(8) If both sides of the above equation (8) are differentiated with respect to gb and set to zero, a relationship such as the following equation (9) is obtained.
(ga十〇a)tF2+F4gb=0
・・・(9)この式は、[g i ] r ””1
+・・・、にの素子化によシ、i=に+1からKまでの
残りの係数を補正する指針を与えている。即ち、量子化
後も再生誤差を小さくするためには、残りの係数を過去
に量子化された係数と量子化誤差並びに各基底信号の相
互相関関数を用いて、
gb =F、4−’ (g、十e、)tF2
・(1のと補正する必要がある。(ga10a)tF2+F4gb=0
...(9) This formula is [g i ] r ””1
+..., and provides guidelines for correcting the remaining coefficients from +1 to K for i=. That is, in order to reduce the reproduction error even after quantization, the remaining coefficients are calculated using the previously quantized coefficients, the quantization error, and the cross-correlation function of each base signal, gb = F, 4-' ( g, 10e,)tF2
・(It is necessary to correct it with 1.
本発明の原理を第3図に示す。入力端子10からfF信
号X(n)を取シ込んで係数抽出器31へ供給する。係
数抽出器31は基底信号列メモリ21から基底関数列〔
hl)を入力し、その相互相関関数φ(+、j) を
計算すると共に前記第(2)式のJを最小化するように
係数(gl)を求めて、係数補正器60へφ(i、j)
並びに(gl )を出力する。係数補正器60は、量子
化誤差算出器70から供給される量子化誤差と係数細円
31から供給源れる基底信号列間の相互相関関数φ(i
、j)と係数(gl )とからiIJ記第(10)式に
基づいて、まだ量子化されていない係数の振幅補正を行
う。量子化器41は係数補正器60から順次供給される
係数を量子化し8力端子51から出力すると共にこれを
量子化誤差算出器70に供給する。量子化誤差算出器7
0は量子化係数と係数補正器60の出力を供給されて係
数の量子化誤差を計橡し係数補正器60へ供給する。The principle of the invention is shown in FIG. The fF signal X(n) is input from the input terminal 10 and supplied to the coefficient extractor 31. The coefficient extractor 31 extracts the basis function sequence [
hl), calculate its cross-correlation function φ(+, j), find the coefficient (gl) so as to minimize J in equation (2), and send it to the coefficient corrector 60. ,j)
and outputs (gl). The coefficient corrector 60 calculates a cross-correlation function φ(i
, j) and the coefficient (gl), the amplitude of the coefficient that has not yet been quantized is corrected based on equation (10) of iIJ. The quantizer 41 quantizes the coefficients sequentially supplied from the coefficient corrector 60 and outputs them from the 8-input terminal 51 and also supplies them to the quantization error calculator 70 . Quantization error calculator 7
0 is supplied with the quantized coefficients and the output of the coefficient corrector 60, calculates the quantization error of the coefficients, and supplies it to the coefficient corrector 60.
次に図fを参照して本発明の詳細な説明する。 The invention will now be described in detail with reference to Figure f.
第1図は本発明の一実施例のブロック図である。FIG. 1 is a block diagram of one embodiment of the present invention.
第1図の実施f11は本発明をピー・ニス・アタール(
B、S 、Atal)氏:てよりて・提案されたf2符
−4比方式に通用した場合を例としている。Embodiment f11 of FIG.
Mr. B, S., Atal): This is an example of a case where the proposed f2-4 ratio method is applicable.
このビー・ニス・アタール氏の提案した音声符号化方式
に関する説明は、1982年度のアイ・J3ν
シー・ニー・ニス・ビー(ICASSP)の予稿集61
4〜617M、F7−ニュー・モデル・オプ・エル拳ヒ
ー・ンーーエクサイティ73ン・フォ一番プロデユース
イング・ナチュラル・サラ/ディング・スピーチ・アッ
ト・ロー・ビット・レーン(A new model
of LPCexcitation forprod
ucir+g natural sounding
5peech atlow bit rates)J
(文献1)に掲載されている。An explanation of the audio encoding method proposed by Mr. B. Nis Attar can be found in Proceedings of the 1982 IJ3ν C.N.N.S.B. (ICASSP) 61.
4-617M, F7-New Model Op El Kenhi N-Excitety 73 N Fo Ichiban Production Swing Natural Sara/Ding Speech At Low Bit Lane (A new model
of LPCexcitation forprod
ucir+g natural sounding
5peech atlow bit rates)J
(Reference 1).
この符号化方式は、音声信号を位相の異なる複aa(7
)インパルス応答の集合で近似するもので、これは音声
信号の駆動音源信号系列を複数のパルスで表現する方法
と等価である。This encoding method converts audio signals into multiple aa (7
) This method is approximated by a set of impulse responses, and this is equivalent to the method of expressing the driving sound source signal sequence of the audio signal with a plurality of pulses.
部ち、音声信号X(n)をインパルス応答系列(b(n
−6,)]の線形和で近似し、両者の誤差Jを求めると
次の(11)式のようになる。Partly, the audio signal X(n) is converted into an impulse response sequence (b(n
-6, )], and the error J between the two is calculated as shown in the following equation (11).
ここで、tllglは6番目の音源パルスの位14と振
幅とを表わす。(11)式を小さくする音源パルス列を
求めるために、音源パルスをi = 1からKをひとつ
ずつ求める方法を説明する。いま、i==に−1までの
音源パルスを求め終)、i = k@目の音源パルスg
k とtkを求めるとする。Here, tllgl represents the digit 14 and amplitude of the sixth sound source pulse. In order to obtain a sound source pulse train that reduces equation (11), a method for finding K one by one from i = 1 for sound source pulses will be explained. Now, find the sound source pulses up to -1 at i== (end), i = k@th sound source pulse g
Suppose we want to find k and tk.
gk、tkを求めるための評価関数は(11)式から次
の(12)式として得られる。The evaluation function for determining gk and tk can be obtained from equation (11) as the following equation (12).
(12)式をgk でlA微分して零をおくと次の(1
3)式が得られる。Differentiating equation (12) by lA with respect to gk and setting zero gives the following (1
3) Equation is obtained.
ここで、
となる。(14)式はインパルス応答系列の自己相関、
(15)式は原音声とインノくルス応答系列の相互相関
である。(12)式に代入すると次の(16)式が得ら
れる。Here, . Equation (14) is the autocorrelation of the impulse response series,
Equation (15) is the cross-correlation between the original speech and the innoculus response sequence. By substituting into equation (12), the following equation (16) is obtained.
Jk=J、−8−gk2 ・・・(1
6)これから誤差Jkを最小化するtkは第(13)式
にあるgkの大きさを最大にするものとして決定される
。したがって、音源パルス列を求める計算手順は、第(
19式の右辺の計算とその最大値検出をi = 1から
Kまで繰シ返すものとなる。Jk=J, -8-gk2...(1
6) From this, tk that minimizes the error Jk is determined as the one that maximizes the magnitude of gk in equation (13). Therefore, the calculation procedure for obtaining the sound source pulse train is
The calculation of the right side of Equation 19 and the detection of its maximum value are repeated from i = 1 to K.
再び第1図に戻って実施例の説明を続行する。Returning again to FIG. 1, the description of the embodiment will be continued.
第1図に示す実施例の構成は、線形予測係数を分析・抽
出する線形予測分析部110、抽出した線形予測係数を
量子化する予測係数を子化器120、量子化された線形
予測係数によって形成される合成フィルタのインパルス
応答を算出するインパルス応答算出部130、入力音声
と前記インパルス応答の相互相関(−数を算出する相互
相関関数算出部160、音源パルス列を探索するパルス
探索部160、探索した音源パルスの量子化誤差の影響
を補正するパルス振幅例正部170、音源パルスを量子
化するパルス量子化器180、量子化誤差算出部190
のほかマルチプレクサ200を備えて成る。The configuration of the embodiment shown in FIG. 1 includes a linear prediction analysis unit 110 that analyzes and extracts linear prediction coefficients, a child izer 120 that quantizes the extracted linear prediction coefficients, and a quantized linear prediction coefficient. An impulse response calculation unit 130 that calculates the impulse response of the synthesis filter to be formed, a cross-correlation function calculation unit 160 that calculates the cross-correlation (-number) between the input voice and the impulse response, a pulse search unit 160 that searches for the sound source pulse train, and a search A pulse amplitude example positive section 170 that corrects the influence of quantization error of the sound source pulse, a pulse quantizer 180 that quantizes the sound source pulse, and a quantization error calculation section 190
In addition to the above, it also includes a multiplexer 200.
次に本実施例の動作について説明する。Next, the operation of this embodiment will be explained.
第1図において、入力端子100は離散化された音声信
号x (n)を取り込んで線形予測分析部110と相互
相関関数算出部150へ供給する。In FIG. 1, an input terminal 100 takes in a discretized audio signal x (n) and supplies it to a linear prediction analysis section 110 and a cross-correlation function calculation section 150.
線形予測分析部110は、線形予測係数として公知のP
ARCOR(偏自己相関)係数を求めるもので、求めら
れたPARCOR係数は予測係数量子化器120へ出力
される。The linear prediction analysis unit 110 uses P known as a linear prediction coefficient.
ARCOR (partial autocorrelation) coefficients are determined, and the determined PARCOR coefficients are output to the prediction coefficient quantizer 120.
予測係数量子化器120はPARCOR係数を量子化す
るもので、良く知られているdaの方法があるが、本実
施例では、文献2(北脇、叛倉、介物、”PARCOR
形音声分析合成係における最適符号構成″、電子通信学
会論文誌J61−A、Nw2゜pp、119〜126(
昭53−2)に述べられているような非線形甘子化を採
用している。The prediction coefficient quantizer 120 quantizes PARCOR coefficients, and there is a well-known da method.
``Optimal Code Configuration in Shape Speech Analysis and Synthesis'', Transactions of the Institute of Electronics and Communication Engineers J61-A, Nw2゜pp, 119-126 (
Nonlinear Amakoization as described in 1982-2) is adopted.
t量子化されたPARCOR係数はインパルス既答計習
一部130とマルチプレクサ140とへ出力さnる。The quantized PARCOR coefficients are output to an impulse calculation section 130 and a multiplexer 140.
インパルス応答計算部130!i、量子化されたPAR
COR係数が形成する全極フィルタのインパルス応答h
(n)を計算する。このインパルス応答h(n)は相
互相関関数算出部150と自己相関関越算山部140に
供給される。Impulse response calculation unit 130! i, quantized PAR
The impulse response h of the all-pole filter formed by the COR coefficients
Calculate (n). This impulse response h(n) is supplied to the cross-correlation function calculation section 150 and the autocorrelation Kan-Etsu Sanzan section 140.
自己相関関数算出部140は前記(14)式で与えられ
る自己相関関数ψ(m、n) をO<m (N −1
,0(n(N−1に王って計算し、計算された自己相関
関数ψ(m、n)はパルス探索部160とパルス振幅補
正部170へ出力される。The autocorrelation function calculation unit 140 calculates the autocorrelation function ψ(m,n) given by the above equation (14) so that O<m (N −1
, 0(n(N-1), and the calculated autocorrelation function ψ(m, n) is output to the pulse search section 160 and the pulse amplitude correction section 170.
相互相関関数算出部150は、前記第(15)式にある
自己相関関数ψ(n)を0 < n < N −1にわ
たって計算する。計算されたφ(n)はパルス探索部1
160へ供給される。The cross-correlation function calculation unit 150 calculates the autocorrelation function ψ(n) in the above equation (15) over 0 < n < N −1. The calculated φ(n) is the pulse search unit 1
160.
パルス探索部160は、自己相関関数算出部140から
供給されるψ(m、n) と相互相関関数算出部15
0から供給されるφ(n)とを用いて前述した逐次処理
により音源パルス列(gt)と(tl )を計算する。The pulse search unit 160 uses ψ(m, n) supplied from the autocorrelation function calculation unit 140 and the cross-correlation function calculation unit 15
The sound source pulse trains (gt) and (tl) are calculated by the sequential processing described above using φ(n) supplied from 0.
計算手順は、前述したように、前記第(13)式の計算
とその最大値検出をi = 1からKまで繰り返し行な
うことにより(gel並びに(tt )を求める。求め
られた音源パルス列はパルス振幅補正部170へ供給さ
れる。As mentioned above, the calculation procedure is to calculate (gel and (tt)) by repeatedly calculating the equation (13) and detecting its maximum value from i = 1 to K. The obtained sound source pulse train has a pulse amplitude. The signal is supplied to the correction section 170.
パルス振幅補正部170は、前記(作用)の項で述べた
パルス振幅の量子化による誤差の影響を軽減するように
パルス振幅補正を行うものである。The pulse amplitude correction section 170 performs pulse amplitude correction so as to reduce the influence of the error due to the quantization of the pulse amplitude described in the above (Operation) section.
パルス振幅の補正は、自己相関関数算出部140から供
給されるψ(m、n) と、パルス探索部160から
供給される(gl) 、 (ti ) とで定まるψ
(tしtj) r ’ + J”1 +・−・、にと、
量子化誤差算出部190から供給されるパルス振幅の量
子化誤差(ei)とを用いて、前記第(10)式で述べ
たようなパルス振幅の補正を行うものである。即ち、前
記F、及びF4で表わされる自己相関関数の要素はFH
j=ψ(LH* 13 ) i =1 、・・・2
kj=に+1°、・−・、K
F41j=ψ(Ll、ZJ ) i 、J =k
+ 1−・・・、にである。これと、パルス振幅(gl
)と量子化誤差(e、)とを前記第(10)式に代入
することによシ去輻補正を行ったパルス振幅(gl )
i=に+1 、・・・、Kを言土葬する。The correction of the pulse amplitude is determined by ψ (m, n) supplied from the autocorrelation function calculation section 140 and (gl), (ti) supplied from the pulse search section 160.
(tshitj) r' + J"1 +・-・, Nito,
The quantization error (ei) of the pulse amplitude supplied from the quantization error calculation unit 190 is used to correct the pulse amplitude as described in equation (10) above. That is, the elements of the autocorrelation function represented by F and F4 are FH
j=ψ(LH*13) i=1,...2
+1° to kj=,..., K F41j=ψ(Ll, ZJ) i, J=k
+ 1-..., is. In addition to this, the pulse amplitude (gl
) and the quantization error (e, ) into the above equation (10), the pulse amplitude (gl) is corrected by convergence correction.
+1 to i=..., bury K in words.
振幅補正を行った(gl)のうち、まだ量子化されてい
ないに+1番目のglc+1がパルス量子化器180と
4子化誤差算比部190とへ出力される。Of the amplitude-corrected (gl), the +1st glc+1 that has not yet been quantized is output to the pulse quantizer 180 and the quadrupled error calculation ratio section 190.
また、gk+1に対応するパルス位yttk+、はパル
ス量子化器180へ出力される。Further, the pulse position yttk+ corresponding to gk+1 is output to the pulse quantizer 180.
パルス量子化器180け、パルス振幅補正170から入
力されるgk+1 とtい、を量子化するもの△
で、量子化された蛋梠gk+4け量子化誤差算出部19
0とマルチプレクサ200へ出力され、dたt、+1
もマルチプレクサ200へ出力されるgk+sのbt
量子化、例えば(gk)の最大値で正規化した後−様に
量子化する方法がある。tk+Iの量子化については、
パルス振幅補正部170から供給される(gklを(t
k )の小さい順に供給する構成を取ることによりtk
+Iと1にとの差を量子化することで、効率的な量子化
が可能となる。The pulse quantizer 180 quantizes gk+1 and t input from the pulse amplitude correction 170, and the quantized signal gk+4 quantization error calculation unit 19
0 and output to multiplexer 200, dtt, +1
The bt of gk+s is also output to the multiplexer 200.
There is a method of quantization, for example, normalizing by the maximum value of (gk) and then quantizing. Regarding the quantization of tk+I,
(t
By taking a configuration in which tk is supplied in ascending order of
By quantizing the difference between +I and 1, efficient quantization becomes possible.
1魅子化−差算出部190け、パルス表幅袖正部170
から供給きれるgk+1 とパルス量子化器180から
供給されるg、+、との差eh++ を計算しパル’
r5 ’W4補正部170へ出力する。1 Attraction - difference calculation section 190, pulse table width sleeve normal section 170
Calculate the difference eh++ between gk+1 that can be supplied from the pulse quantizer 180 and g,+, supplied from the pulse quantizer 180, and calculate the pulse'
r5' Output to the W4 correction section 170.
マルチ−6レクサ200は、予測係数吋子化器120か
ら供給されるPARCOR係数と、パルスΔ
葉化器180から供給される音源パルス列(gt)(2
,)とを表わす符号を多重化して出力端子21から外部
へ出力する。The multi-6 lexer 200 uses the PARCOR coefficients supplied from the prediction coefficient generator 120 and the sound source pulse train (gt) (2) supplied from the pulse Δ encoder 180.
, ) are multiplexed and output from the output terminal 21 to the outside.
以上説明したように不発明は、音声信号を互いに独立で
相関を持つ基底信号列の線形和で表す音声符号化法にお
いて、係数を逐次量子化する際に、過去に量子化された
係数の量子化誤差を今後量子化する係拡にフィードバッ
クすることで量子化誤差対信号電力の関係を向上させる
ことにより、従来のように甘子化誤差をフィードバック
させない構成に比べ、格段に信号対雑音比が向上し、高
品質な再生音声が得られるという効果がるる。As explained above, in an audio encoding method in which an audio signal is expressed as a linear sum of mutually independent and correlated base signal sequences, when coefficients are sequentially quantized, the quantization of previously quantized coefficients is The relationship between quantization error and signal power is improved by feeding back the quantization error to future quantization expansion, which significantly improves the signal-to-noise ratio compared to the conventional configuration that does not feed back the sweetening error. The effect is that high-quality playback audio can be obtained.
第1図は本発明の一笑諾例のブロック図、第2図は音声
信号をY!、数の基底言分タリの線形結合で表10・・
・・・・入力端子、20・・・・・・基底信号列、21
・・・・−・基底信号列、3o・・・・・・係数抽出器
、31・・・・・・係数抽出器、40・・・・・・量子
化器、41・・・・・・量子化器、50・・・・・・出
力端子、51・・・・・・出力端子、60・・・・・−
係数補正器、70・・・・・・量子化誤差算出器、10
0・・・・−・入力端子、110・・・・・・線形予測
分析部、120・・・・・・予測係数量子化器、130
・・・・・・インパルス応答算出部、140・・・・・
・自己相関関数算出部、150・・・・−相互相関関数
算出部、160・・・・・・パルス探索部、170・−
・・・・パルス蛋幅補正部、180・・・・・・パルス
量子化器、190・・・−・・量子化誤差算出部、20
0・・・・・・マルチプレクサ、210・・・・・・出
力端子。
代理人 弁理士 内 原 晋
2ノ
第3 vFIG. 1 is a block diagram of an implementation example of the present invention, and FIG. 2 is a block diagram of an example of the implementation of the present invention. , Table 10... is a linear combination of base terms of numbers.
...Input terminal, 20...Base signal sequence, 21
......Base signal sequence, 3o...Coefficient extractor, 31...Coefficient extractor, 40...Quantizer, 41... Quantizer, 50...output terminal, 51...output terminal, 60...-
Coefficient corrector, 70...Quantization error calculator, 10
0...Input terminal, 110...Linear prediction analysis unit, 120...Prediction coefficient quantizer, 130
... Impulse response calculation section, 140 ...
- Autocorrelation function calculation section, 150...- Cross correlation function calculation section, 160... Pulse search section, 170.-
. . . Pulse amplitude correction section, 180 . . . Pulse quantizer, 190 . . . Quantization error calculation section, 20
0...Multiplexer, 210...Output terminal. Agent Patent Attorney Susumu Uchihara 2nd and 3rd v
Claims (2)
底信号列の線形和からなる複合信号で表す音声符号化方
式において、前記基底信号列の複数の係数を順次量子化
する際に前記係数の内まだ量子化されていない係数に過
去に量子化された係数の量子化誤差並びに前記過去に量
子化された係数をもつ基底信号列と前記量子化されてい
ない係数をもつ基底信号列との相互相関によって決まる
補正を施すことを特徴とする音声符号化方式。(1) In an audio encoding method in which an audio signal divided into a series of time intervals is expressed as a composite signal consisting of a linear sum of multiple base signal sequences, when the multiple coefficients of the base signal sequence are sequentially quantized, the A quantization error of a previously quantized coefficient among the coefficients that has not yet been quantized, a base signal sequence having the previously quantized coefficient, and a base signal sequence having the unquantized coefficient. A speech encoding method characterized by applying correction determined by the cross-correlation of
底信号列の線形和からなる複合信号で符号化する音声符
号化装置において、前記基底信号列間の相互相関関数を
求める手段と、前記基底信号列の一係数を量子化する手
段と、前記量子化誤差を求める手段と、前記計算された
相互相関関数と前記量子化誤差とから前記基底信号列の
内まだ量子化されていない係数の値を補正する手段とを
有することを特徴とする音声符号化装置。(2) In an audio encoding device that encodes an audio signal divided into a series of time intervals with a composite signal consisting of a linear sum of a plurality of base signal sequences, means for determining a cross-correlation function between the base signal sequences; means for quantizing one coefficient of the base signal sequence; means for determining the quantization error; and a coefficient that has not yet been quantized in the base signal sequence from the calculated cross-correlation function and the quantization error. 1. A speech encoding device comprising: means for correcting a value of .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63071390A JPH01243099A (en) | 1988-03-24 | 1988-03-24 | System and device for speech encoding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63071390A JPH01243099A (en) | 1988-03-24 | 1988-03-24 | System and device for speech encoding |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01243099A true JPH01243099A (en) | 1989-09-27 |
Family
ID=13459141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63071390A Pending JPH01243099A (en) | 1988-03-24 | 1988-03-24 | System and device for speech encoding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01243099A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151968A (en) * | 1989-08-04 | 1992-09-29 | Fujitsu Limited | Vector quantization encoder and vector quantization decoder |
JP2011196756A (en) * | 2010-03-18 | 2011-10-06 | Yamaha Corp | Method, device, and program for performing waveform analysis |
-
1988
- 1988-03-24 JP JP63071390A patent/JPH01243099A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5151968A (en) * | 1989-08-04 | 1992-09-29 | Fujitsu Limited | Vector quantization encoder and vector quantization decoder |
JP2011196756A (en) * | 2010-03-18 | 2011-10-06 | Yamaha Corp | Method, device, and program for performing waveform analysis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2954588B2 (en) | Audio encoding device, decoding device, and encoding / decoding system | |
US4720865A (en) | Multi-pulse type vocoder | |
JPS6051720B2 (en) | Fundamental period extraction device for speech | |
JPH01243099A (en) | System and device for speech encoding | |
JP3255190B2 (en) | Speech coding apparatus and its analyzer and synthesizer | |
JP2947012B2 (en) | Speech coding apparatus and its analyzer and synthesizer | |
JPS6162100A (en) | Multipulse type encoder/decoder | |
JPH043879B2 (en) | ||
JPH028900A (en) | Voice encoding and decoding method, voice encoding device, and voice decoding device | |
JP2605679B2 (en) | Pattern encoding / decoding system and apparatus | |
JPH02120898A (en) | Voice encoding system | |
JPS6041100A (en) | Multipulse type vocoder | |
EP0119033B1 (en) | Speech encoder | |
JP2621275B2 (en) | Speech coding rate converter | |
JPS6231222A (en) | Voice encoding system | |
JPH02153399A (en) | Voice encoding system | |
JPS63148300A (en) | Multipulse encoder | |
JPH0283600A (en) | Speech encoding and decoding system | |
JPH043878B2 (en) | ||
JPH0566800A (en) | Speech coding and decoding method | |
JPS6042800A (en) | Encoding of voice | |
JPS61103322A (en) | Waveform coding device | |
JPH02153400A (en) | Voice encoding system | |
JPH01179999A (en) | Pitch extracting device | |
JPH0473700A (en) | Sound encoding system |